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Editorial 

Viviane Durand-Guerrier1, Reinhard Hochmuth2, Simon Goodchild3, Ninni Marie Hogstad3 

University of Montpellier, viviane.durand-guerrier@umontpellier.fr 

University of Hannover, hochmuth@idmp.uni-hannover.de 

University of Agder, simon.goodchild@uia.no, ninni.m.hogstad@uia.no 

 

 

The INDRUM 2018 conference was held in Kristiansand, 5-8 April 2018. The INDRUM 

conferences fall within the activities of INDRUM (International Network for Didactic 

Research in University Mathematics), which has been initiated by an international team of 

researchers in didactics of mathematics at university level. This network aims to contribute to 

the development of research in didactics of mathematics at all levels of tertiary education, 

with particular focus on support for young researchers in the field and for dialogue with 

mathematicians. 

The idea for the network and biennial conferences was first discussed in Paris (France), 

November 2014 and then Oberwolfach (Germany), December 2014. Following these 

discussions, a scientific committee with 19 scholars from 12 countries was established. The 

decision for organising the first conference in Montpellier (France), 31 March - 2 April 2016, 

with Elena Nardi and Carl Winslow as chair and co-chair was taken during CERME 9 in 

Prague, in February 2015.  

Following the success of INDRUM 2016, the decision for organising the second INDRUM 

conference in Kristiansand in April 2018 with Simon Goodchild as Chair of the local 

committee, was taken during INDRUM 2016 in Montpellier. The International Scientific 

Committee held a meeting in Dublin during CERME 10, and nominated the INDRUM 2018 

International Programme Committee: Viviane Durand-Guerrier (Montpellier, France) Chair; 

Reinhard Hochmuth (Hannover, Germany) Co-chair ;  Marianna Bosch (Barcelona, Spain); 

Simon Goodchild (Kristiansand, Norway) ; Thomas Hausberger (Montpellier, France) ; Ninni 

Marie Hogstad (Kristiansand, Norway) ; Elena Nardi (Norwich, United Kingdom) ; Chris 

Rasmussen (San Diego, United States) ; Carl Winsløw (Copenhagen, Denmark).  The Local 

Organising Committee was composed of Simon Goodchild (Kristiansand, Norway) Chair; 

Lillian Egelandsaa (Kristiansand, Norway); Ninni Marie Hogstad (Kristiansand, Norway); 

Thomas Hausberger (Montpellier, France); Elisabeth Rasmussen (Kristiansand, Norway).  As 

for INDRUM 2016, INDRUM 2018 was an ERME Topic Conference.  

A total of 53 papers and 14 posters was accepted for presentation. The final number of papers 

and posters presented at the conference and included in these proceedings (51 full papers and 

14 posters, with the latter represented in the Proceedings as two-page short papers) varied 

slightly as a small number of delegates withdrew submissions or cancelled attendance for 

personal reasons. Discussion of the accepted papers and posters was organised in six thematic 

working groups (TWG1-TWG6), based on a classification of contents. Two members of the 

INDRUM Scientific Committee were invited to lead each of the five TWGs: 

TWG1: Calculus and Analysis (María Trigueiros, Fabrice Vandebrouck)  

TWG2: Mathematics for engineers; Mathematical Modelling; Mathematics and other 

disciplines (Alejandro S. Gonzáles Martín, Ghislaine Gueudet) 

TWG3: Number, Algebra, Logic (Faïza Chellougui, Viviane Durand-Guerrier) 

TWG4: Students' practices (Chris Rasmussen, Elena Nardi) 

TWG5: Teachers’ practices (Marianna Bosch, Simon Goodchild) 

TWG6: Transition to and across university (Thomas Hausberger, Reinhard Hochmuth) 
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The scientific programme comprised: A plenary talk by Duncan Lawson (United Kingdom): 

Lessons for mathematics higher education from 25 years of mathematics support; a 

presentation of posters and of thematic working groups; a plenary panel chaired by Carl 

Winsløw: Preparation and training of university mathematics teachers: Panelists: Rolf Biehler 

(Germany), Barbara Jaworski (United Kingdom), Frode Rønning (Norway), Megan Wawro 

(United States). The accepted papers were presented in two parallel sessions and discussed in 

four thematic working group (TWG) sessions. A report was prepared and presented in plenary 

on April 8th.  

The conference was attended by a total of about 120 registered participants. In the light of the 

volume and quality of submissions, and substance of exchanges during the sessions, we are 

happy to conclude that the second INDRUM conference turned out as a further eminent 

success. 

Papers appear in these Proceedings in a version chosen by the authors following the (optional) 

possibility to upload a final version of their paper soon after the conference. 

Very special thanks are due to the organising committee, chaired by Simon Goodchild and co-

chaired by Ninni Marie Hogstad, for their tireless work over many months towards this event. 

Ninni Marie was responsible for the website, and received continuous support from Thomas 

Hausberger. Administrative support was offered by Lillian Egelandsaa and Elisabeth 

Rasmussen. These colleagues worked unstintingly before, during and after the conference to 

ensure that every participant had a smooth, productive and enjoyable INDRUM experience. 

They have set the bar high for the conferences to follow and we are indebted to them all.  

The organizers are grateful to MatRIC, Centre for Research, Innovation and Coordination of 

Mathematics Teaching for financial support covering the work of the local organizing 

committee and some other conference arrangements, also the University of Agder for 

technical and domestic services and conference accommodation. 

INDRUM follow-up 

Strengthening the Network through publications is an important goal of the INDRUM 

network. Apart the INDRUM conferences proceedings, two publications were planed after 

INDRUM 2016. 

First, an International Journal for Research in Undergraduate Mathematics (IJRUME) Special 

Issue has been guest-edited by Elena Nardi and Carl Winsløw, with support from IJRUME 

Editor Chris Rasmussen and reviewers including members of the INDRUM2016 Scientific 

Committee, was published in time for the 2018 conference and participants were able to 

download a copy of the issue without charge. 

Second, a book reporting from INDRUM 2016 and INDRUM 2018 will be published in the 

Routledge ERME Series. It will be based on the scientific work developed in the TWGs 

during both conferences. A TWGs session of INDRUM 2018 was devoted to provide input to 

the book, in addition to input provided during INDRUM2016. Carl Winslow, Viviane 

Durand-Guerrier, Elena Nardi and Reinhard Hochmuth will be the editors.  

Third, during INDRUM 2018, 13 colleagues from 10 countries have accepted an invitation to 

be members of the INDRUM International Scientific Committee, that now comprises 31 

colleagues form 15 countries.  

Finally, we are very happy to be able to announce that the Faculty of Sciences of Bizerte 

(Tunisia) will host INDRUM 2020; 27-29 March 2020, with Faïza Chellougui as chair of the 

Local Organising Committee and Rahim Kouki as co-chair. The conference will be chaired by 

Thomas Hausberger and Marianna Bosch.  

We now invite you to carry on reading this volume and we hope that the promise of its 

contents will encourage you to join, or continue to be part of, the ambitious, bold enterprise 

that is INDRUM! 
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Plenary talk



  

Lessons for mathematics higher education from 25 years of 

mathematics support  

Duncan Lawson1 and Tony Croft²  

1Newman University, United Kingdom; ²Loughborough University, United Kingdom 

 

INDRUM KEYNOTE PRESENTATION 

The scale and scope of mathematics support within UK universities have grown 

significantly since the 1990s.  Mathematics support has evolved from a ‘cottage 

industry’ initiated by enthusiasts into a main-line student support provision overseen 

by institutional senior managers.  Over this 25+ year period, the importance of the 

mathematical sciences in other disciplines has similarly boomed.  No longer is it just 

engineering and physics undergraduates who need to acquire highly developed 

mathematical skills.  Today geographers, bioscientists, sociologists and political 

scientists (to name but a few) have to be more skilled than ever before with 

understanding mathematical and statistical models and methods, particularly if they 

are to be able to access the international research literature and compete in the 

international employment market.  Just as in the 1980s and 1990s, the Engineering 

Council produced reports warning of ‘the mathematics problem’, so in the 2000s and 

2010s, the British Council and Royal Society of Arts have done the same.  This 

presentation will outline how mathematics support has developed throughout the UK 

to meet this increasing demand. 

Whilst the initial impetus for mathematics support came from a desire to improve the 

mathematical learning of students from other disciplines, it is an indisputable fact that 

a significant proportion of the users of mathematics support has been, and remains, 

mathematics undergraduates.  This gives us cause to reflect: why is mathematics 

support so attractive to mathematics undergraduates?  To answer this question, we 

explore the views of mathematics undergraduate students as expressed through the 

National Student Survey and in focus groups and individual interviews.  The views 

the students express shed light on the reasons why many of them find mathematics 

support to be an attractive resource to support their learning.   
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Panel



  

Education and professional development of University Mathematics 

Teachers 

 

Panellists: Rolf Biehler (Paderborn University, Germany) 

  Barbara Jaworski (Loughborough University, United Kingdom) 

  Frode Rønning (Norwegian University of Science and Technology,  

  Norway) 

  Megan Wawro (Virginia Tech, United States) 

Chair:  Carl Winsløw (University of Copenhagen, Denmark) 

 

ABSTRACT 

The theme of this panel may surprise some, as university teachers of mathematics 

typically hold a PhD in mathematics or some adjacent field, and in many places some 

“pedagogical training” is also foreseen. However, university teaching presents still 

more challenges (in many places: more inhomogeneous or different student groups to 

teach), and opportunities (including new technology, and – we hope – useful 

resources from research on UME). For all of these reasons, the panel will address the 

following questions: 

1. What is the current, typical preparation of University Mathematics Teachers 

for their function as teachers? What “in-service” opportunities for teacher 

development exist?  - naturally, answers will depend both on countries and 

institutions, but sharing experiences could help to provide an updated picture 

of how the “professional knowledge of UME teachers” is currently built and 

sustained. 

2. Do the current preparation and opportunities for development meet the 

demands that exist or can be foreseen? Could the preparation and development 

opportunities be improved, for instance by giving university teachers (more) 

access to selected parts of current research on UME, and possibly also 

participate in research and development projects? What initiatives exist, and 

which could be imagined as beneficial – both to increase the impact and quality 

of research on UME, and of UME itself? 
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TWG 1: Calculus and Analysis



 

Are all denumerable sets of numbers order-isomorphic? 

Laura Branchetti1 and Viviane Durand-Guerrier2 

 1 Department of Mathematical, Physical and Computer sciences, Univ. of Parma,

Italy, laura.branchetti@unipr.it 

 2 Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, France 

In this paper we study cognitive conflicts on the issue of number sets being dense,

ordered and denumerable. We first provide historical-epistemological background 

related to these notions. Then we consider the cognitive conflicts under the lenses of 

concept image and concept definition, which we use to analyse empirical data 

collected in order to understand better the didactical and cognitive issues at stake.  

Keywords: density, ordered set, denumerable set, concept image versus definition.

INTRODUCTION 

Our interest in the title question comes from our teaching experiences in the first year

of the Master degree in Mathematics course in Italy for the first author, and in first-

year university courses in France for the second author. In both cases, the focus was 

on the distinction between density and continuity for an ordered set of numbers. Both 

authors were surprised by the following students’ questions concerning the 

denumerable sets N and Q.  

Q1. How is it possible to find an order in Q if Q is dense, i.e. when the consecutive 

number of a rational does not exist?  

Q2. How is it possible that there is a bijection between N and Q, but N is discrete and Q 

is dense? 

The students’ questions highlighted potential conflicts which emerge when making 

explicit the properties of density1 and denumerability of the set of rational numbers at 

the same time. This motivates a research investigation into the didactical 

transposition of the objects that underlie the two properties, namely order on a set,

properties of both discrete2 and denumerable sets, bijection, ordered isomorphism,

difference between cardinal and ordinal numbers, and enumeration3. Our general 

research question is: how should we deal with these questions in classroom activities 

in order to help students overcome the apparent contradictions? In this paper, we will 

focus on a less ambitious sub-question concerning the first question posed by 

students (Q1). 

1 From the point of view of order, an order dense set is a linearly ordered set (X,<) with the property that if x<y then 

there exists z∈X with x<z<y (Jech, 2003). Here with the term “density” we refer to order density.    
2 A set S is discrete in a topological space X if every point x∈X has a neighbourhood U such that 𝑆 ∩ 𝑈 = {𝑥} (points 

are said to be isolated) (Krantz, 1999, p.63).   
3 An enumeration is a complete, ordered listing of all the items of a set. An enumeration for an infinite set is a one-to-

one correspondence between this set and the set of positive integers.  

14 sciencesconf.org:indrum2018:174129



RQ: What are university students’ and teachers’ concept images and concept 

definitions of dense, ordered and denumerable set? How do they connect them?  

We analysed students’ and teachers’ answers from two perspectives: i. a historical-

epistemological analysis of the topics which emerged in the students’ questions: ii. 

concept image and concept definition (Tall & Vinner, 1981). The first point is 

addressed in the first section: we refer to historical works in which infinite sets were 

studied from the point of view of cardinality, ordering and enumeration (Galilei, 

1638; Lolli, 2013; Peano, 1889). The second point is addressed in the second section; 

we use our historical-epistemological analysis, together with results in mathematics 

education (Tirosh & Tsamir, 1996; Bergé, 2010; Durand-Guerrier, 2016; Branchetti, 

2016), as resources to identify a priori possible students’ concept images that could 

conflict with each other. In the third section, we describe the contexts and 

methodology of data collection and analysis, carried out in parallel in France and 

Italy which involved university teachers and Master degree students. Finally, we

provide a brief overview of the way the concepts are introduced in scholastic stages 

prior to university studies in both countries, as a relevant background for our 

conclusions and starting point for further developments. 

HISTORICAL EPISTEMOLOGICAL ISSUES

Galileo’s view on numbers and their squares: an issue about cardinality 

In one of the most famous books by Galileo Galilei (1564 - 1642), Dialogues 

concerning Two New Sciences (1638), the Italian physician, mathematician and 

philosopher introduced the one-to-one correspondence between natural numbers and 

their squares. We report here a brief summary of the main ideas. The dialogue

concerns the difficulty that appears when trying to compare the number of points 

contained in two segments, one being longer than the other. Salviati, the voice of 

Galilei, states; “This is one of the difficulties which arise when we attempt, with our 

finite minds, to discuss the infinite, assigning to it those properties which we give to 

the finite and limited” (English translation, 1914, p.31). He then moves to numbers 

and develops an argument on the impossibility of comparing the totality of all 

numbers with the numbers of squares since they are both infinite:  

 “neither is the number of squares less than the totality of all numbers, nor the latter 

greater than the former; and, finally, the attributes "equal," "greater," and "less" are not 

applicable to infinite, but only to finite, quantities.” (p. 32-33) 

Density of Q, cardinal and ordinal numbers: Cantor's contribution

Cantor (1845 - 1918), working on trigonometric series and their convergence, moved 

on to the creation of a new theory of transfinite numbers, and the perspectives of 

Number Theory and Set Theory. Cantor came firstly to the definitions of a derived set 

– the set of limit points – and of a dense set and then of a dense-in-itself set, like the

rational numbers set (Lolli, 2013). Studying infinite sets, he introduced the diagonal 
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argument to prove that not only do the squares have the same cardinality as natural 

numbers, but so also does the Cartesian product of the set of natural numbers by it-

self, and hence the set of rational numbers, thanks to the existence of a surjection 

from the Cartesian product to this latter set. In other words, he had to find a way to 

enumerate the ordered pairs of natural numbers, being sure to consider every pair 

once and once only, following an ordering principle. To do this, he moved from the 

usual linear image of order to a 2-dimensional image. A crucial distinction,

introduced by Cantor when he was facing such problems, is between cardinal 

numbers and ordinal numbers (Lolli, 2013).  While in the set of natural numbers with 

its standard structure (formalized by Peano in 1889) the relation of order is strictly 

connected to the problem of ordering and with the induction principle, this is no 

longer the case in Q. Indeed, the standard order on Q (i.e. that consistent with 

measurement of magnitudes onto the line) is not consistent with Cantor’s diagonal 

ordering principle, i.e. in the resulting order, 
3

4
is listed before 

5

4,
but after 

3

2
. 

Peano's formalization of Arithmetic and the issue of order in natural numbers 

In Peano’s Arithmetic, the ideas developed by Cantor were formalized and used as 

principles to grasp the “essence” of natural numbers: the injective function that 

establishes Cantor’s “first generation principle” (Lolli, 2013) for the consecutive 

element of a natural number is strictly linked to the operation of addition (the 

consecutive of n, being S(n), is equal to n+1) and to the comparison between natural 

numbers, if we consider the standard order. In this structure, the consecutive element 

is always greater than its precedent in respect to the standard order. 

RESEARCH FRAMEWORK 

According to Tall & Vinner (1981) every concept, from a cognitive point of view, is 

associated to different concept images. A relevant cognitive feature of

conceptualization concerns the introduction of formal definitions: it often happens 

that the concept definition is not introduced appropriately by teachers in relation to 

the concept images. According to the authors, “a teacher may give the formal 

definition and work with the general notion for a short while before spending long 

periods in which all examples are given by formulae. In such a case the concept 

image may develop into a more restricted notion, only involving formulae, whilst the

concept definition is largely inactive in the cognitive structure” (p. 3). Some students’ 

concept images may be recognized as conflicting and inconsistent from an expert 

point of view, but they can coexist in their mind until a conflict is shown evoking 

them together simultaneously (p. 2). Such cognitive conflicts are occasions for

learning and advancing in the process of conceptualization, but if not recognized and 

suitably overcome, they can become obstacles in the learning processes. We 

hypothesised that the students who asked our two questions (Q1 and Q2) were facing 

cognitive conflicts and trying to manage the following apparent conflicting images of
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Q: i. a dense set; ii. an ordered set; iii. a set with the same cardinality as a discrete set, 

like N.  

A priori identification of concept images 

The concept definitions relevant to our topic are the following: linear ordering;

enumeration; dense set; discrete set; denumerable set; cardinality; bijection;

isomorphism. Relying on literature review and historical-epistemological analysis, we

identified possible features of concept images that may cause cognitive conflicts:  

CI1) Consecutive element is greater: generalizing an association that is typical of

N, reinforced by the spatial image of the oriented line (a greater element is on the

right as the consecutive element). Students may think that a consecutive element 

in a list must be greater than the previous one (considering the standard order). 

CI2) A dense set cannot be enumerated: Students might have a concept image of

ordered sets as sets in which the elements are “one after the other” on the line: an 

enumeration must move from left to right consistently with the standard order.  

CI3) Dense not discrete: Q might be said to be dense as opposed to N, which is

not. The difference is “shown” either on the line or with numerical examples as an 

absolute difference (to have elements in “between” or not), independent of the 

particular order. Density may thus be considered an absolute property of a set and 

the “visual contrary” of discrete. 

CI4) Linear or bidimensional representation: the cardinalities of Q and N are 

shown to be equal, “re-ordering” Q and constructing a bijection between the two

sets. The ordering procedure is usually represented in two dimensions (the 

“dovetail” counting method) while the standard order is represented using the line.  

CI5) Bijection is identification: students may associate the term “bijection” with a

total identification between the structures (A=B), not just in terms of cardinality.  

CI6) Finite versus infinite: we represent indeed finite quantities of corresponding 

integer and rational numbers. This may lead the students to implicitly compare 

images of finite subsets of N and Q (maybe in the same graphic representation of 

intervals), concluding that N and Q cannot be composed by the same quantity of

elements, since “rationals are more than integers” (see Galilei, 1638; finite 

reasoning applied to infinite sets, Tirosh & Tsamir, 1996).   

METHODOLOGY AND PRELIMINARY DATA ANALYSIS

To answer our research question, we collected the following data: i. the Italian 

student’s explanation of her doubt in written form; ii. answers to a similar

questionnaire by an Italian university teacher and Master degree students in France 

preparing the selection procedure exam to become mathematics secondary teachers. 

The questionnaire was written in English and then translated into Italian and French; 

it is based on the historical-epistemological analysis and on the hypothesized student 
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concept images. We created different versions of the same questionnaire, modifying 

them according to the two different countries’ curricula for high school and 

university syllabi, and to the target of the questionnaire (university teachers or Master 

students).   

At the beginning of both questionnaires, we present a realistic didactical situation, 

and we pose appropriate questions (see below).  

We analyse one excerpt from a written interview to the Italian student, then we 

comment on excerpts of the answers from an Italian university teacher. Finally, we 

provide a brief summary of the answers to a version of the questionnaire submitted to 

Master students in France. To carry out the analysis of the students’ interviews,

consistently with our research question, we searched for their concept images and 

concept definitions before comparing the two source groups for connections and 

potential conflicts: in the case of the students, we consider personal concept images,

while in the case of the teacher we look for examples that can reveal the hypothesized 

student concept images and concept definitions.  

Analysis of the first student’s comment (Italy) 

The student who asked the first question explained her doubt as follows: 

“The doubt arose when [1] looking at the schemata that is used to [2] find a bijection 

between N and Q. [image] N is [3] ordered by definition, because, starting from 0, every 

element has a consecutive element, while [4] Q is not, since it is dense. But what prevents 

me from saying that 3/2 is the consecutive of 4/1? According to Peano’s axiomatization, 

N is an [5] abstract structure that we can apply to natural numbers but also to Q, thanks to 

the bijection. I could thus say: [6] there are infinite rational numbers between 1/3 and ½, 

so there are infinite elements between the natural numbers associated with 1/3 and ½, 

using the [7] bijection in the reverse way. Reflecting more deeply, I realize that the 

problem is caused by the fact that [8] the bijection between N and Q is not “ordered” like 

that between N and P (pair numbers): 2 < 3, 2/1 > ½. I still do not understand why Q is

dense and N is not, since we said that Peano’s axioms can be used for several models and 

not just the natural numbers we already knew, but [9] if I enumerate Q with the natural 

numbers, it no longer has any sense to say < or > in Q.”    

The student was reasoning according to images (1,2) rather than definition and in

mentioning the definition of order (3) she said: “every element has a consecutive 

element”, revealing how she is not really using a formal definition but an image of 

ordering where each one is set after the other [CI2]; she was surprised that the 

consecutive could not be greater [CI1], so much so as to claim that in Q the meaning 

of < and > disappears. Also, she uses a representation of the bijection that she herself 

mentions as an identification (5, 7), reasoning on the schemata; indeed, she said that 

we can use it in both directions, identifying completely a couple of elements, one in 

the first and one in the second set [CI5]. She also used the image of “infinite elements 

in between” to say that N must be dense since we can image infinite elements 
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between the natural numbers associated to a couple of rational numbers [CI3]. The

student tried to connect different concept images and conflicts which emerged. The 

conflict that is expressed in the question, as she said, is caused by the use of images 

according to which [CI2] natural numbers and rational numbers are completely 

identified by means of a bijection, resulting in contradictions. It is impossible for the 

following to be simultaneously true: 1. Q is dense and N is not dense and N and Q are

“the same structure”; 2. in the identification, Q loses the property that the consecutive 

element is greater, while N conserves this same property.    

Analysis of one university teacher’s questionnaire (Italy) 

For this instance of the questionnaire, we provided the following realistic situation: 

during the lesson, a teacher is interrupted by a student asking the first question. The 

university teachers were explained what students are expected to have been taught 

before on density, infinite cardinality and the problem of “consecutive numbers” in 

Q. We asked the teachers to interpret the students’ doubts and to propose how to deal 

with said situation in the classroom. We report and comment some excerpts from the 

answers to the questions (1 refers to Q1, and 2 refers to Q2): 

1a. How would you answer the questions? How would you explain it to the whole class? 

I. “The [1] order is not linked to the state of consecutive-ness: when she speaks of 

consecutive numbers we are in the domain of the [2] induction principle, which is

only valid in N. In N we have much more: it is [3] well-ordered so there are no lower-

unlimited subsets. Once the properties of N had been observed, i.e. the [4]

“smallness” of the set that must satisfy all these features, I would move to the [5]

differences between N and Q. Finally, I would observe that everything results from 

the fact that we are able to say that [6] one number is greater than another and this 

definition is also valid in N, as N is a subset of Q. I would say that [7] we cannot

compare two properties linked to different definitions. Also, I would say that [8] in N 

we can give a definition of order that is linked to the induction principle but NOT 

generalized to bigger sets, but I would avoid going indepth into this issue, so as not 

to create confusion for the weaker students. Here, [9] the problem is that the sets are 

infinite”. 

II. “To be [10] dense is very different from being denumerable, I would [11] remind

them of the definitions.”

2. Do you find a possible connection between the two questions, whereby these chance

episodes could be used to help deal with some important topics in mathematics? What 

further examples or explanations would you propose to the student or what activities 

would you design in order to deal with such a question? 

“I would [12] show that {1/n} becomes more and more dense as it approaches 0. Then I 

would point out that the student should not be surprised when one proves that there is a 

[13] bijection between pair numbers and N, as well as with odds, the multiples of 3, the 

prime numbers, the negative integers. This is to [14] see (and prove, showing the 

application) examples of sets that are in a bijection with N.” 
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3. Would you take the opportunity to explain something to students that could help them

in trying to answer these kinds of questions on their own in the future? 

“What we learn from these questions is that science proceeds with [15] analogies and 

differences, that we [16] must always consider the definitions, and that it’s important that 

these are very precise.” 

On several occasions the teacher mentions definitions (6, 7, 8, 10, 11, 16), with 

different goals: we can’t compare properties linked to different definitions; to be

dense and to be denumerable are not linked because they concern different definitions 

(6, 7, 8, 10); we must use the definitions (11, 16).  

When the teacher proposes examples, though, he uses words like show and see, and 

he uses images that may cause conflicts: he refers to “greater” and “smaller” related 

to infinite sets [CI5] and uses cardinality to compare N and Q. He mentions the 

bijection between N and its subsets and Q by showing the application, identifying it 

thus without stressing the issue of ordering [CI5]. In one case [CI2], the ordering is 

consistent with the linear order and in the other not, but it is not stressed. He shows 

that {1/n} becomes increasingly denser near 0, encouraging the use of images of

density [CI3, CI5]. If we think about the student’s comments, these answers would 

not have clarified the point she was “struggling” with: what she thought of as 

identification did not identify N and Q exactly. He mentions the definitions but, in the

examples, he uses images and never seems to connect the definition to the images. 

Preliminary analysis of the data collected in France 

In France, an adapted version of the questionnaire was submitted to 30 first-year

Master’s students on October 12th, 2017, in the first half-hour of a teaching session on 

didactic and epistemology of mathematics. No epistemological or didactic work on 

this topic had been done before with these students. The answers were then discussed 

later in the fall as a starting point in a session devoted to epistemological and 

didactical aspects of numbers construction. For both Q1 and Q2, we asked students 

(in French): 1. Have you ever asked yourself this question? If so, in what context and 

how did you answer this question yourself? 2. Imagine that a student of a lyceum or 

of a preparatory class for the “grandes écoles” is asking you this question. How 

would you answer? Finally, the last question was: Do you find a possible connection 

between the two questions, whereby these chance episodes could be used to help deal 

with some important topics in mathematics? The questionnaire was anonymous. The 

students were asked to indicate their previous university studies.  

To the first question, 6 students answered “yes” and commented on their answer; 8 

answered “no” and commented on their answers; 16 answered “no” without 

comments. Some Master’s students claimed that the notion of density was still 

unclear for them. In answering the second question, some of these students proposed 
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an incorrect explanation for hypothetical younger students, which relied on concept 

images of successor without any reference to definition:  

M1-18 “the successor of an integer exists, so in Q there are elements having successors.  

Thus, we can say that the successor of a rational does not ‘always’ exist rather than ‘does

not exist’”.  

Several students explained that thanks to the definition of density, it is possible to 

define an order, while in order to define density-in-itself, it is necessary to already 

have an order, as in the example below: 

M1-15 - in first year university when the set theory was introduced - I told myself that in 

a dense set like Q, the notion of successor as may be imagined on N [1] does not exist,

but thanks to the definition of density [2] of a set, it was possible to define an ordering [3] 

of this set and consequently order this set [4]  

The student begins with reference to an image [1], then refers to the definition [2], 

and concludes with the possibility to define an ordering [3], which is an inversion of

the definitions between density and order. It is noticeable that the student makes a

distinction between “ordering” and “order”, while there is no reference to the already-

known order of Q. Among the 30 answers, only one student relies on the existence of

the standard order in Q to justify that it is possible to define an order on Q.  This brief 

summary of the students’ answers accounts for the weakness of their knowledge of

the concept of density, and of its link with the concept of order. 

Insights into the Italian Curricula and traditional didactical practices 

In the Italian high school curricula from grade 9 to 13, order and density are never

mentioned explicitly; teachers are, however, advised to introduce the concept of

infinite, showing the connection between mathematics and philosophy, in grades 11 

or 12 while introducing transcendental numbers.  Natural, integer and rational 

numbers are mentioned, but attention is focused on computation techniques,

representations of numbers (fractions, decimal numbers, points of a line) and 

approximation. In the curriculum for primary school, both “sequential” and 

“cardinal” sense of numbers appears. In middle and high school, students are taught 

that between two rational numbers you can always find a rational number, and that it 

follows that a rational number has no consecutive element. What is generally not 

made explicit by high school teachers is that this is not an absolute property of Q, but 

depends on the order chosen in Q. Also, numbers are usually represented in Italy on a

number line, so the discrete and the dense are distinguished using more visual than 

theoretical considerations (the existence or not of “something in between”). Discrete 

is often counter-posed to continuous. At the end of high school and/or in the first year

of university, the concept of accumulation point is introduced for dealing with limits 

and discontinuity of real functions with real variables. The existence of an infinite 

quantity of real numbers “between” two real numbers is said to be due to the density 
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property of R. This kind of practice is likely to reinforce the concept images we 

identified and to reinforce the habit of reasoning in absolute terms while referring 

implicitly to the standard order, without stressing the dependence of the properties on 

the choice of order relation. 

The French context 

In France, the situation is not very different. Durand-Guerrier (2016, p.341) presented 

it briefly, and provides evidence of the weakness of fresh university students’

knowledge about numbers, which could be related to the curriculum. Briefly, high 

school students deal with approximations, mainly with the use of calculators. In grade 

12, they learn the mean value theorem for derivatives without a proof, and without 

discussion about the fact that this theorem holds in the set of real numbers but no 

longer applies in the sets of decimal or rational numbers. Consequently, students 

beginning university generally have no idea of the differences and interplay between 

finite decimal numbers, rational numbers and non-terminating decimal expansions, 

and thus are not prepared for what they will be taught at university. Indeed, in many 

French universities, in first-year mathematical courses, an axiomatic definition of the

set of real numbers is given, most often via “the supremum property”, without any 

explicit construction. In some cases, the representation of real numbers as non-

terminating decimal expansions and the corresponding characterization of the type of

numbers are introduced, and improper expansions such as 0.9 are discussed with 

students (Durand-Guerrier, 2016, p.341). A topological course is generally offered, 

but it is mainly theoretical, and students have very few opportunities to connect the 

theoretical concepts with their interpretation in the ordered field of real numbers. 

CONCLUSIONS AND DEVELOPMENTS 

A first relevant result is that the framework is suitable to interpret our data. Our 

epistemological investigation and empirical data analysis do indeed help to formulate 

interpretations of the conflicts which appeared in the first question, as confirmed by 

the Italian student’s interview analysis. Also, we observed a total identification 

between structures due to the constructions of bijections between elements of the sets,

which is implicitly present in the high school practices. University teachers 

mentioned merely definitions, but, as Tall & Vinner (1981) showed in the case of 

discontinuity of functions, concept definition may be largely inactive in the cognitive 

structure and concept images may be used instead of the definition in order to grasp 

better its meaning. In this case, in the first question (that we analysed in depth here), 

the conflict emerged at the level of concept images, so definitions would not have 

been sufficient to solve the students’ doubts. For the French Master students who 

answered our questionnaire, this lack of awareness of the links between the concepts 

of density-in-itself and order of Q might prevent them from designing appropriate 

learning situations, once they pass the selection procedure exam and become

teachers. We hypothesise that, even if such questions emerge in university courses,
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the reasoning and consequent conflicts can be due to the lack of explicit reference to 

the dependence of Q properties on the order relation which still exists in the high 

school, a lack which calls for epistemological and didactic clarification in teacher 

training. As developments, we consider it crucial to identify the curricula issues 

where non-recognition could generate such conflicts, and to look for suitable teaching 

strategies in high school and university to deal appropriately with these concepts. 

“When the teacher is aware of the possible concept images, it may be possible to 

bring incorrect images to the surface and, by discussion, rationalise the problem”

(Tall & Vinner, 1981, p. 17). 
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In this paper, we analyze the answers of one group of high-school students and 

two groups of first-year University students to a questionnaire designed to test 

their level of recognition and understanding of the formal definition of the 

concept of infinite limit. Although this empirical study is ancillary to a larger 

project centered on didactic engineering, its analysis sheds light on the key issue 

of the logical prerequisites for the learning of the fundamental concepts of 

analysis. It also provides a new tool to investigate students’ concept-image of 

limits, and assess the impact of teaching contexts and teaching paths. 

Keywords: Teaching and learning of analysis and calculus, teaching and 

learning of logic, reasoning and proof, definitions, limits. 

CONTEXT AND RATIONALE 

At the INDRUM 2016 conference, Cécile Ouvrier-Buffet and Renaud Chorlay 

presented a poster outlining a medium-scale project on definitions in analysis 

(Chorlay & Ouvrier-Buffet, 2016), with a focus on the formal definition of the 

limit of a numerical sequence. This topic lied at the intersection of the research 

interests of the two researchers: Cécile Ouvrier-Buffet is a maths-education 

researcher with a strong epistemological background, whose work bears mainly 

on definitions, their use, and the conditions for their genesis in teaching-contexts 

(Ouvrier-Buffet 2011). Since most of her former work bore on discrete 

mathematics, she wanted to investigate the extent to which the theoretical tools 

she had developed in this context had to be adapted to deal with a teaching 

context with very different mathematical (continuous vs discrete) and didactical 

(transition from calculus to analysis) features. Renaud Chorlay is a historian of 

mathematics and teacher educator with a long-standing interest in the history 

(Chorlay, 2011) and didactics of analysis.  

We selected the topic of limits because we felt many years of didactical 

investigations had made it a mature topic; a topic about which knowledge has 

accumulated to form a sound and coherent body of knowledge. Indeed, we know 

a lot about limits in terms of conceptions and misconceptions (Robert, 1982); 

also in terms of obstacles (Sierpinska, 1985). As far as the genesis or 

rediscovery of the (or a) definition is concerned, many attempts have been made

and reported upon in details, whether in the framework of didactic engineering
1
 

(Robert, 1983) (Bloch & Gibel, 2011) or with other research tool-boxes 

(Mamona-Downs, 2001) (Przenioslo, 2005) (Swinyard, 2011) (Lecorre, 2016) 
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(Roh & Lee, 2017).  The tricky logical aspects were studied, in particular, in

(Arsac & Durand-Guerrier, 2005).  

On this solid basis, our work on the genesis and use of definitions has so far 

been engaged along three different lines of investigation; we will distinguish 

between ex-ante studies – before students’ first encounter with formal 

definitions of limits – and ex-post studies. 

 Ex-ante 1: For year 12 (final year of secondary education), the French

curriculum requires that students majoring in mathematics and the

sciences study a definition of limits (finite or infinite) of numerical

sequences. Students are not really expected to use this definition on their

own; rather, the teacher is expected to use these definitions on a few

occasions, to show that some properties of limits can actually be proved

mathematically (in particular: any unbounded and increasing sequence

tends to +). The underlying idea is that early encounter with a few

rigorous definitions and proofs should ease the transition between high-

school calculus – with its combination of algorithmic procedures and

graphical intuition – and university analysis. This classroom work on the

formal definition of limits is connected to another requirement of the

current curriculum, namely that throughout high-school, the basic notions

and the standard notations of mathematical logic be gradually made

explicit. In this context, the discovery of a definition for limit, with its

specific sequence of nested quantifiers, is supposed to be the culmination

of this gradual process. In 2016, one of us (Chorlay) designed a teaching-

session in the spirit of didactic engineering, for students to gradually

formulate a formal definition of the infinite limit. We will report on this in

detail in another context.

 Ex-post 1: in 2015-2016 we studied how – if at all – prospective maths-

teachers made use of the definition of limits in order to identify and

analyze vague, informal or erroneous statements regarding limits. We

reported on this in a poster presented at the INDRUM 2016 conference.

 Ex-post 2: in 2016-2017 we designed a questionnaire in order to assess the

level of recognition and understanding of the formal definition of the

infinite limit. This questionnaire, and the answers collected with three

groups of students are be the topic of this paper.

QUESTIONNAIRE - DATA COLLECTION 

The questionnaire was of the True/False type, divided in two parts. We give 

below an English translation, along with indications on the correct answers. 

Part I. For each one of the implications below, circle either “True” or “False”. If 

you circle “False”, justify your answer. 
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#1 If     lim un = +    then     A  R     nA  N   such that    
  A 

T - F Justification (if “False”): 

#2 If    lim un = +    then     A  R     n  N    un  A 

T - F 

#3 If   lim un = +    then     A  R     nA  N   such that    
  A 

T - F 

#4 If    lim un = +    then      A  R     n  N ,   un  A 

T - F 

#5 If lim un = + then     A  R     nA  N such that for any integer 

n greater than nA           A 

T - F 

Correct answers: 

#1 True: Here the consequent means “not bounded above”. 

#2 False: Here the consequent is a property which never holds; hence the 

implication is always invalid. 

#3 True: Here the consequent is always valid, hence the implication is always 

valid. 

#4 True: Here the consequent means “bounded below”. 

#5 True: Here the consequent is the definition, worded semi-formally. 

Part II. The four implications below are taken from part I. For each one of them, 

first state its converse, then circle “True” or “False” regarding the converse. 

Justify if “False”. 

#1 If     lim un = +    then     A  R     nA  N   such that    
  A 

Converse : 

T - F Justification (if “False”): 

#3 If   lim un = +    then     A  R     nA  N   such that    
  A 

Converse : 

T - F 

#4 If    lim un = +    then      A  R     n  N ,   un  A 

Converse : 

T - F 

#5 If lim un = + then     A  R     nA  N such that for any integer 

n greater than nA           A 

Converse: 

T - F 

Conv. of #1 False: standard counter-examples are      ,         … 

C of #3 False: the antecedent being always true while the consequent can be 

false, the implication is invalid. 

C of #4 False: being bounded below does not imply lim = +.  
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C of #5 True: definition. 

The specific form of the questionnaire derives from its original intended use. It 

was first designed to assess the didactic engineering, which focused on the 

formal definition of the infinite limit. Other forms of assessment of the ability to 

recognize, and of the level of understanding of the formal definition were ruled 

out, in particular interviews (as in (Robert, 1982)) or proof-writing (as in (Roh 

& Lee, 2017)). We felt this questionnaire would give us feedback regarding two 

key features of the engineering, namely (1) the role of logic, hence the flood of 

formulae with nested quantifiers in this questionnaire; (2) the fact that “not 

bounded above” is a necessary condition for lim un = + but not a sufficient 

condition, hence the importance of item #1 and its converse.  

We did not ask for justifications when the item was deemed “True” by the 

students, mainly to save time and keep the questionnaire feasible in about 20 

minutes. In addition, the justificatory task for True statements could vary a lot 

across teaching-contexts and would not easily lend itself to comparison. For 

instance, considering item #4 (if lim un = + then the sequence is bounded 

below): in some contexts citing a theorem studied in class would suffice whereas 

in other contexts students would have to devise and write a non trivial proof. We

also chose to drop the converse of item #2, since the fact that an implication 

whose antecedent is False is considered valid is a purely logical matter. 

In the spring of 2017, the questionnaire was administered to three groups of 

students: Group 1 is one of the two French Year-12 classes which had 

experienced the engineering; Group 2 and 3 are first-year university students in 

Mons University (Belgium), with high-achieving maths majors in Group 2 and 

medium-achieving
2
 computer science majors in Group 3. In all three cases, the 

questionnaire was given several months after the course on limits had been 

taught, and students had not been asked to revise anything in particular. They 

were told the questionnaire was given for research purposes, and would not be 

graded. They were given between 20 and 30 minutes. The number of students 

was: 31 (group 1), 50 (group 2), and 17 (group 3). 

We originally hoped a comparison between the three groups would enable us to 

study the effects of three teaching units: our engineering (group 1), a “standard”

maths-lecturer course (group 2), and Robert’s engineering (group 3, as reported 

upon in (Bridoux, 2016)). Unfortunately, we were not able to do that, since other 

factors seemed to have had a more significant impact.  

FINDINGS 

Result #1 

A first result is that this questionnaire is not unfeasible. In group 2, 14 of the 50 

questionnaires were answered perfectly correctly, with relevant counter-

examples for the False statements. Some of these counter-examples had been 

27 sciencesconf.org:indrum2018:170161



studied in class (such as         for the converse of #1); in these cases, 

students managed to interpret “ A  R     nA  N      
  A” as “not bounded 

above” and selected a relevant counter-example in a memorized repertoire. In 

other cases, counter-examples had not been studied in the course on limits – 

because they had nothing to do with limits – and students crafted ad-hoc 

counter-examples, displaying some command of logic (for instance, to prove 

that the negation of “ A  R     nA  N       
  A” always holds).  

Result #2 

A second set of results sheds light on the role of an explicit teaching of logic. 

When we collected the data we first engaged in quantitative analysis, and were 

pretty unhappy about the following result: in group 1 (our engineering), only 

26% of the students considered #4 to be “True”, compared to 86% in group 2 

and 71% in group 3. A closer look at the answers showed that in group 1, a 

significant number of students had actually engaged in another task than the 

prescribed task. In Fig. 1 and 2 we translated extracts of answer-sheets from 

group 1: 

Figure 1. Student 29 of group 1 

Figure 2. Student 3 of group 1 

In these answer-sheets, the students did not engage in an assessment of the 

logical implications but in a comparison between the formal statements given as 

consequents (in part I) and the definition of lim un = +. In these examples the 

comparison can be clumsy (as for #2 for student 29, or the “and  A” for student 

3). Nevertheless, it rests on the fact that the definition is known (correct answers 

for #5 and its converse), and is seen as the relevant template against which other 

quantified formulae ought to be contrasted. Moreover, the comparison is not 

purely syntactical: in her assessment of #4, student 29 did not only spot that “ 
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A  R     n  N ,   un  A” is not the definition, but also elicited in her own 

words why it could not be, namely “ n  N    un  A” does not capture “beyond 

a certain rank”, which is a key element of the definition. The reinterpretation of 

the prescribed task is typical of at least one third of the questionnaires from 

group 1.  

By contrast, only one of the 67 students from Mons University reinterpreted the 

implication-assessment task as a comparison-with-the-definition task. A key 

difference between group 1, on the one hand, and groups 2 and 3, on the other 

hand, is that at Mons University students had studied logic in the first term, 

whereas the French high-school students had only occasionally been exposed to 

logic. The French students were familiar with the notion of converse, and had 

some knowledge of the meaning of quantifiers  and , but were not familiar 

with sequences of quantifiers; much less with the negation of such sequences. 

These formal aspects were not problematic for a large majority of the Mons 

students. This does not mean that all the logical aspects were mastered by the 

Mons students. In particular, when it came to proving that some formal 

statement was valid, many answer-sheets showed misconceptions regarding the 

use of  and . 

This sheds some light on the standard but thorny issue of prerequisites: since the 

formal definition of limits involves a sequence of nested quantifiers, how much 

logic should be taught (either beforehand or along the way) for students to be 

able to do anything with it? Our results suggest that the answer depends on how 

“do” something with a definition is construed. Using the formal definition to 

design and write proofs probably requires some know-how regarding the 

interpretation of hitherto unknown sequences of quantifiers, and the negation of 

such sequences; for a significant proportion of the French student, their 

occasional and in-context encounters with logical notations did not allow them 

to acquire such know-how. However, if “do” is taken to mean “remember the 

definition” and even “understand the definition”, then for a large majority of the 

French students, their command of logic was adequate. For instance, we 

consider the work of student 29 of group 1 (fig.1) to display some degree of 

conceptual understanding of definition, namely some understanding of the 

specific role of each of the three quantifiers. Student 3 is clearly able to interpret 

“ A  R     n  N   un  A”. This understanding does not rest on a general 

ability to make sense of and formally manipulate logical formulae, but is limited 

to the context of the definition of limits. Since it relies on the specific 

connections between the concept-image and concept-definition of “limit” 

targeted (and, apparently, stabilized) in the didactically engineered teaching-

session, this understanding is probably not only context-dependent but also path-

dependent.  
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Result #3. 

In the a priori analysis for the engineering, we studied the relations between 

three mathematical properties of numerical sequences:  

(1) lim un = +

un) is not bounded above;  

(3) un) is strictly increasing, at least from a certain rank onward.  

Our hypothesis was that properties (2) and (3) were part of the concept-image of 

(1) for most students; of a concept-image
2
 in which all three properties are 

considered to “go together”, without any specific and explicit logical 

connections being part of the cognitive structure. This hypothesis was based on 

the didactical literature (Robert 1982) (Mamona-Downs 2001) (Swinyard 2011), 

and was perfectly confirmed during the two implementations of the engineering. 

For this reason, our design aimed for conceptual differentiation, to be achieved 

first through the study a few well-chosen sequences, and then through the formal 

explicitation of the logical connections between (1), (2), and (3). Consequently, 

we wanted our post-experiment questionnaire to help us assess to what extent 

students knew that (1)  (2) is valid, while its converse is not.  

Due to the significant level of reinterpretation of the prescribed task in group 1, 

the data gathered do not easily lend themselves to quantitative comparison. 

However, the fact that “not bounded above” (2) is a key component of the 

concept image of  lim un = + (1) is again confirmed beyond doubt. Let us first 

compare groups 2 and 3. In group 3 – the medium-achieving computer science 

majors – all 17 students deemed the converse of #1 to be True. Leaving out 3 

students whose answer-sheets show an inadequate command of the logical 

aspects, it seems that Aline Robert’s engineering (which targeted the definition 

of finite limits) had no impact on the belief that if a sequence (un) takes on 

arbitrarily large values, then lim un = +. In group 2, that of high-achieving 

maths majors, the results were not as striking; they were telling just as well. 

Among the 50 answer-sheets, let us focus on the subpopulation of those for 

which all the answers to part I were correct (including relevant counter-

examples for #2), and all the converses were stated correctly. Among these 33 

students, 17 deemed the converse of #1 to be False – which is the correct answer 

– and all but one provided a relevant counter-example (usually          

which – as the lecturer confirmed – had been studied in detail). Student 25 even 

wrote: “ A  R     nA  N   such that      
  A means that the sequence is not 

bounded above, but it doesn’t mean it tends to +, it may oscillate. Let’s 

consider         (…)”. However, the other 16 students ticked “True” for the 

converse of #1. The resistance of this belief, even among students with a 

reasonable command of logic, who know the definition of lim un = +(item #5 

and its converse), and who had been exposed to a teaching which explicitly 

tackled this issue suggest that the conflation of (1) and (2) is an epistemological 
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obstacle (Chorlay & de Hosson, 2016). It is probably not independent from the 

belief that all sequences are monotonous, at least after a certain rank (Robert 

1982), but our questionnaire offers no new insight as to this. 

This confirms – in hindsight – that we were justified to take (2) into account 

when designing a teaching-session on the formal definition of (1). However, it 

does not tell us whether targeting the formulation of the definition of (1) through 

a process fostering the conceptual differentiation between (1) and (2) was 

didactically relevant – as standard constructivist tenets suggest – or just 

foolhardy.  

The results of group 1 allow us to be cautiously optimistic. From a purely 

quantitative viewpoint, 58% of the students of group 1 deemed the converse of 

#1 to be “False” – which is the correct answer – but no conclusions can be 

drawn from this fact beyond that this 58% stands in sharp contrast with the 0% 

of “False” on the subpopulation of OK-answer-sheets of group 3. In group 1, for 

instance, the third of the students who clearly reinterpreted the task as “compare 

with the definition” ticked “False”, but this does not indicate that they are aware 

of the connections between properties (1) and (2), or that they were able to 

reformulate “ A  R     nA  N   such that      
  A” as “not bounded 

above”.  Answer-sheet 30 of group 1 shows, again, that some conceptual 

understanding can be achieved in a formal context in spite of a poor level of 

command of symbolic logic. This student systematically stated BA as 

converse of AB; hence one has to study her assessment of the converse of #4 

– instead of #1 – to see if she mistakes (2) for (1); which she does not, actually. 

Of the 31 students of group 1, only two interpreted the task correctly and 

provided relevant correct answers for the converse of #1, either with a formulaic 

counter-example        or with a graphical counter-example (of the   
       type). However, about one fourth of the students deemed the converse of 

#1 to be false, interpreted the task as “assess the implications” and provided 

arguments which we could be indicative of some conceptual understanding. In 

these cases, they justified their assessment not by displaying a counter-example, 

but by explaining why the antecedent was not strong enough to warrant the 

consequent: under the hypothesis “ A  R     nA  N   such that      
  A”, 

the sequence can oscillate; or: the antecedent does not imply that the sequence is 

increasing. Our empirical data does not enable us to tell which of the following 

is the case: either, students argue on the basis of the fact that if a sequence is 

increasing and not-bounded above then it tends toward + (a theorem they are 

familiar with); or, students conflate (1) and (3). 

CONCLUSIONS AND RESEARCH PERSPECTIVES 

While the questionnaire studied in this paper was originally designed to compare 

the effectiveness of three teaching-modules on the definition of limits of 

sequences, it turned out that they could not serve that purpose due to the 
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decisive impact of another factor, namely the level of familiarity with predicate 

calculus – both in terms of syntactic command, and in terms of ability to make 

sense of logical formulae involving nested quantifiers. Nevertheless, we claim 

that meaningful conclusions or insights can be gained from the analysis of our 

empirical results.  

For students with some command of logic – a command which cannot be gained 

through an occasional and in-context use of logical formalism – this 

questionnaire does provide insight into the connections between concept-image 

and concept-definition for limits, thus providing a new investigative tool to 

study this issue; a tool which does not involve conducting interviews or studying 

students ability to use the definition in proofs. As far as students are concerned, 

the comparison between group 2 and group 3 suggest that not all teachings on 

limits are equivalent in this respect; the case of group 2 shows that – under 

circumstances which call for further investigation – first-year university students 

can display a reasonable command of the concept of limit.  

As far as group 1 is concerned, the result show that the prerequisites in logic 

may not be as high as one might expect, if what is targeted is the ability to 

memorize the formal definition, and the ability to display understanding of some 

key features of the concept. As far as our didactic engineering is concerned, 

these results show that (1) it was not a complete failure, (2) some of its guiding 

principles – such as the importance of the conceptual differentiation between 

infinite-limit and not-bounded-above, or the use of logical formalism – seem 

relevant. However, in this context, this questionnaire is probably not the best 

tool for a fine-grained assessment of what the actual impact of this engineering 

is.  

1. For introduction to didactic engineering as task-design oriented research method, see (Bosch & Barquero 

2015). 

2. This assessment of the overall level of the groups is that of the team of maths lecturers at Mons University, as 

communicated to us by Stéphanie Bridoux, who is both a member of that team and a mathematics education 

researcher (LDAR). Many thanks to her for her collaboration on this project. 

3. D. Tall and S. Vinner introduced the distinction between the image and the definition of a concept to stress the 

difference between mathematics as a mental activity and as a formal system. “We shall use the term concept 

image to describe the total cognitive structure that is associated with the concept, which includes all the mental 

pictures and associated properties and processes. (…) it needs not be coherent (…).” (Quoted in (Tall 1991, 7)). 
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The purpose of this paper is to explore how students may understand the link between 
the formalisations through ɛ-statements of infinite processes in the Archimedean 
continuum. These processes illustrate either equality or limit. In particular, we focus 
on the extent to which students perceive the formalisation of the infinite closeness 
notion in the two processes. The data is collected from an extensive design research 
carried out at the transition between Calculus course and Analysis course. TDS 
construct of milieu is deployed to build and to analyse exploratory teaching-
experiments. The results put forward how ɛ-statements may assist students to 
reconsider their informal understanding of limit.   

Keywords: ɛ-statement, process, limit, equality, milieu. 

INTRODUCTION 

In the transition between Calculus and Analysis courses, formal definition of the limit 
is needed not only to establish precise definitions of fundamental notions such as 
differential, integral, and series, but more importantly, to build up and use formal 
statements for making formal proofs. Yet, the key question of how to create a rigorous 
understanding of infinite processes and initiate the use of formal statements remains a 
challenging issue for researchers in the field of Calculus education.  
Considerable research has been conducted on students’ difficulties to encapsulate the 
infinite processes of limit into the formal limit (Tall & Vinner, 1981; Przenioslo, 2004; 
Roh, 2008; Oehrtman, 2009). Most of this research highlights the impact of students’ 
previous use of informal statements to represent infinite processes both graphically and 
numerically. Those statements usually involve expressions related to successive 
computation of terms and closeness such as: the more is x close to infinity, the more is 
f(x) close to l, and inversely. Several other studies have explored the complex structure 
of the formal limit and have shown multiple aspects that may not help students develop 
efficient interpretations of formal statements (Cottrill et al., 1996; Durand-Guerrier & 
Arsac, 2005; Mamona-Downs, 2001; Roh, 2010; Oehrtman et al., 2014). Those aspects 
fundamentally refer to the role of quantifiers and their order, the arbitrariness of ɛ and 
its relation to the other parameter, and the connection between the statements 
expressing changes in the variables. Some other research have designed tasks to assist 
students connecting informal and formal statements related to limit (for an overview 
of the concerned literature, see Bressoud et al, 2016). Specifically, Swinyard (2011) 
has demonstrated that students are able to reinvent limit using formal statements. 
Drawing on this study and on the genetic decomposition of limit of Cottrill et al. (1996), 
Swinyard & Larsen (2012) develop a six steps model of how students come to 
understand the formal definition of limit. This model provides consistent arguments of 
how students reason about two infinite processes: 1) the process of finding limit which 
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is associated to the first three steps (as x gets closer to a, f (x) gets closer to L), and 2) 
the process of validating limit which is described by the formal limit and encapsulated 
in the last step through the formalisation of the infinite closeness notion (gets closer 
to) via the concept of arbitrary closeness. Swinyard & Larsen hypothesized that limit 
at infinity may assist students to focus first on variation of the dependent variable and 
to shift to the validating process. In addition, the focus on the variation of a single 
variable may improve students’ reasoning on the infinite closeness notion. Although 
we agree with those hypotheses, the empirical data does not outline how students 
connect informal statements of the first process to the formal statement of the second 
process. These processes encompass the cornerstone notion of infinite closeness, so 
why students do not feel the need to formalise the finding process and to emphasize its 
difference with the validating process and by the way, to understand why quantifiers 
should be described in such a way? However, Swinyard & Larsen call for research that 
could investigate students’ formalisation of infinite processes in the context of whole-
class teaching experiments and beyond the context of reinvention (p.492).   
In this paper, we focus on the formalisation of two infinite processes in the 
Archimedean continuum by using formal statements that we call ɛ-statements. These 
processes involve the formalisation of infinite closeness notion and illustrate either 
equality or limit of function at infinity1. The research of Swinyard & Larsen has served 
to structure our thought and to rigorously address our central question: to what extent 
the formalizations of the infinite closeness involved in these two processes and their 
link may assist students’ understanding of formal limit? The aim of this paper is to give 
some insights on the potency of this link in way that somewhat guarantee students’ 
making sense of formal limit beyond restrictive contexts; this is why we deploy the 
Theory of Didactic Situations (TDS) constructs to conduct exploratory whole-class 
teaching experiments in the transition between Calculus and Analysis courses.    

THEORETICAL FRAME 

The TDS is a model of learning mathematical notions founded on an optimization of 
the interactions taking place within the system of relationships between students, a 
teacher, and a mathematical milieu which includes mathematical knowledge 
(preconstructed tasks, tools, graphs, symbols, etc.), students’ prior knowledge, and 
students’ informal understanding. The situation refers to the actual implementation in 
a classroom of this ideal model (noted Situation with capital S) in accordance with a 
targeted mathematical notion. The students’ work and the teacher management are 
modelized at several levels according to the nature of the milieu. The expected 
interactions are materialized through the role of both students and teacher specifically 
in three particular levels: milieu for action, milieu for formulation and milieu for 
validation. The efficiency of the interactions among peers is ensured by teacher’s 
enrichment of the mathematical milieu. Depending on the complexity of the targeted 

                                           
1 In this paper, the formal statement related to limit of function at infinity is: The limit of a function f is L at infinity if for 
all ε > 0, there exists A > 0 such that for all x > A, L - ε < f(x) < L + ε. 
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notion, the teacher may ask questions and provide some others auxiliary mathematical 
knowledge without minimizing students’ responsibility in producing knowledge (this 
is the case for example of the formal limit). As mentioned by González-Martin et al. 
(2014): "It is important to stress that the central object of TDS is not the cognizing 
individual, but the Situation, which shapes and constrain the adaptive processes 
students can develop, and thus the mathematical knowing which can be constructed." 
(p.118). However, the robustness of a Situation depends fundamentally on the 
mathematical milieu. The elaboration of this milieu is based upon a consistent 
epistemological analysis of the targeted notion; this analysis should allow students to 
experiment motivating questions and to reconsider their informal understanding – test 
and make conjectures, provide examples and non-examples, and refute formulations.  
The aim of this research is to design situations to explore how students understand the 
formalization of two infinite processes that are strongly connected to the natural root 
of limit idea, and the extent to which the link between those processes may provide 
some insights on the formal limit. The starting point for the building of the 
mathematical milieu is the fundamental historical idea of validating equalities by 
means of infinite processes. The use of those processes provides results (for example, 
the area of parabolic segments, the sum of infinite geometric progressions, etc.) that 
would now be dealt with by means of limits and initiates the shift towards the formal 
limit. If we look to the nowadays structure of equality: a = b if for all ε > 0, -ε < a – b 
< ε, we may notice that the link between this structure and formal limit is modest. But, 
this equality can be applied to a function f using the property P: There exists A >0, for 
all ε>0 such that for all x > A, L - ε < f(x) < L + ε. If f verifies P then for all x > A, f(x) 
= L. However, if we exchange the quantifiers in P, we obtain Q:  For all ε>0, there 
exists A >0 such that for all x > A, L - ε < f(x) < L + ε. Yet, if f verifies Q then the limit 
of f in plus infinity is L. In this Situation, we focus on the role of ε in ε-statements: it 
leads "at most" to equality and "at least" to limit depending whether the involved 
statement contains there exists A > 0 for all ε > 0 or for all ε > 0 there exists A > 0. In 
the following, we explain how the constructed milieu concentrates on the formalization 
of infinite closeness in order to help students to recognize the utilities of formalizing 
infinite processes through ε–statements. In this milieu, the use of finite limit at infinity 
helps students to focus on the dependent variable and on the specific role of quantifiers 
in each ε–statement.  

METHODOLOGY 

Whole-class teaching experiments 

This study is based on extensive design research carried out from 2013 to 2015 at the 
last year of secondary school in France involving a succession of eight situations 
related to the limit notion (Lecorre, 2016). The teaching experiments were conducted 
by one of the two authors serving both as the classes teacher (this author was the official 
mathematics instructor of those classes) and as a researcher. The teaching experiments 
took place inside classes’ allowed time; each class contains about thirty 17-18 years 
old students. The teacher-researcher provided the whole-class with preconstructed 
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tasks and gradually enriched the mathematical milieu asking questions to assist the 
progression of students’ work and giving tools that would help students to address 
problems. Data consisted of audiotape recordings and copies of students’ written work. 

In this paper, we focus on the transcripts of four successive class sessions that are 
related to the fifth and sixth situations of the whole design; each class session lasted 
two hours. The fifth situation is based upon the graph of the monster (fig.1) and it is 
supposed to destabilize students’ informal understanding of the infinite closeness 
notion in the limit process and to trigger the need to formalize this process using ε–
statements. The sixth situation is designed in way that students face: 1) the problems 
of validating equalities and limits candidates using two infinite processes; and 2) the 
individual subtle formalization via ε–statement of each process depending on whether 
the statement contains there exists…for all or contains for all…there exists.  Prior to 
taking part in the selected class sessions, the students had participated to the preceding 
teaching experiments concerning the first four situations of the whole design, and they 
were already familiar with whole-class discussions. Specifically, the students had 
constructed informal understanding of limit of function at infinity. Building on the 
graphs of paradigmatic functions (for example 1/x), they had investigated limits at 
infinity by using expressions such as close to infinity and gets closer to. In addition, 
they had explored double quantified statements and that double quantifications should 
be differenced according to the order of the quantifiers and to the convention of 
interpretation. However, the formal definition of limit is still not introduced to them. 

A priori analysis of the monster situation 

Students’ previous work on the statement f(x) is upper bounded by g(x) "in infinity" led 
the teacher-researcher to formalize "in infinity" by means of There exists A > 0 such 
that for all x > A. This formalization which is one of the fundamental elements of the 
mathematical milieu of this situation is part of prior students’ knowledge. The central 
element of the mathematical milieu is the monster (fig.1).  

 
Figure 1: The monster 

The monster is the graphical representations of two functions f  and g such that f  
remains below g (g which "soon" becomes a constant) except in rare but regular peaks 
(every 106) where f is over g on small intervals (less than 10-6). In addition, this milieu 
contains the conjecture C3: Given two functions f and g having no infinite limits in 
infinity. If the limit of f is strictly less than the limit of g in plus infinity then there exists 
A >0 such that for all x > A, f(x) <g(x). The students are asked to answer the core 
question of this situation: The monster is an example, a counter-example, a non-
example of C3? The use of graphs allows students to create ideas about the limit 
process; it also provides them with helpful feedbacks -even if not formal- that may 
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contribute to reconsider their informal understanding (p.124). The graphs of 
paradigmatic functions are given by the teacher-researcher during the debate to 
reinforce the doubt about the meanings that students give to the infinite closeness in 
limit process. Students’ formulations are based on their informal understanding of this 
closeness. The class discussion may lead to broad agreement about the validity of C3 
but some students may remain uncertain considering that it has not been proven yet. 
This inquiry is not exactly a request for the formalization of the infinite closeness in 
limit process, but it is the beginning of the awareness that prior understanding about 
limit process are fragile and have to be formally structured.  

A priori analysis of the ε-statements situation 

The arbitrariness of ε is the keystone idea of the ε-statements; it founds the equality 
process and the limit process through the decreasing of ε towards 0. This situation 
contains three phases, they are planned in way that: the first phase focuses on the 
formalization of infinite closeness using statements with the only ε; the second phase 
deals with the formalization of infinite closeness using statements with ε and other 
variables; and the third phase highlights the formalization of infinite closeness involved 
in the limit process by emphasizing the role of quantifiers.    
- 1st phase: The mathematical milieu contains the property P for A = 50 and L = 2 (P1: 
For all ε>0, for all x > 50, 2 - ε < f(x) < 2 + ε), the conjecture C4-1: If f verifies P1 
then for all x > 50, f(x) = 2 and the conjecture C4-2: If f verifies P1 then 
𝑙𝑖𝑚
௫→ାஶ

𝑓(𝑥) = 2. The students are firstly asked to say what can be concluded if f verifies 

P1. Then, the teacher-researcher has the responsibility to enrich the milieu by asking 
the students whether or not: The function f(x) = 2 + 1/x is an example, a counter-
example, a non-example of C4-1? Depending on the evolution of the debate among the 
class students, the use of the same function should permit to study C4-2. More 
precisely, students are familiar with the use of graphs to give examples in order to make 
or to verify conjectures. Graphical representations of functions may lead to the 
visualization of the closeness of f(x) to 2 by using several values of ε. It is expected 
that students’ validation of C4-1 via a reductio ad absurdum reasoning permits to focus 
on the arbitrariness of ε as formalizing infinite closeness involved in P1. The study of 
the function f(x) = 2 + 1/x which does not fit the hypothesis of C4-1 -instead of 
verifying there exists A (A=50), for all ε>0 […], this function verifies for all ε>0, there 
exists A > 0 […]- should support students’ formulations about infinite closeness 
involved in limit process. The discussion of C4-2 should reinforce those formulations 
and assists students on thinking about the link between the two processes through the 
notion of infinite closeness. It is rather probable that the choice of A (50 in P1) will be 
questioned: does any other A>0 and A ≠50 exist in way that the function f(x) = 2+1/x 
fits the hypothesis? The issue related to the values of A will be discussed in the 
following phase.  
- 2nd phase: The mathematical milieu contains the property P which is given for 
unknown A (P2: There exists A >0, for all ε>0 such that for all x > A, 2 - ε < f(x) < 2 
+ ε), the conjecture C4-3: If f verifies P2 then for all x >A, f(x) = 2 and the conjecture 
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C4-4: If f verifies P2 then 𝑙𝑖𝑚
௫→ାஶ

𝑓(𝑥) = 2. The students are firstly asked to give some 

properties of functions verifying P2. Students’ formulations may lead to the 
establishment and the discussion of C4-3 and C4-4. A validation of C4-3 based on 
reductio ad absurdum proof is not expected; however, the validation will inevitably 
highlight the formalization of infinite closeness within statement containing ε and 
another variable (A in P2).  The study of C4-4 is supposed to improve students’ 
formulations about infinite closeness in the limit process using the closeness involved 
in P2. It isn’t expected that at this stage students will feel the need to talk about the role 
of quantifiers; but, when we inverse P2 into P3: For all ε>0, there exists A >0 such 
that for all x > A, 2 - ε < f(x) < 2 + ε, fruitful discussions about the double quantification 
statements may arise among students; the third phase deals with this inversion.    
- 3rd phase: The milieus of the above phases are planned to bring into focus the use of 
ε-statement of equality to validate a limit candidate and so to stimulate students 
thinking about the formalization of limit process. In this phase, the milieu focuses on 
the ε-statement of limit to validate a limit candidate. This milieu contains P3, the 
conjecture C5-1: If f verifies P3 then there exists B>0 for all x>B such that f(x) = 2 
and the conjecture C5-2: If f verifies P3 then 𝑙𝑖𝑚

௫→ାஶ
𝑓(𝑥) = 2. The students are firstly 

asked to say whether f(x) = 2+1/x is an example, a counter-example, neither an 
example nor a counter-example of C5-1. Then the teacher-researcher has in charge to 
add C5-2 and to ask the following question: what do you think about this conjecture? 
It is expected that the starting point of class discussion concerns the question related to 
whether f(x) = 2+1/x verifies or not the hypothesis of C5-1. Students’ formulations 
may concentrate on the finding of the target A given a specific value of ε; the validation 
emerges from the necessity to generalize this argument for each ε. The discussion of 
C5-1 emphasizes the need to elucidate the link between the formalizations of infinite 
closeness in both P2 and P3.  It is expected that the use of f(x) = 2+1/x helps students 
to catch the subtleties of this link through the inversion of quantifiers. Students’ 
formulations about C5-2 are supposed to concentrate on the formalization of infinite 
closeness involved in limit process. 

Brief description of data analysis method 

In the TDS frame, the a priori analysis is important not only to control the data analysis 
of the experimental situations but mainly to highlight what does not happen as expected 
specifically by focusing on how students’ understanding assist them to progress or not 
as planned by the situation. In the case of this research, the data analysis is conducted 
in this spirit and it is organized through two major levels. The global level of the data 
analysis involved reviewing transcripts paying attention to the potency of the situations 
to tackle the research question. The global data analysis shows that the situations give 
students the opportunity to enter on the problem and to test their understanding through 
actions, formulations and even validations. The planned milieus incite students to 
express and share their understanding of limit process and to progress towards formal 
understanding. The social dimension of these situations succeeds to stimulate valuable 
discussions among students who acted to convince their peers or to be convinced by 
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them2. We take advantage of those discussions to engage on the local level of analysis 
which focus on students’ understanding of infinite closeness and its formalizations in 
the equality and limit processes. This study is based on the evolution of students’ work 
through the three levels of the milieu (action, formulation and validation) and on the 
arguments they used to explain their work. In the following section, some results of the 
local level are exposed and exemplified by generic3 students’ utterances that are 
translated verbatim from French. We mainly focus on students’ shared understanding; 
however, the individual student’s understanding is underlined when it is awkward and 
deep.  

RESULTS 

Students’ understanding of infinite closeness in the limit process  

As expected, class’s discussion about the monster put forward the diversity of students’ 
informal understanding of limit process. Students’ actions involve the use of 
expressions related to closeness such that approaching more and more, from below, 
from above, gets closer to. Yet, Students’ argumentations strengthen the need to give 
more precisions about those expressions. Building on the graphics of prototypical 
functions (fig.2), the following formulation gains broad agreement about how the 
infinite closeness should be stated in the limit process: For this kind of sinus curve no 
limit, the second, it is sometimes above and sometimes under […] always going closer 
to the limit […] the third function […] the peaks are shrinking and the values of the 
function are getting closer to the limit each time. 

  Figure 2: Infinite closeness through 3 graphics 
The visualization of infinite closeness through graphical representations helps students 
not only to share the same meanings but also to get aware of the fragility of their 
informal understanding. Of course, this is not enough to ensure their engagement in the 
formalization of closeness in limit process mostly because they have not yet felt the 
need to validate their limit candidates.  

Students’ understanding of the formalization of infinite closeness in equality 
process 

To examine students’ understanding of the formalization of infinite closeness in 
equality, we mainly focus on the data analysis related to students’ work on C4-1 and 
C4-3. In the following, the results are organized into two steps depending on whether 
the statements used refer to the only ε (P1) or not (P2). In both cases, students’ work 
concentrates simultaneously on the process involved in the statement as a way to verify 
equality as well as a way to validate equality.  

                                           
2 Due to space constraints, the results of the global level of analysis are limited to this description. 
3 By generic we mean that it is representative of whole class utterances.  
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Students’ work involving ε-statement with the only ε  
The use of several graphical representations assists students’ formulations about the 
role of ε in the statement: little epsilon, change the value of epsilon, etc. At this stage, 
the arbitrariness of ε as formalizing infinite closeness is strongly highlighted and it 
constitutes the starting point for the shift towards validating the equality. The validation 
is based upon a graphical reductio ad absurdum starting naturally from x > 50 (fig.3): 
To show that it's true… show that f(x) can't be different from two [...]. 

Figure 3: Graphical reductio ad absurdum 
Students’ understanding of the formalization of infinite closeness involved in P1 (fixed 
A = 50) is aided by graphical arguments and emerges from the necessity of both 
verifying and validating equality.  
Students’ work involving ε-statement with ε and A  
Students’ work on P2 (any A) leads to the discussion of C4-3. The students argue on 
the validity of this conjecture on the basis of the graphical reduction ad absurdum 
specified for a fixed A (50): It is exactly the same statement with A instead of 50. This 
generalization is not yet a proof that students’ understanding of the formalization of 
infinite closeness in equality takes account of quantifiers in P2 statement.    

Students’ understanding of the infinite closeness in limit process through its 
formalization in equality process  

To study students’ understanding of infinite closeness in limit through its formalization 
in equality, we mainly focus on the data analysis related to students’ work on C4-2, 
C4-4 and the case of f(x) = 2 + 1/x. Students’ work about whether this function fits or 
not P1 and P2 is supposed to pave the way for linking equality and limit processes as 
well as to underline the quantifiers and their order in P2 statement.        
Students’ work involving ε-statement with the only ε  
Students’ formulations about whether f(x) = 2 + 1/x fits or not P1 are based on 
numerical computations and lead soon to the necessity to invalid this example by using 
the case of x = 51 and ε = 0.001. Students’ actions on C4-2 are mostly based on the 
already stated validation of C4-1: f equals 2 and this result does not give information 
about the limit of f. The use of f(x) = 2 + 1/x reinforces the doubt on the validity of C4-
2 and some students’ formulations about this case permit progressively to highlight the 
specificities of the relationship between ε and A = 50 in P1: here for all ε there is the 
same A equal to 50 from which f(x) equal 2 thus f(x) is between 2 – ε and 2+ ε […] and 
so the limit is two. Yet, the involved argument does not provide successful feedbacks 
among peers. However, the necessity to validate a limit candidate through the use of 
the equality ε-statement (P1) compels students to reorganize their understanding of the 
infinite closeness in limit process by taking into account the arbitrariness of ε.  
Students’ work involving ε-statement with ε and A  
Students’ validation of the statement f(x) = 2 + 1/x is a non-example of C4-4 is based 
on a numerical argumentation which is expressed as follows: I would like to ask those 
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who think it is true, to choose an A, any A, and I will be able each time to find a counter 
example (an epsilon in fact). This argument emphasizes the order of quantifiers in the 
equality process but students’ work on C4-4 is inconclusive mostly because they do 
not succeed to draw upon the arbitrariness of ε to formalize the limit process. However, 
their understanding of the infinite closeness is enhanced by the use of P2 as an ε-
statement firmly consent with the limit process.  

Students’ understanding of the role of quantifiers in the formalization of infinite 
closeness in limit process 

These results are mainly based on students’ work on C5-1, C5-2 and the case of f(x) = 
2 + 1/x. They are splitted into two sections: 1) students’ interpretations of quantifiers’ 
orders; and 2) the potential sum up of limit process into the formalized ε–statement P3.  
Interpretations of quantifiers’ orders 
Students’ work on whether f(x) = 2+ 1/x verifies P3 or not highlights their difficulties 
to perceive the distinction between P2 and P3 and progressively emphasizes the 
necessity to take care of quantifiers’ orders. Students’ firstly act as for P2 to interpret 
the quantifiers in P3 before focusing on a peer intervention: […] the question is written 
as for all there exists he must give us an epsilon and we have to find an A. Students’ 
discussions highlight the inversion of quantifiers issue and the need for convention of 
interpretations. The teacher-researcher intervenes in order to help students finding the 
targeted A for every given ε and to confirm the invalidity of C5-1. 
Sum up of limit process via ε-statement 
During the debate concerning quantifiers, students’ work with ε-statements is strongly 
connected to the necessity to answer those questions: given epsilon, how to give A? 
Given A, how to give epsilon? In addition, students’ work on the validation of the limit 
candidate involved in C5-2 leads to the formalization of the infinite closeness in limit 
process. Students’ further formulations put forward the need to explore additional 
question: to what extent this formalization is sufficient to sum up the formal limit?  

CONCLUSION 

This study examines students’ understanding of the formalisations of two infinite 
processes in the Archimedean continuum by using ɛ-statements. These formalizations 
concern with the infinite closeness notion and refer to equality and limit of function at 
infinity. The aim of this paper is to give data on how these formalizations and their link 
may support students’ understanding of formal limit. We deploy TDS constructs to 
design situations in which the milieu is built on students’ informal understanding of 
limit and concentrates on the role of quantifiers to differentiate the formalizations given 
to the infinite closeness in the process of equality and limit, respectively. This study 
highlights three main results concerning students’ understanding of ε-statements: 1) It 
is possible to organize a milieu that leads students to question their informal 
understanding of limit process: in this study, the doubt emerges through several ways 
used by students to perceive the infinite closeness in the limit process; 2) The only 
formalization of the infinite closeness in the equality process cannot provide insights 
on its formalization in the limit process. The focus on the quantifiers’ orders is crucial 
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to achieve this formalization; 3) The formalization of the infinite closeness in limit 
process does not ensure students’ sum up of limit process into the formalized ε–
statement, this issue needs further investigation. The social dimension of TDS helps 
students to progressively construct meanings that will constitute the bricks of the 
meaningful argument which tends to be collectively adopted. In the end, students can 
admit the irrefutability of the reasoning when all their reluctances are taken into 
account by their peers.   
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Many students enter university having learned that the graph of a continuous function 

is “in one piece” and “can be drawn without lifting the pen from the paper.” 

Rigorously, a function ℝ → ℝ is continuous if and only if its graph is path-connected. 

In this article, I examine proofs of this fact by students in a topology course. Based on 

Moore (1994), concept usage of continuity and path-connectedness is analysed 

through recognition and building-with of the RBC-model of epistemic actions (Dreyfus 

& Kidron, 2014) in combination with a refinement of Oerter’s (1982) contextual layers 

of objects. A “propositional” layer to describe relationships between objects used in 

proofs is introduced and used to perform case studies of students’ solutions. 

Keywords: Teaching and learning of specific topics in university mathematics, 

teaching and learning of analysis and calculus, topology, continuity, epistemic actions. 

INTRODUCTION 

The concept image of a continuous real function of one real variable as one whose 

graph is “in one piece” or “can be drawn without lifting the pen from the paper” 

(provided that the function is defined on an interval) is held by many students in school 

or university (Tall & Vinner, 1981; Hanke & Schäfer, 2017). 

This piece of research is intended to expand the viewpoint from students’ concept 

usage of continuity from first-year analysis to higher courses and sensitise for some 

students’ thinking processes. To a large extent, this paper is of philosophical nature 

and suggests a refinement of Schäfer’s (2010) approach to describe epistemic actions 

with the RBC-model, namely by introducing a new specific layer called propositional 

layer. This is relevant for the specifically mathematical procedure of deduction from 

theorems about relationships between objects. This refinement is then applied to 

students’ (partial) proofs of the fact that a real function defined on ℝ is continuous if 

and only if it has a path-connected graph. Thus, this study begins to fill a gap in the 

literature on this highly recurring concept image and the difficulties in finding a 

rigorous proof which requires some topological knowledge. 

The general research question before starting this investigation was which mental 

images students use in a proof to a prevalently, vividly acceptable theorem. Here, the 

aim of this article is to display students’ proofs and moot a way to dissect these 

according to the levels of concreteness of the objects the students used. 
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The task 

The exercise in question was (translation E.H.; see Ross (2013, p. 182)): 

“In school, one often says ‘A function is continuous if you can draw its graph without 

lifting the pen.’ Prove the following exact version of this proposition: A function 𝑓: ℝ →

ℝ is continuous if and only if its graph Γ𝑓 = {(𝑥, 𝑓(𝑥)): 𝑥 ∈ ℝ} ⊂ ℝ2 is path-connected.” 

The intuition of “without lifting the pen” has to be translated into a valid statement 

carefully. Path-connectedness really is required instead of connectedness, and the 

theorem is no longer valid for functions from an arbitrary path-connected space to the 

real numbers. It is tacitly assumed in this task that the topologies for ℝ and ℝ2 are 

Euclidean and Γ𝑓 inherits the induced topology. Note that the graph Γ𝑓 is the image of 

the function id × 𝑓: ℝ → ℝ2, 𝑥 ↦ (𝑥, 𝑓(𝑥)). Thus, the forward implication in the 

exercise follows from the facts that functions into products of topological spaces are 

continuous (with respect to the product topology) if their components are continuous, 

and continuous images of path-connected sets are path-connected. For the reverse 

direction, continuity of 𝑓 at 𝑝 ∈ ℝ can be proven by contraposition via the 𝜀-𝛿-

definition using the existence of a path of the form 𝛾 = (𝜑, 𝑓 ∘ 𝜑) between (𝑢, 𝑓(𝑢)) 

and (𝑣, 𝑓(𝑣)) in Γ𝑓 for some 𝑢 < 𝑝 < 𝑣. 

Since this paper has theoretical aims next to the empirical investigation and due to page 

restrictions, I omit an à-priori-analysis of different possibilities of proving this theorem 

and prerequisites. 

FRAMEWORK: THEORY AND METHODOLOGY 

Concept usage, object layers and the model of nested epistemic actions 

The concept image of a learner for a mathematical object, class of objects or procedures 

is “the total cognitive structure that is associated with the concept, which includes all 

the mental pictures and associated properties and processes” (Tall & Vinner, 1981, 

p. 152). In contrast, (personal) concept definitions are students’ attempts to specify a 

concept. Moore (1994) claims that besides “mathematical language and notation” and 

“getting started” one of the major difficulties in proving is “concept understanding” 

(mix of concept images, concept definition and concept usage) (p. 249): This means, 

many students who fail in a proof “lack intuitive understanding of concepts”, “cannot 

use concept images to write a proof”, “cannot state the definitions [properly, E.H.]” or 

“do not know how to structure a proof from a definition” (Moore, 1994, p. 253). The 

term concept usage “refers to the ways one operates with the concept in generating or 

using examples or in doing proofs” (Moore, 1994, p. 252). 

The Abstraction in Context Methodology (AiC) (Dreyfus & Kidron, 2014) offers a 

theory about learning, originating in the need for a new mathematical construct, its 

construction of knowledge and its consolidation taking into account a specific form of 

context. In this setting, construction of knowledge means performing nested epistemic 

actions (RBC-model): Recognising, building-with and constructing. Recognising is 

45 sciencesconf.org:indrum2018:171761



 

 

 

“seeing the relevance of a specific previous knowledge construct to the problem at 

hand”, building-with “comprises the combination of recognized constructs, in order to 

achieve a localized goal such as the actualization of a strategy, a justification, or the 

solution of a problem” and construction “consists of assembling and integrating 

previous constructs by vertical mathematization to produce a new construct” (Dreyfus 

& Kidron, 2014, p. 89). The actions are nested in the sense that building-with 

something requires its recognition and construction requires building-with. Hence, the 

word construction is meant globally within the AiC methodology and locally in the 

RBC-model. It is noteworthy that flexibility and availability of a construct does not 

stem from construction itself but consolidation. 

Based on Oerter’s (1982) theory of activity, Schäfer (2010) differentiated between 

three layers which help to describe recognition processes of objects more precisely. 

Next to objectification [orig. Vergegenständlichung] which is the creation of objects, 

objectual concern [orig. Gegenstandsbezug] towards previously constructed objects 

can be classified on three layers (Oerter, 1982): On the singular layer objects are not 

distinguishable from the action of an individual itself (e. g. recognising numbers in a 

table); for the actor, the objects are not yet seen as objects and do not need to have 

names. On the contextual layer objects are characterised by their usage – not anymore 

restricted to an individual but shared within a community – and the usage is performed 

within a specific contentual context and similarity of situations; the objects gain 

persistence beyond singular action. Finally, on the formal layer objects are disengaged 

from specific actions or context (Oerter, 1982; Schäfer, 2010). The objectual concern 

of previously constructed objects (of a learning process) is reflected in the way 

someone can use this object. In this article, this activity theory oriented standpoint is 

specified to mathematics practice in students’ attempts to prove a topological fact. 

The approach to consider object layers and actions on them seems related to Sfard’s 

(1991) idea of the duality of operational and structural conceptions (views of an 

individual of a concept) within the process of concept formation; concept here means 

a “mathematical idea […] in its ‘official’ form” (p. 5). Structural conception considers 

concepts as “abstract objects” and its dual form, the operational conception, is about 

“processes, algorithms and actions”, not the notion as an object itself (Sfard, 1991, 

p. 4; emph. orig.). Both of these views of conception can be seen in mathematical 

practice: In the action of formal recognition as well as propositional recognition and 

building-with (see below) objects are conceptualised as structural and through 

operational conceptions a conclusion is achieved. Propositions themselves are 

structural, and their scope is reflected in their use, allowing a deduction or justification 

(not necessarily mathematically correct though). 

Founded in the Anthropological Theory of the Didactic, Hausberger (2018) described 

“structuralist praxeologies” which characterise mathematical justification practices 

that are oriented towards replacing a statement about the particular with one about the 

general: “Structuralist thinking is characterized by reasoning in terms of classes of 

objects, relationships between these classes and (structural) stability of properties 
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under operations on structures” (pp. 82f.; emph. orig.). What I describe here as 

propositional building-with action would fall most likely under his levels 2 and 3 of 

“structuralist dimension” of a proof (Hausberger, 2018, p. 81; emph. orig.) which 

describe the application of theorems to a task at hand, therefore reasoning on 

structuralist rather concrete object level. For example, the task of showing that an 

object O (e. g. ℤ) possesses property A (e. g. unique factorisation domain) can be 

changed to the task of showing that O belongs to a class of objects C (e. g. Euclidean 

rings) in order to apply a theorem which states that each member of C possesses A 

(e. g. every Euclidean ring is a unique factorisation domain). The identification of O’s 

membership to C resembles in the proofs in this paper to recognition actions (of 

different layers) that O possesses property C. This procedure is “illuminating as to the 

‘root causes’ behind the result” (Hausberger, 2018, p. 83). 

Mathematical notions such as “continuous real function” are on the formal layer for 

experienced students and mathematicians, and instances thereof can be recognised as 

having the general properties of elements of the class they belong to. However, 

mathematical theorems can also be seen as objects on the formal layer. If they come 

into use, e. g. by specialisation to a concrete situation in an exercise, they become an 

object one builds-with. In fact, since the usage of objects is of particular interest here, 

I claim that a new object layer should be included, the propositional layer: On the 

propositional layer we find theorems as objects that describe properties of objects on 

the formal layer. Thus, it does not merely contain abstract mathematical objects but 

relationships between objects as own objects. These relationships can then be applied 

in a propositional building-with action towards objects on the formal or the contextual 

layer. [1] 

In practice, the decision for which object layer occurs at which place can be guided by 

the instantiation of objects (“let 𝑓 be given by 𝑓(𝑥) = 𝑥2 + 1”), which mostly suggests 

the singular or contextual layer, or their declaration (“let 𝑓 be a function such that …”), 

which highlights an object rather on formal layer. In proofs, the identification of 

propositional recognition and building-with actions may be assisted by the writer, e. g. 

referencing the lecture, the number of a theorem etc. However, somebody’s “personal 

mathematical toolkit” may determine which layer really is in use. The analyses below 

reflect an interpretation of the written product, not the way of finding the proof. 

Examples for the identification of the object layers 

If one wants to show that the unit circle 𝑆1 is compact, one can directly use the 

definition of compactness by taking any open cover of the circle, assuming there was 

no finite subcover and, using concrete, contextual properties of 𝑆1, evoking a 

contradiction. This way, propositional objects are not necessarily involved (except for 

the definition of course, and depending on the particular argumentation). On the other 

hand, identifying 𝑆1 as continuous image of [0,1] → ℝ2, 𝑡 ↦ (cos(2𝜋𝑡) , sin(2𝜋𝑡)), 

is a contextual recognition of 𝑆1 to the context of the map, and together with the 

propositional recognition of the fact that continuous images of compact spaces are 
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compact the propositional building-with action of this fact to the situation at hand 

yields the compactness of 𝑆1. Structurally, these two proofs are completely different. 

Next, consider the above proof that the graph of a continuous function is path-

connected. First, the graph is recognised as the image of a certain map id × 𝑓 

(contextual layer), and this map is recognised as a product of continuous maps 

(contextual layer). The theorem that products of continuous maps are continuous is 

recognised on the propositional layer and used to deduce the continuity of the map 

written down in the proof (building-with on the propositional layer to further recognise 

the continuity of id × 𝑓 on formal layer: The concrete map is no longer important, 

simply its continuity). Finally, the theorem that continuous images of path-connected 

spaces are path-connected (recognition on the propositional layer) is used in a building-

with action on the propositional layer yielding that the graph of 𝑓 is path-connected by 

recognising that the theorem is applicable to the situation at hand. Even though this 

proof is very short, many recognition and building-with actions had to be completed, 

brought into order and were compressed in only two sentences. 

The “if”-direction of the given task can be proved in the formal/propositional manner 

as described and is a special case of the theorem “If 𝐹: 𝑋 → 𝑌 is any function between 

a path-connected topological space 𝑋 and any topological space 𝑌, then the graph of 𝐹 

is path-connected if 𝐹 is continuous.” The main ingredient is the fact that for any path-

connected space 𝑈 and any function 𝑔: 𝑈 → 𝑉 between topological spaces, continuity 

of 𝑔 implies the path-connectedness of 𝑔(𝑈). Since the reverse directions of these two 

statements are not true [2], the reverse direction of the students’ task cannot be proved 

(completely) in the formal/propositional manner considering solely (path-connected) 

topological spaces, continuous maps and their properties as above. Nevertheless, it is 

surely possible to argue with propositional objects, e. g. using the intermediate value 

theorem or the intermediate value property of functions (Ross, 2013, p. 182f.). 

DATA COLLECTION 

The data collection for this study took place during the spring semester 2017 at the 

University of Bremen within the topology class for Bachelor students in pure 

mathematics. I was not involved in this class but was informed by the lecturer about 

the contents. During the third week of the semester the students had to solve (besides 

others) the task presented above. Construction is not directly observable in the analyses 

below because all notions involved are not new to the students. The context of the 

contextual layer is understood very locally, depending on the objects already available 

in the particular solution, for instance those that have been declared before.  

RESULTS 

The following cases are supposed to illustrate the work with the above framework (for 

groups 2 and 3 only one implication is shown). Overall, the solutions were very 

different regarding the approaches used. More details cannot be included here. All of 

the following transcripts were translated from German respecting (unusual) syntax. 
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Notational and language errors are mostly ignored. Abbreviations of German words 

were often not abbreviated. Small notational errors like forgetting a closing bracket 

were corrected. An open ball of radius 𝜔 centred at 𝑎 is denoted by 𝑈𝜔(𝑎). 

Case study: Group 1 

The following is a transcript of the solution of group 1 with a sketch redrawn by myself.  

1 “⇐” Let 𝜀 > 0 

2 Since Γ𝑓 is path-connected, there exists 𝛾: [0,1] → Γ𝑓 

3 with 𝛾(0) = (𝑥 − 𝛿1, 𝑥 − 𝜀)𝑇 and 𝛾(1) = (𝑥 + 𝛿2, 𝑥 + 𝜀)𝑇 

4 Choose 𝛿 = max {𝛿1, 𝛿2}, then it holds that 

5 |𝑥 − 𝑦| < 𝛿: |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀   𝑦 ∈ ℝ 

6 and thus 𝑓 is continuous because 𝜀 arbitrary. 

As a first step, the students declare a positive 𝜀 (line 1) which indicates that they would 

like to test the 𝜀-𝛿-definition of continuity. It looks like a recognition on the formal 

layer, but it is not stated explicitly at which point they want to check continuity; most 

probably it is “𝑥”. Afterwards, the students assume that there exists a function (most 

likely a path, even though not stated) [0,1] → Γ𝑓 connecting the points (𝑥 − 𝛿1, 𝑥 − 𝜀)𝑇 

and (𝑥 + 𝛿2, 𝑥 + 𝜀)𝑇. It is not clear why these points should lie on the graph of 𝑓 but 

this should be the case since the path lies in Γ𝑓 by their assumption (recognition on 

contextual layer) (lines 2-3). Interpreting the students’ sketch of the graph, which they 

do not refer to, I hypothesise that they actually mean the points (𝑥 − 𝛿1, 𝑓(𝑥) − 𝜀)𝑇 

and (𝑥 + 𝛿2, 𝑓(𝑥) + 𝜀)𝑇, and 𝛿1 and 𝛿2 are chosen such that 𝑥 − 𝛿1 and 𝑥 + 𝛿2 are 

preimages of the corresponding second components of the points on the graph under 

𝑓. Thus, the path is recognised on contextual layer using false assumptions. Then, the 

students choose the minimal of these 𝛿s to implicate that 𝑓 fulfils the 𝜀-𝛿-definition of 

continuity in line 5 (lines 4-6). This is a building-with action on contextual layer since 

taking the minimum of the 𝛿s is quite a standard technique in analysis. However, if the 

function is not “nice enough” between 𝑥 − 𝛿1 and 𝑥 + 𝛿2, for example monotonically 

increasing on [𝑥 − 𝛿1, 𝑥 + 𝛿2] as indicated by the students’ figure, then the interval 

(𝑥 − 𝛿, 𝑥 + 𝛿) is not necessarily mapped into the interval (𝑓(𝑥) − 𝜀, 𝑓(𝑥) + 𝜀). 

Hence, the building-with action does not lead to the needed conclusion in line 5. Even 

if there were preimages of 𝑓(𝑥) ± 𝜀 (only to the left or right of 𝑥 according to the sign 

of 𝜀), one had to choose 𝛿1 = inf{δ > 0: 𝑓(𝑥 − 𝛿) = 𝑓(𝑥) − 𝜀} and 𝛿2 = inf{δ >
0: 𝑓(𝑥 + 𝛿) = 𝑓(𝑥) + 𝜀}, and would need to show that these are different from 0. Since 

functions often encountered are “nice enough” or monotonically increasing, this wrong 

argumentation might originate in students’ “met-befores” (McGowen & Tall, 2010). 

7 “⇒” Let Γ𝑓 = {(𝑥, 𝑓(𝑥)): 𝑥 ∈ ℝ} ⊂ ℝ2 be the graph of the continuous function 𝑓. 

8 Let (𝑥, 𝑓(𝑥))𝑇 , (𝑦, 𝑓(𝑦))𝑇 ∈ Γ𝑓 (wlog 𝑥 < 𝑦) 

9 To show ∃𝛾: [0,1] → Γ𝑓 path. 

10 Let 𝑧 ∈ [𝑥, 𝑦]. Since 𝑓 is continuous, it holds that 

11 ∀𝜀 > 0 ∃𝛿 > 0 ∶ |𝑧 − 𝑎| < 𝛿: |𝑓(𝑧) − 𝑓(𝑎)| < 𝜀    (𝑎 ∈ ℝ) 
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12 No matter how small the neighbourhood 𝑈𝜀(𝑓(𝑧)) is chosen, the values of 𝑓(𝑎) ∈
𝑈𝜀(𝑓(𝑧)) for 𝑎 ∈ 𝑈𝛿(𝑧). 

13 ⇒ Γ𝑓
′ = {(𝑎, 𝑓(𝑎)): 𝑎 ∈ (𝑧 − 𝛿, 𝑧 + 𝛿)} ⊂ 𝑈𝛿(𝑧) × 𝑈𝜀(𝑓(𝑧)) 

14 Since ℝ is connected, the neighbourhoods are also connected. 

15 ⇒ It exists a path 𝛾: [0,1] → Γ𝑓 

16 with 𝛾(0) = (𝑥, 𝑓(𝑥))𝑇     𝛾(1) = (𝑦, 𝑓(𝑦))𝑇 

The solution starts with the definition of the graph of 𝑓 and the students choose two 

points on the graph (lines 7-8). They want to show the existence of a path in Γ𝑓 (line 

9), presumably that links the two points, although they do not state it. This is contextual 

recognition since the path is adjusted to the concrete setting and formal recognition 

would be hypothetical because the definition of path-connectedness is not completely 

adapted correctly to the given problem. Afterwards, they recognise the definition of 

continuity of 𝑓 at some point 𝑧 between the first components of the given points on the 

graph (lines 10-11) on the formal layer (independent of a concrete 𝑓). Next, they 

recognise on the formal layer a topological version of continuity via neighbourhoods 

(line 12) and built-with on the contextual layer the implication that a part of the graph 

lies inside the product of the neighbourhoods 𝑈𝛿(𝑧) and 𝑈𝜀(𝑓(𝑥)) (nevertheless, one 

has to mention that the neighbourhoods have never been instantiated because 𝜀 and 𝛿 

only appear within quantifiers) (line 13). Afterwards, the recognition of ℝ as a 

connected space is formal (proven property in the lecture) but the deduction of the 

connectedness of the neighbourhoods (likely those in lines 12-13), or their product, is 

not justified (line 14) (possibly, the students also mixed up connectedness with path-

connectedness here). As a last step, the group now directly concludes that there exists 

a path in Γ𝑓 joining the points on the graph chosen in the beginning (lines 15-16). It can 

be interpreted that the students believe that subspaces of path-connected sets are path-

connected and apply this to Γ𝑓
′ ⊂ 𝑈𝛿(𝑧) × 𝑈𝜀(𝑓(𝑧)) without making clear that the 

neighbourhoods are path-connected, not only connected. Under this interpretation, the 

building-with action would be propositional, but since the group’s claimed implication 

does not seem to be logically connected to their previous proof steps, their thinking 

cannot be ascertained. 

Case study: Group 2 

17 “⇒” Let 𝑓: ℝ → ℝ be continuous. Note that ℝ is path-connected. 

18 Now let (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)) ∈ Γ𝑓. 

19 Since ℝ is connected, there is a path 𝛾 such that 𝛾(0) = 𝑎, 𝛾(1) = 𝑏. 

20 Then, 𝑔 = (𝛾, 𝑓 ∘ 𝛾) is continuous because the composition of continuous maps is 
continuous. 

21 𝑔 is also a path from (𝑎, 𝑓(𝑎)) to (𝑏, 𝑓(𝑏)) because: 

22 𝑔(0) = (𝛾(0), (𝑓 ∘ 𝛾)(0)) = (𝑎, 𝑓(𝑎)) 

23 𝑔(1) = (𝛾(1), (𝑓 ∘ 𝛾)(1)) = (𝑏, 𝑓(𝑏)) 

24 thus, Γ𝑓 is path-connected since 𝑔 is continuous. 

On the formal layer, the students recognise that ℝ is path-connected (note that no 
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additional information of ℝ is used) (line 17) and that they have to find a path between 

two arbitrary points in the graph which is indicated by the declaration of two points in 

Γ𝑓 (line 18). On the propositional layer, they build (which means they state its 

existence) a path 𝛾 between the first components of the chosen points using that ℝ is 

connected (in fact, they should have used that it is path-connected; it is not clear 

whether this is just a notational error since they recognised before that ℝ is path-

connected) (line 19). Next, the students recognise on the propositional layer that 

compositions of continuous functions are continuous and build-with this fact on the 

propositional layer that the product function 𝑔 = (𝛾, 𝑓 ∘ 𝛾), contextually recognised as 

a product of continuous maps, is continuous (their argument lacks the fact that the 

continuity of the components implies the continuity of the product map) (line 20). 

Recognising that they have to plug in 0 and 1 for verification (formal layer of a part of 

the definition of path-connectedness), they conclude that 𝑔 is in fact a path between 

the initial points (lines 21-23) (singular/contextual layer in lines 22-23 because the 

concrete form of 𝑔 is used). The last line contains again a propositional building-with 

action since the graph of 𝑓 is (presumably) shown to have the property that any two of 

its points can be linked with a path (even though not explicitly stated). 

Case study: Group 3 

25 “⇐” Approach: If one can show, let it be supposed that there exists a path between 
two points of the graph of a function, then there also exists an injective path, it follows 
(*) 

26 Suppose, 𝑓 not continuous at 𝑥 ∈ ℝ ⇒ ∃𝜀 > 0: ∀𝛿 > 0 ∃𝑥̃ ∈ ℝ: 𝑥̃ ∈ 𝑈𝛿(𝑥), 𝑓(𝑥̃) ∉
𝑈𝜀(𝑓(𝑥)) 

27 By assumption there is a path 𝜇: [0,1] → Γ𝑓 with 𝜇(0) = (𝑥̃, 𝑓(𝑥̃)), 𝜇(1) =
(𝑥′, 𝑓(𝑥′)). 

28 Wlog 𝑥̃ < 𝑥 < 𝑥′. 

29 By (*) there exists an injective path 𝜇. Now let  𝜏: [𝑎, 𝑏] → [0,1], 𝜏(𝑥) ∶= (𝑥 −
𝑎)/(𝑏 − 𝑎), is continuous! 

30 ⇒  𝜋2 ∘ 𝜇 ∘ 𝜏 = 𝑓|[𝑎,𝑏], where 𝜋2 is the projection of the second component. 

31 Namely, for 𝑥 ∈ [𝑎, 𝑏] it holds: 

32 𝜋2 (𝜇(𝜏(𝑥))) = 𝜋2(𝜇((𝑥 − 𝑎)/(𝑏 − 𝑎)) = 𝜋2(𝑥, 𝑓(𝑥)), since there is only one 
possibility for an injective continuous map in the first component of 𝜇 in 

33 question. 𝜋2(𝑥, 𝑓(𝑥)) = 𝑓(𝑥). //  ↯ to 𝑓 not continuous 

The group begins a proof by contradiction in line 26 and therefore the students 

recognise the negation of the 𝜀-𝛿-definition of continuity of 𝑓 at some 𝑥 on the formal 

layer, relying on the notation with neighbourhoods from the lecture. The students built-

with on the contextual layer a path from two points on the graph whose first coordinates 

𝑥̃ and 𝑥′ surround 𝑥, the point where the function is assumed to be discontinuous (lines 

26-28) (however, 𝑥′ is not explicitly declared). Taken for granted that one can construct 

an injective path linking two points given any path between these two (line 25) – 

admittedly, the group does neither argue how this may work nor state explicitly that 

this injective path has to have the same start and end point or domain – the students use 
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such a path 𝜇̃ and compose it with the above 𝜏 which is recognised on contextual level 

as continuous (line 29), to perform a building-with action deducing that 𝜋2 ∘ 𝜇̃ ∘ 𝜏 is 

equal to 𝑓 restricted to the interval [𝑎, 𝑏] (lines 29-30). The map 𝜏 is used here to 

transform the path defined on the unit interval to a path 𝜇̃ ∘ 𝜏 in Γ𝑓 defined on [𝑎, 𝑏] 

which shall function as the domain where 𝑓 can be applied (likely, the students actually 

meant 𝑎 = 𝑥̃ and 𝑏 = 𝑥′). In lines 30ff., the students try to justify that the second 

component of 𝜇̃ ∘ 𝜏 is 𝑓|[𝑎,𝑏]. Here, the students believe to recognise the first component 

of 𝜇̃ ∘ 𝜏 as the identity on [𝑎, 𝑏] because there shall be only one possibility for an 

injective path between two real numbers (lines 32-33). This is wrong. However, this 

mistake could formally be resolved by performing a “velocity change of paths” which 

makes the first component of 𝜇̃ ∘ 𝜏 equal to the identity on [𝑎, 𝑏]. The second equal 

sign in line 32 is then only justified by this erroneous recognition of the only injection 

[𝑎, 𝑏] → [𝑎, 𝑏] being the identity. Obtaining 𝜋2(𝑥, 𝑓(𝑥)) as solution of the calculation 

in line 32 is a building-with action on the singular/contextual layer; singular here refers 

to the special situation – the assumption in line 25 – the students find themselves in. 

As a last step of the proof, I hypothesise that the students recognise 𝑓|[𝑎,𝑏] (they write 

𝑓 in line 33 though, which clearly agrees with 𝑓 on [𝑎, 𝑏]) to be continuous (at 𝑥) (a 

contradiction to their assumption in line 26). Their justification is however not directly 

observable; they may have used the composition of the continuous maps 𝜏, 𝜇̃ and 𝜋2. 

This is recognised as a contradiction to the assumption of discontinuity of 𝑓 at 𝑥 on 

formal layer (line 33). Finally, the end of the proof is obtained as the result of the 

propositional building-with action that finding a contradiction to the hypothesis of the 

contraposition of the statement to prove is equivalent to the original statement. 

DISCUSSION & CONCLUSION 

The notion of propositional layer of objects refines the three layers of objects Schäfer 

(2010) used to analyse the epistemic action of recognising. In particular, this new layer 

describes the building-with action of applying a proposition about relationships 

between objects on the formal layer. In the case studies, it turned out that the 

recognition and building-with actions usually succeeded when the prerequisites of a 

definition or theorem in use had been successfully recognised. However, the 

recognition of the non-satisfaction of necessary conditions for the application of a 

theorem failed several times because of insufficient mental imagery of continuity (e. g. 

“local niceness” in the “only if”-proof of Group 1) or paths (e. g. injectivity of paths 

with group 3) and wrong properties attributed to the objects to be acted on. 

Nevertheless, subsequent building-with actions on the propositional layer were often 

carried out coherently based on these wrong assumptions. 
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NOTES 

1. Of course, in definitions previously defined concepts are usually specialised, thus definitions may also be seen as 

objects on propositional layer. Seeing what makes up a definition or whether something satisfies a definition is regarded 

as a recognition action here, and objects which are recognised to satisfy a definition will be on formal layer. 

2. The graph and the image of arg: 𝑆1 → ℝ, 𝑒𝜃𝑖 ↦ 𝜃 (with 0 ≤ 𝜃 < 2𝜋) are path-connected but arg is not continuous. 
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At the University of Bremen in teaching complex analysis, we split the last part of the 

lecture into two branches according to profession: While future mathematicians 

deepen their understanding in a branch for them, future teachers take a branch of the 

lecture where they prepare a task with dynamical geometry software for pupils which 

is based on phenomena of complex analysis. Here, we describe the design of the 

course, some general aims and first results obtained from the branch for future 

teachers. 

Keywords: Novel approaches to teaching, teaching and learning of specific topics in 

university mathematics, specialised content knowledge, teacher training, complex 

analysis. 

INTRODUCTION 

More than one hundred years ago, Felix Klein (2016) acknowledged that there is a 

“double discontinuity” in teacher education in mathematics. When a pupil enters 

university he or she does not see the connection of elementary mathematics taught in 

school with the formal mathematics in university, and when teaching in school he or 

she does not see how the university maths informs his or her practice (Hefendehl-

Hebeker, 2013; Vollstedt, Heinze, Gojdka, & Rach, 2014). Within mathematics 

courses at university, it is thus necessary to highlight connections between the 

mathematics future teachers are taught in lectures at university and the mathematics 

they will teach in schools (Prediger, 2013). 

The project “Spotlight-Y” aims for an institutional link of mathematics and 

mathematics education and at providing students with the experience to relate content 

from the lecture in complex analysis to their future teaching practice. By helping 

them to design tasks for pupils with mathematics from a “higher standpoint” (Klein, 

2016), the students get the opportunity to try out these tasks with pupils from local 

schools. 

THEORETICAL CONSIDERATIONS 

Ball, Thames, and Phelps (2008) proposed to distinguish the mathematical content 

knowledge (CK) of teachers further into common content knowledge (CCK) and 

specialised content knowledge (SCK). The first is mathematical knowledge that does 

not depend on a specific profession and is known to pure mathematicians as well as 
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teachers and others, and the latter is mostly useful only for teaching mathematics. So 

for a teacher, not only pedagogical content knowledge (PCK) is important and unique 

for the profession but also SCK. 

The international study TEDS-FU established that PCK is the most important factor 

to judge the didactical problems and opportunities of a classroom situation and that 

CK is the most important factor to assess the utterances of pupils (Blömeke et al., 

2014).  

Thus, teaching mathematics requires an interplay of different kinds of knowledge for 

the teacher and it seems worthwhile to try to specifically address SCK when doing 

teacher education programs at university. 

Winsløw and Grønbӕk (2014) proposed to study the phenomenon of the second 

discontinuity by the study of different mathematical praxeologies between university 

and high school. In their paper, they are able to identify certain challenges for this 

transposition. For university students, one of these challenges is the establishment of 

a school praxeology for a problem typically solved with a university maths 

praxeology (their example is the method of least squares for simple linear regression). 

The authors claim that the main related difficulties lie in spawning capacities for 

students’ autonomous research and handling (ir-) relevant literature. This is where 

Spotlight-Y is situated. Our approach can be seen as complementary: Instead of 

focusing on how the mathematical praxeologies may change and what challenges 

may hinder, we try to focus on how the didactical praxeologies are combined with the 

mathematical praxeologies from university. 

Research question 

In this paper, we want to foster the understanding of the combination of PCK and 

SCK by the Y-model that structured the lecture (see next section). We try to address 

the following question: “In what ways do students combine specialised and 

pedagogical content knowledge within the preparation and implementation of their 

learning environments?” For this purpose, we will describe example projects. 

OVERVIEW OF THE PROJECT 

At the University of Bremen the lecture in complex analysis is the final course in 

mathematics for future teachers. Historically, many teacher students in Bremen are 

known to view this as a course you have to pass to get through your studies, but 

which is thought of having no direct connection to what is taught in school. From the 

standpoint of the designer of the curriculum of teacher training in mathematics, 

complex analysis was seen as a course which brings different aspects of mathematics 

together and may help to get a more holistic view on various areas of the subject, e. g. 

polynomials, trigonometric functions, power series or conformal mappings. As such, 

it should be a good starting point to get a “higher standpoint” as Klein (2016) put it. 

“Spotlight-Y” is a design research project within the project “Schnittstellen gestalten” 

at the University of Bremen, funded by the German Federal Ministry of Education 
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and Research (BMBF) that started in fall 2016. Its general aim is the interlock of the 

scientific disciplines of mathematics and mathematics education. Our students shall 

see that elements of school mathematics, in particular all relevant classes of 

functions, can be understood from the complex setting which explains more than the 

real picture. In three design cycles we develop 

1) the structure of the lecture on complex analysis, 

2) the specific branch for future teachers with a focus on identifying phenomena 

of complex analysis relevant for teaching mathematics in upper classes of 

secondary schools and creating exploratory learning environments, and 

3) a day for eXperimental Mathematics (XMaSII) which local pupils from upper 

classes of secondary school (Sekundarstufe II) attend to work on the learning 

environments by the teacher students. 

It was mandatory for our students to use the free dynamical geometry software (DGS) 

GeoGebra (https://www.geogebra.org/) for implementation because we assumed that 

this would make difficult concepts easier to present and provide a suitable technology 

to really be able to explore a phenomenon. Besides, our students get an opportunity to 

create authentic materials, plan and structure group work with pupils from secondary 

schools in 11th or 12th grade and gain experience in working with them. In particular, 

they get experience with pupils outside internships and their practical semester 

teaching mathematics for rather gifted learners. 

Some of the general research questions in the project are: How do students combine 

mathematics from the complex analysis course, their general knowledge on 

mathematics education taught earlier in their studies and simultaneously to the course 

on complex analysis (a seminar on task design)? In which ways do they handle their 

learning environments and the material for the pupils? How do the future teachers see 

mathematics education, do they consider it as a scientific discipline or rather a 

collection of methods to teach school mathematics? 

After about two years, we will report on our design principles, experiences and 

empirical data we collect during the design project to establish a transfer package for 

other mathematics lectures. In the second year, we perform a first transfer to the 

stochastics lecture in the Bachelor for future mathematicians and mathematics 

teachers. 

Structuring a mathematics lecture: The Y-model 

In “Spotlight-Y” we adopt a Y-shaped model for the course in complex analysis. The 

course takes place in the fall semester and is attended by pure/applied mathematics 

students in the Bachelor as well as teacher students in their first year of the Master 

programme. The course takes one semester and the participants are split up around 

Christmas after two thirds of the semester (see Figure 1a). The part for everyone 

covers the introduction of holomorphic and conformal mappings, line integration and 

Cauchy’s theorem up to the residue theorem. The specific branch for future 
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mathematicians continues with more advanced topics like invariance of integrals with 

respect to homotopy or homology of paths, analytic continuation, the Riemann 

mapping theorem or the prime number theorem etc., depending on the lecturer. In the 

branch for teachers we cover geometric properties of complex functions and an 

introduction to Riemann surfaces. Furthermore, we give the students time to work on 

their learning environments. The course is finished with a written or an oral exam. 

 

Figure 1: a. Lecture with Y-model and seminar on task design (left), b. The different 

components that support the task design process (right) 

In fall 2016/2017, the first design cycle in the course on complex analysis started and 

the next semester was used to start analysing data we gathered during the first 

implementation. In fall 2017/2018, the second design cycle lead to improvements 

with respect to the profession-specific branch for the future teachers. In fall 

2018/2019, the last cycle will start: A third run during the course on complex analysis 

will be devoted to the final answers to our research questions and in summer 2019 a 

second transfer to the course on stochastics will be performed. 

Elements of the task design process 

In order to prepare the tasks for the pupils, the students have to bring input from three 

different components together (cf. Figure 1b). They make use of the mathematical 

CK from the general branch of the lecture, they activate their SCK from the branch 

for future teachers and bring those branches together with their PCK, i. e. heuristics 

on task design from their seminar on mathematics education. 

Methodology 

For the whole project we collected several data. First, the students had to write a 

“preflection”, a short reflection which is not after an action on an action but rather the 

anticipation of actions, aims and sequences: They should fix which phenomenon they 

want to discuss in their learning environment, what the pupils are supposed to 

discover, the planned sequence of events, expected difficulties and the mathematics 

from the lecture that is directly used. Immediately after the implementation of 

XMaSII, the students filled in a questionnaire named “Ad-hoc notes” to write down 

own executed actions, recapitulate the execution and match it with expected or 
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anticipated occurrences. In order to pass the course, the students also needed to write 

a reflection on their project and their learning. They had to discuss their topic and 

how they found it, describe detailed the phenomenon to be explored by the pupils, the 

organisation of their tasks, the schedule of the implementation etc. In a final section, 

we explicitly asked whether there were certain elements of the course on complex 

analysis that changed the relationship of the students to mathematics as a science and 

mathematics as a school subject. In total, 19 students participated in the study. We 

also conducted guided interviews with two students of four groups each to get more 

insight to the aspects above (and some more). We omit details here since this paper 

deals mainly with the learning environments the student groups created. 

EXAMPLE PROJECTS 

We describe two case examples. Group A created a learning environment called 

“Differentiation as linearisation” and Group B worked on “Polynomials of infinite 

degree”. Two members of Group A have also been interviewed. Two other groups 

created tasks for spherical geometry, another one introduced complex numbers and a 

sixth group also worked on power series. As mentioned above, the tasks themselves 

focus on phenomena that are rooted in complex analysis and can be explored by the 

pupils from high school by the means of a DGS. 

“Differentiation as linearisation” 

Group A looks at real differentiation, i. e. differentiable functions defined on 

(subsets) of the real numbers to the real numbers. The students concentrate on the 

image that a differentiable function locally looks like a straight line by magnifying 

the graph around a given point, say (p, f(p)). The students emphasise that the 

derivative at a point can be interpreted as the slope of the function, respectively of the 

tangent at the graph of the function, at this point (which is CCK). They create a 

sequence of tasks and subtasks within their learning environment that aim at 

magnifying the graph of a function (use of PCK) and lead to answer the question 

which exponential function has itself as a derivative. However, the students do not 

explicitly clarify what this has to do with linearisation besides the optical appearance. 

These two “Grundvorstellungen” (“basic mental models”, Greefrath, Oldenburg, 

Siller, Ulm, & Weigand (2016, p. 101)) of the derivative at a point, “tangent slope” 

and “local linearity”, are usually distinguished in mathematics education literature 

(see e. g. Greefrath et al. (2016) who also discuss “local rate of change” and 

“amplification factor”). However, we do not see this as a lack of understanding of 

different Grundvorstellungen with the students. Rather, group A focuses on a 

geometric point of view and many of their tasks focus on the idea of zooming into the 

graph of a function to get a more and more straight line (PCK, SCK) on the computer 

screen (e. g. “Plot with GeoGebra the function f(x) = x³ - 0.75x² - 9x + 1. Then draw 

the point A(1, f(1)) […] Zoom in the neighbourhood of point A into the drawing. 

What do you notice? Try to describe your observation.” In a later task: “Describe 

with this magnified image how to calculate the slope in point A approximately (Hint: 
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Remember the slope of a secant).” (own translation)). In other subtasks, group A 

provides the pupils with GeoGebra worksheets they have prepared before, where they 

had plotted several functions and their “slope function”, and wants the pupils to make 

observations about these. In another task at the end of the task sequence, they display 

an exponential function f(x) = ax and its slope function with a parameter a which can 

be changed with a slider and ask for which a these functions coincide. 

The definition of derivative at a point with limits of difference quotients is not 

stressed in detail but the GeoGebra worksheets nicely implements that when zooming 

into the graph two points on it approach the point (p, f(p)) (one from left, another 

from right) to show that the slopes of the secants through these points eventually 

yield the slope of the tangent, no matter if one approaches from left or right. 

However, since the students do not provide counterexamples, it does not seem very 

likely that the concept of derivative can be fully understood, since the class of 

functions the students used are pretty standard and “friendly” in the way that they all 

really look locally straight (e. g. s given by s(x) = x²∙sin(1/x), s(0) = 0, is 

differentiable at 0 but oscillates very much around the origin and therefore hardly is 

locally straight). 

An additional task in the learning environment is about rotation-dilation, which is an 

interpretation of the complex derivative discussed in detail in the first third of the 

lecture and exercise classes (SCK). A hexagon and two points are displayed in the 

Cartesian plane and pushing around the points changes the hexagon according to the 

multiplication by the complex number associated to the points (see Figure 2a, SCK). 

However, such a multiplication is not made explicit in the task. Rather, the pupils 

shall measure distances and angles, and the task seems rather unrelated to 

differentiation. Not even a function is in play. The complex interpretation of 

derivative is transformed into a task about rotation-dilation, but not related to the 

previous tasks on differentiation. This is not surprising since the idea of magnifying 

pursued in the real approach does not shed any light on dilation-rotation. In the 

interview with two of the three group members we asked for an intuitive, vivid 

meaning of a holomorphic function. The students were unable to argue and did not 

even respond with the keyword of (local) rotation-dilation. 

Thus, in terms of our framework, the connection of SCK and PCK did not happen as 

was hoped for. One problem seems to be that the necessary SCK for the complex 

derivate could not be utilised by the students, while they argue very well about 

prerequisites the pupils should have for their learning environment such as secant, 

tangent, linear functions etc. (SCK for the real derivative). The students of group A 

did not take part in the parallel seminar on task construction. Therefore, we 

hypothesise that they followed an alternative strategy to construct tasks: They 

scrolled through mathematics education literature to find a suggestion on how to fill 

the aspect of local linearity with life. In the interview, one of the students said, 

roughly speaking, “From the earlier lectures [in maths education] one knew at least 
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where to research, because it is clear that one cannot have everything stored [in one’s 

mind] and fetch it up immediately, so one needs to do research” (own translation). 

From a real point of view in terms of concept formation, the learning environment 

seems rather unproblematic. We believe this is the case since didactic aspects of real 

functions and derivatives are very present in the courses on mathematics education 

the students in Bremen are required to take. However, there does not seem a thorough 

idea on how to relate the complex interpretation of the derivative of a complex 

function to the real setting. Thus, intuition of differentiation is not coherently 

transported from one to the other setting. Also, group A does not argue whether their 

real images of derivatives find their counterpart in the complex setting. 

 

Figure 2: a. Dilation-rotation of a hexagon (left, from group A’s GeoGebra worksheet), 

b. -ln(1-x) and its sixth Taylor polynomial at 0 (right, from group B’s GeoGebra 

worksheet). 

“Polynomials of infinite degree” 

Group B has two general aims with its learning environment about power series 

which they steadily call “polynomials of infinite degree”. Firstly, in school 

polynomial functions form a very frequently used class of functions (PCK) and 

power series seem a quite direct generalisation of it (CCK). Secondly, nearly all 

functions that appear in school can be represented by power series (even though this 

is usually not made explicit in schools, PCK). For a motivation why power series can 

be useful for pupils, group B argues that using power series one may be able to 

explain easily why the derivative of the exponential function is itself and the 

derivative of the sine function is the cosine function etc. (PCK, SCK). 

As necessary mathematical background from the complex analysis course group B 

recognises holomorphic functions, power series and their derivatives, entire and non-

entire functions, radii of convergence of power series and the power series expansion 

theorem. They relate all these ideas in a correct manner to each other. Nevertheless, 

the language the students use in their written reflection and on the task sheets for the 

pupils is quite tenuous: The words polynomial and power series are not clearly 
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differentiated. It may be possible that the students wanted to use the same word 

“polynomial” with the addition of “finite degree” or “infinite degree” because it is 

known to the pupils. Group B recognises that the distinction of entire and non-entire 

functions is relevant for school and illustrates this with examples like -ln(1-x) and 

(x+1)1/2 (see Figure 2b, PCK and SCK). 

In their preparation and reflection the students raise the question to what extend 

convergence issues of power series or why Taylor approximation works (CCK) 

should be covered (PCK), but they consider this too difficult and not anymore 

relevant for the discovery of the phenomenon for the pupils that previously known 

functions – and basically all encountered in school – can be expressed differently. In 

fact, the group recognises that arguing in whatever way that Taylor expansion 

requires differentiation and defining elementary functions by their series expansions 

may lead to circular reasoning (CCK). 

The mathematics background is well explained with a few mistakes mostly in 

language and notation. Group B’s learning environment really allows to discover one 

of the fundamental phenomena of complex analysis, namely that every holomorphic 

is at least locally a power series, in the real and school-related setting. In the 

GeoGebra environment, several functions and their Taylor polynomials of varying 

degree, adjustable with a slider, are presented. This shows a creative part in the work 

of our student group, since it visualises very nicely the approximation of a function 

by its Taylor polynomials. However, the distinction of entire and non-entire functions 

is mathematically deep and relevant for school (SCK). The question of why the 

representation of a function by a power series is relevant for pupils is answered with a 

deepening of their insights into higher mathematics and the application to calculate 

derivatives similar to the procedure with polynomials. Unsurprisingly, as described 

above, the problem of convergence is left aside. 

Nevertheless, the task sheets for the pupils lack rigor and do not provide consistent 

language at certain places. For example, in a “remember box” group B writes “A 

function f(x) is an entire function if it is a polynomial of degree n or is a function 

which can be written as a polynomial of infinite degree P(x) for every x∈ℝ 
[grammatical errors deleted, E.H.]”, and in another box they write “A function f(x) is 

a non-entire function if it is NO polynomial of degree n but can be approximated by a 

polynomial of infinite degree. However, this polynomial of infinite degree 

approaches the function f(x) only in some interval. It [the function] is not defined for 

all x∈ℝ or does not have a tangent everywhere [slight grammatical adaptions, E.H.]”. 

The absence of the domain of f is usual in school and probably left out for this reason. 

It could have been stressed more detailed that a power series expression for an entire 

function is globally valid, i. e. that P equals the given function on the whole of ℝ. In 

the definition of non-entire functions, on the other hand, the local approximation by a 

power series is mentioned correctly (assuming that the group meant that the sequence 

of Taylor polynomials approximates the original function) but it is not clarified that 
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this power series actually equals the function in some interval containing more than 

one point. Also, it should have been stressed that this local phenomenon is valid for 

every point in the domain of the non-entire function but the corresponding power 

series may change. Another problem is the mentioning of tangent. Tangents do never 

show up in the learning environment nor in the students’ reflection again and it is 

very unclear what the students wanted to say. 

In this case the connection between SCK and PCK seems to be working much better, 

although there are some flaws in the formulation of the definition. These problems 

may be rooted in misconceptions in the CCK. 

FINDINGS 

The learning environments differ heavily in mathematical rigour, creativity and 

recognisability of complex phenomena in either a real setting or else. In the section 

on the example projects we described that Group A showed little understanding of the 

geometric meaning of the derivative of holomorphic functions (SCK) (or, at least, 

they did not implement this well) but otherwise provided a nice example driven and 

exploratory environment. Group B, on the other hand, translated the notion of power 

series representation of entire and non-entire functions to real examples and made a 

complicated phenomenon accessible to pupils (PCK and SCK). Due to the 

complexity, arguments on why and where power series converge and how to find 

Taylor series expansions have not been dealt with (CCK). The written report is 

mostly correct, however the material for the pupils needs improvement with respect 

to consistency in language, mathematical exactness on the level of pupils and 

correctness from a formal point of view. 

Still in evaluation phase, i. e. coding the interviews, we are nevertheless already able 

to state first results regarding our design process: 

1. Most students seemed more engaged in creating the tasks than in the lecture. 

2. One has to make connections between SCK and PCK explicit, many students 

fail to see them on their own. 

3. It has been evident from the interviews that basic mathematical content 

knowledge in complex analysis was not available two months after the exam, 

but the content of the tasks they created was. 

4. One needs to clarify and guide how to implement a topic from complex 

analysis when complex numbers are not available for pupils or shall not be 

introduced. 

5. A possible improvement for XMaSII could be to restructure the day into 

different sessions or workshops: 1) Introduction to complex numbers and 

geometry of the complex plane either by the lecturers or some student groups 

and then 2) working groups dealing with different phenomena from complex 

analysis. 
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APOS (Action-Process-Object-Schema) Theory is used to pose and test a conjecture 

of mental constructions that may be used to understand the relation between integrals 

of two variable functions over rectangles and corresponding Riemann sums. 

Interviews with ten students who had just finished a multivariable calculus course 

showed that the conjectured mental constructions are necessary. 

Keywords: Functions of two variables, APOS, integral calculus 

Multivariable functions and multivariable Calculus are important in engineering and 

the natural sciences as a tool for modelling. Their learning has received more 

attention lately from the Mathematics Education community. Starting with the 

analysis of students’ understanding about two-variable functions (for example: 

Trigueros and Martínez-Planell, 2010; Martínez-Planell and Trigueros, 2012) 

researchers have documented students’ difficulties and have shown that the transition 

from one-variable Calculus to multivariable Calculus is far from being smooth.  

There are few studies in the literature that deal with students’ difficulties and 

understanding of the integral multivariable Calculus (Jones and Dorko, 2015; 

Martínez-Planell and Trigueros, 2017). In one of these few studies, McGee and 

Martínez-Planell (2014) showed that a course based on lectures did not promote 

students’ understanding, while activities introducing the use of semiotic chains and 

the development of synergy among representations helped students understand this 

concept. The research questions are: 

What constructions relating double integrals and Riemann sums are evidenced by 

students who finished a Multivariable Calculus course based on lectures?  

What constructions may be needed to relate double integrals and Riemann sums? 

THEORETICAL FRAMEWORK 

APOS theory (Arnon et al. 2014) is used in this study to analyse possible mental 

constructions by students who have already taken a course on multivariable calculus. 

We only summarize the main structures of this theory. An Action in APOS Theory is 

a transformation of a previously constructed mathematical object that the individual 

perceives as external in the sense that students need some guidance and are not able 

to justify what they do. When an Action is repeated, and the individual reflects on 

what he or she does, it may be interiorized into a Process. A Process is perceived as 

internal in the sense that it has meaningful connections to other mathematical 
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knowledge of the individual. A Process allows the individual to imagine doing the 

Actions without actually doing them, to omit steps, anticipate results, and to justify 

the Process.  Different Processes may be coordinated to form new Processes. When 

the individual needs to apply Actions on a Process, it can be encapsulated into an 

Object. When an individual shows a Process or Object conception of a mathematical 

notion we say that the individual “understands” the notion. A Schema is a coherent 

collection of Actions, Processes, Objects, and other Schemas, that the individual uses 

to work with problems related to some mathematical notions. Schemas are not used 

in this paper. 

To analyse students’ work using APOS Theory, a conjecture of those constructions 

that may be used to understand a specific mathematical notion is designed. This 

model, called a genetic decomposition (GD), does not pretend to be unique and needs 

to be tested with research data. The GD may be revised and expanded in successive 

cycles of research, teaching material development, and implementation. This research 

cycle makes it possible to use APOS theory to be better suited to future research 

needs to study the multivariable integral calculus. 

GENETIC DECOMPOSITION 

We only present a portion of the GD of integrals of functions of two variables over 

rectangles. Its development is based on mathematics, on the researchers’ teaching 

experience, and data from the research literature: mainly, ideas about representation 

registers (Duval, 2006) described in the study by McGee and Martínez-Planell (2014) 

and the ideas of “orienting pre-layer” and “product layer” described by Sealy (2014), 

which stress the need of attending to the individual meaning of the product ( )if x x  

and its components in the construction of integrals of one-variable functions. 

The GD starts with pre-requisite constructions which include: a Process conception of 

two-variable functions and volume of prisms as Object. 

Actions are performed on a given two-variable function in any representation with 

domain restricted to a rectangle, to produce the geometric representation of the 

restricted domain as a subset of 3D space. Actions are performed on the same 

function to obtain values of the function on the given domain and to represent them in 

the space as points and/or curves in the graph of the function. These Actions are 

interiorized into a treatment or conversion Process to represent the graph of the 

function over the given rectangle together with the rectangle so that the student can 

imagine the relation between function and rectangular domain as a graph in space. 

Actions of evaluating the given function of two variables at a specific point of a given 

sub-rectangle of its domain, multiplying it by the length and width of the rectangle to 

form a product of the form ( , )f a b x y   are done. These Actions are interiorized into a 

Process which can be coordinated with conversion Processes between different 

representations of function, rectangle, and given point, to imagine the product as the 

volume of a rectangular prism in space.  
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Given a continuous function in different representations defined on a rectangle, with 

the function simple enough so that its maximum and minimum values on the 

rectangle may be recognized without doing any explicit computation, the Action of 

obtaining an overestimate and an underestimate of the product ( , )f a b x y   is taken. 

These Actions may be interiorized into a Process that enables to imagine the 

existence of points ( , )a b  where underestimate and/or overestimate of the product 

( , )f a b x y   are attained. This Process is coordinated with a treatment or conversion 

Process to draw a rectangular prism corresponding to over and/or underestimate in 

space. Actions are performed to change the chosen point to construct a prism that 

better approximates a given exact value of the integral. These Actions are interiorized 

into a Process that enables the recognition that for such continuous function, there is a 

point somewhere on the rectangle that will produce the exact value of the volume 

between the graph of the function and its rectangular domain. 

Given two small specific positive integer numbers, n and m, the Action of 

subdividing given intervals [a,b] and [c,d] into subintervals of equal length both 

numerically and geometrically is done to obtain a subdivision of the rectangle 

[ , ] [ , ]a b c d . These Actions are interiorized into the corresponding Process. Given a 

continuous function f defined on the rectangle, the Action of choosing a prescribed 

point ( , )i jx y  on each sub-rectangle of the given partition and producing the products 

( , )i jf x y x y  , and the corresponding sum, interpreting this sum geometrically, 

numerically, symbolically as an extended sum, symbolically using sigma notation, 

and verbally, may be interiorized into a Process that enables imagining forming such 

sums in different representations for the collection of sub-rectangles in any partition 

of any given rectangle.  

METHOD 

Ten students were chosen by their professor to be interviewed at the end of a 

multivariable calculus course selecting four over-average, three average, and three 

under-average. The course was completely based on lectures. The interviews lasted 

46 minutes on average. Students answered a set of questions designed in terms of the 

GD and also related to what was covered during the course, and produced a written 

response while sharing their thoughts out-loud. The interviews were recorded, 

transcribed, individually analysed, and results were negotiated by the two researchers. 

Students’ responses were analysed according to the GD, while keeping notes on 

unexpected responses and other difficult to classify observations. These were the 

questions used:  

1a. The following is the complete graph of function ( , )z f x y . Represent the domain 

of f in the figure (Figure 1). 

1b. Let g(x, y) = x
2
 + y be a function with domain restricted to 0 ≤ x ≤ 2 and 1 ≤ y ≤ 2. Use 

the coordinate system given in the following figure to represent the domain in three-

dimensional space [An empty drawing of the first quadrant was given]. 
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1c. The above functions f and g are the same [Figure 1 was given again here and in 

the rest of the problems]. If 2x   and 1y  , what is the numerical value of 

(0,1)f x y  ? What does it represent geometrically? 

 

Figure 1: (repeated in each part of problem 1 except 1b)   

1d. Let 2x   and 1y  . How does (0,1)f x y   compare with ( , )
D

f x y dA ? [No 

numerical computations are needed in parts d, e, f, and g.]  

1e. How does (2,2)f x y   compare with ( , )
D

f x y dA ?  

1f. Is there any point (a,b) in the domain D of f such that ( , )f a b x y   is equal to 

( , )
D

f x y dA ?  

1g. Let 1x   and 1/ 2y  . Consider the Riemann sum  f (0,1)∆x∆y + f (0,1.5)∆x∆y + 

f (1,1)∆x∆y + f (1,1.5)∆x∆y of the integral ( , )
D

f x y dA . What does the Riemann sum 

represent geometrically and how does its value compare to that of ( , )
D

f x y dA ? 

Note that problems 1a and 1b are essentially the same in different representations. 

They both test the portion of the GD dealing with recognition of rectangle and 

function. Problem 1c gives information on the portion of the GD dealing with 

forming one term of a Riemann sum. Problems 1d, 1e, and 1f relate to the portions of 

the GD dealing with underestimate, overestimate, and exact value. Problem 1g gives 

information on the portion of the GD dealing with a partition and Riemann sum.  

RESULTS 

On function and domain of a function 

Many students showed they had not constructed the concept of two-variable function. 

They gave evidence of considering these functions in terms of a correspondence rule, 

and showed difficulty interpreting functions given graphically. Moreover, these 

students also showed not to have constructed the concept of domain of the function. 

Most of them considered that the domain of a two-variable function should include 
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information about the function, since it had to be represented in 3D space. Eight 

students showed difficulties similar to those of Luis, as exemplified in the following 

discussion with the interviewer (in Problem 1a): 

Luis:  I can tell you what the domain is but if I don’t have a function I don’t think 

I can tell you the exact point where each of the points in the graph is… 

Interviewer:  So, is the graph part of the domain?  

Luis:  No, the domain is obtained from the graph. I can obtain the domain having 

the function but to do so I have to define the function.  

After some discussion: 

Interviewer:  So the domain, is it only x and y or may it also include z? 

Luis:  The domain may include the z. 

This example shows how Luis needs a correspondence rule to determine the domain 

of the function. It also evidences that he considers the function itself should be part of 

the domain of the function. Other students showed this difficulty. 

Students’ responses pointed to a need to pay attention to the different representations 

of functions in 3D space and to have students do treatments and conversions between 

representations. In Problem 1a, some of them quickly represented the rectangular 

domain as part of the given figure in 3D space. However, when the function was 

given symbolically their notion of domain seemed to change. This shows that 

recognizing the domain of a two-variable function is a construction that needs the 

interiorization of Actions on functions given in different representations. These 

difficulties as well as the counterfactual belief of teachers that students may easily 

generalize concepts for one-variable functions to multivariable functions have been 

reported before (Martinez-Planell and Trigueros, 2012).  

Area and volume 

Students also showed an unexpected confusion between area and volume when they 

described graphs of functions in 3D-space. This difficulty surfaced in Problem 1c.  

All students were able to calculate the value of that product; however, they were in 

trouble when explaining its geometrical meaning. Brian, for example, explained: 

Brian:  … this part, f(0,1) would be a point in this graph here. Change in x, change 

in y, I am not a hundred percent sure… that would be an area then, of the 

surface, or the entire function…  

And later: 

Interviewer:  Can you tell me what does the double integral of f(x,y)dA represents? 

Brian:  dA is the area of the function, the area of this figure, 

Interviewer: The area of the surface? 

Brian:  Yes… of the surface on the given domain….  

Other students, as Luis, showed confusion: 

    Luis: The area of the figure, that is, the area of the function which in this case is that        
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     figure [referring to the graph in Figure 1].  

Interviewer:  Like the area of a surface? 

Luis:  Exactly 

Interviewer:  So if it had units would it be like square inches or square centimetres? What 

units would the double integral have if x, y, and z had units?  

Luis:  Cubic 

Interviewer:  Cubic; then, would it be area? 

Luis:  It would be volume... 

After some discussion: 

Interviewer:  …Let’s suppose that this other paper that I am raising here is the graph of 

the function [He raised a sheet of paper] What volume are we talking 

about?  

Luis:  …The volume is the one of this paper…since I have a function and I’m 

integrating in the values of the function then what I’m going to get are z, 

small z’s of what the function is, I’d be getting the volume of the figure. 

Interviewer:   ... So you pointed to the paper that is floating. But, does it have a volume?  

Luis:  ... Yes, it has a change in x, it has a change in y, and the z is the one from 

the function, so I say that it has a volume. 

Other five students showed the same confusions. The above excerpt exemplifies that 

a student can describe the individual components of (0,1)f x y   but might not be able 

to do the Action of putting them together to interpret it as the volume of a rectangular 

prism, even if they can calculate the result of the product by doing the Action of 

substituting the given values in the expression, as conjectured in the GD. This 

difficulty is possibly related to the fact that these students have not constructed space 

as an Object, which does not allow them to imagine what their teachers mean when 

they talk about a surface in space and the double integral as related to the volume 

under a surface (Trigueros and Martínez-Planell, 2010).  

As considered in the GD, these difficulties make it impossible for students to do the 

necessary Actions on the function restricted to a rectangle to represent the domain 

geometrically as a subset of space, and to interiorize the Process to imagine the 

relation between a restricted region on the domain and the function. The lack of all 

these constructions becomes an obstacle to understand other related concepts, 

including double integrals, as will be shown below. Students who do not show these 

constructions may not follow teachers’ explanations; they would be confused and 

resort to memorization to respond to exam questions.  

Only one student, Farid, gave evidence of the pre-requisite constructions described in 

the GD. He was successful in explaining Riemann sums and double integrals.   
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Riemann sums, underestimates, overestimates and double integrals  

Most students had many difficulties working with problems dealing with Riemann 

sums and their relation to double integrals. Even after the interviewer explained to 

some of them that (0,1)f x y  was a volume and drew it, their difficulties did not 

enable them to make the whole construction as Brian showed in Problems 1d, 1e, and 

1g: 

Brian:  So the Riemann sum would be the approximation of the area [sic] under this 

figure [referring to the graph in Figure 1], obviously it wouldn’t be as 

precise as the value of the integral. Let’s see... so geometrically 0,1, x, y, 

let’s draw a square here like this [he is now evaluating and drawing 

rectangular prisms]... 0, 1.5, maybe another square closer this way, higher... 

1,1 we are still at x 1 and even higher here… like this, change in x change in 

y... change in y being 1/2, I don’t think we get from 1 to 2 with 1/2 [He 

seems to believe that since 1/ 2y   the prisms will be restricted to the 

region 1 1.5y  . He might think of y  as “change in y” were the “change” 

is taken from the initial y value in point (0,1).], so the integral would give 

this area [sic] here, a figure more or less like this... 

 Interviewer:  You said area... 

Brian:  [Interrupting] Volume, I mean volume, sorry... yes, volume of the integral. 

This would give us something more stepwise... let’s see if I can draw it here 

like this... 1,2,3,4, like this, a series of cubes like this, stepwise, 

approximating, not all of this, but only this half here… [See Figure 2]. 

Interviewer:  Do you mean the left hand part of the solid? 

Brian:  Yes, the left hand part of the solid would be what is approximated with this 

Riemann sum. 

Although Brian was able to construct the meaning of volume, his construction was 

not right, the boxes he drew filled only the left-hand side of the rectangle. It seems 

that Brian could do the Actions to construct the prisms but he did not interiorize those 

Actions into the Process that would enable him to imagine all the constructions 

needed to relate Riemann sums and double integrals.  

An interesting result of this experience was that even though students showed many 

difficulties during the interview, some of them, like Brian, showed evidence of doing 

some of the expected constructions during the interview. Others reflected during the 

interview and constructed meaning. This was the case of Victor who had considered 

(0,1)f x y   as an area. When discussing Riemann sums, and after being told that this 

product represents a volume he explained: 

Interviewer:  So you drew a little box. 

Victor:  Exactly a little box as we know that delta x would be 2 and delta y 1; a 

rectangle with width 2, eh, length 2 with 2 and height 1. 
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Interviewer:  Then how do you compare those volumes. 

Victor:  Ok, now I understand, this f(0,1) delta x delta y is only the volume up to 

this point, I mean up to a certain height, and then, the double integral on 

that same area that we put on xy is, let’s say, the same box but with a height 

that varies with the function. Now this is it! 

 

Figure 2: Brian’s drawing for Problem 1d, 1e, 1g (respectively) 

 

Interviewer:  But which is larger, what is smaller, are they equal? 

Victor:  No, no, they are completely different, the larger is that obtained from the 

double integral since the height is higher. 

Victor:  f(2,2) delta x delta y is the box with dimensions over D…and then this is the 

same equation as before, but f(2,2) is higher so the volume there is larger. 

Victor could do the Actions needed to compare volumes of prisms obtained from 

different values of the function. Another student, Farid, evidenced he could imagine 

forming one term of a Riemann sum, as discussed before. He also showed to have 

done the constructions necessary to imagine volumes of prisms and their role in 

Riemann sums. When comparing the volume of the prism in Problem 1d with the 

double integral: 

Interviewer:  And what does that represent? [Referring to the double integral.] 

Farid:  That represents the volume between the surface and the plane, the domain...  

Interviewer:  Then, how do those two numbers there compare?  

After some doubts: 

Farid:  Represented this part [referring to the product], now, this product would be 

smaller, than the double integral, because this here is a, I represented it as a 

cube, given the value of f at that point, while this is the double integral of 

everything, of all the function x,y over D, so this value seems bigger  

Interviewer:  Which one? 

Farid:  The value of the double integral over D of f(x,y)dA 

He was able to compare the volume of the prisms with the double integral. When he 

had to decide if there would be a prism with volume equal to the value of the double 

integral, a problem that was impossible for all the other students, he explained: 
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     Farid:  … The thing that comes to my mind when thinking on an inequality is the        

   sandwich theorem…that there... must exist then a value for x and y that 

could be named a and b that is equal to the double integral on dA.  

When discussing Riemann sums with a specific partition, most students could not 

work with the problem, even with help from the interviewer. As was shown by Brian 

in the previous example, some students, including Victor, imagined drawing several 

prisms or boxes that shared the base, and only had different heights. Those students 

showed they could do the Action of changing the height of a given prism but not that 

of partitioning the domain into small areas of the same size. Victor could describe the 

sum of the prisms’ volume, at first he said that the Riemann sum was always an 

approximation to the volume under the surface, although later he reconsidered: 

Victor:  No, the Riemann sum is an approximation and if you take more 

subintervals, ah! If you take more subintervals, those were the squares, that 

one uses, the Riemann sum is a closer approximation and that 

approximation would be closer with more subintervals, and the double 

integral is the exact value. 

Only Victor and Farid seemed to have interiorized the Action of forming a partition 

into a Process they coordinated with the Process of selecting heights for each 

subrectangle into the Process of calculating the volume corresponding to the prisms 

to approximate the volume under the surface.   

DISCUSSION AND CONCLUSION 

Results from this experience show that most of these students demonstrate a very 

limited understanding of two-variable functions and of those concepts associated to 

the construction of the double integral of a two-variable function and its geometrical 

interpretation. Only two students showed some understanding, although one of them 

relied mostly in memorized facts that he could use appropriately in most cases. This 

student seems to have constructed meaning for some of those facts during the 

interview. Students’ responses show the importance of the predicted constructions 

included in the Genetic Decomposition. In this investigation we related observed 

difficulties with specific mental constructions in the GD that students seemed to lack. 

The importance of the pre-requisite constructions in learning this difficult topic was 

underscored. Its lack became an insurmountable obstacle to understand even the most 

basic ideas leading to the learning of the double integral.  

A more encompassing understanding of function in different representation registers 

proved to be indispensable. Results indicate that students who could only perform 

Actions constructed a confusing network of concepts where the properties learnt 

about one-variable function are not well differentiated from those of two-variable 

functions. This inhibits their possibility to make those constructions involved in the 

understanding of 3D space, functions, and their domains. Fluency in operating within 

and across different representations plays an important role in the construction of 

two-variable functions as an Object, instead of considering them as simple 

correspondence rules containing one or more variables.  
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These results emphasize once more the importance of spending more time on helping 

students to construct the notion of two-variable function. But, even when two-

variable function has been constructed as a Process, the notions of volume under the 

surface and the role of the Riemann sum in the construction of the double integral 

constitute fundamental constructions in the learning of double integrals.  

The genetic decomposition proved useful in determining and underscoring those 

mental constructions that are needed to learn double integrals with meaning. It also 

reveals the subtleties involved in learning the double integral. After classroom use of 

specially designed activities, future studies may reformulate the same interview 

problems and also extend them to explore other ideas of the integral calculus. 
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school. Our approach is a socioconstructivist one, mixing conceptualisation in the 
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paper, we focus on the design of the tool and we give some flashes about students’ 

productions with the tool and teachers’ discourses in order to foster students’ 

understanding of the continuity. 
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The definition of continuity of functions at a given point, together with the concept 

of continuity, remains a major difficulty in the teaching and learning of analysis. 

There is a dialectic between the definition and the concept itself which make 

necessary the introduction of the two aspects together.  

The definition of continuity brings FUG aspects in the sense of Robert (1982). This 

means first that it permits to formalize (F) the concept of continuity. But it also 

allows to unify (U) several different images (or situations) of continuity encountered 

by students: in Tall and Vinner (1981), several emblematic situations of continuity 

are established (see below) and the definition aims at unifying all these different 

kinds of continuity. Moreover, the definition of continuity allows generalisations (G) 

to all other numerical functions, not already encountered and not necessarily with 

graphical representations, or more general functions inside other spaces of functions. 

As Robert (1982) stresses for the definition of limit of sequences, notions which 

bring FUG aspects must be introduced with a specific attention to mediations and 

especially the role of the teacher.  

Our ambition is then to design a technological tool which allows on one hand 

students activities concerning the two aspects of continuity and, on the other hand, 

allows the teacher to introduce the concept of continuity with its formal definition, 

referring to the activities developed on the technological tool. As it was noticed in 

the first INDRUM conference, papers about introduction of technologies in the 

teaching of analysis remain very few. 

We first come back to well-known concept images and concept definitions of 

continuity. Then, we explain our theoretical frame about conceptualisation and 

mathematical activities. This theoretical frame leads us to the design of the 

technological tool which brings most of the aspects we consider important for the 

conceptualisation of continuity. Due to the text constraints, the results of the paper 
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are mostly in term of the design itself and the way the tool encompasses our 

theoretical frame and our hypotheses about conceptualisation (with tasks, activities 

and opportunities for mediations). Then, we can give some flashes about students’ 

activities with the software and also teachers’ discourses to introduce the definition 

of continuity, based on students’ mathematical activities on the software.  

CONCEPT IMAGES AND CONCEPT DEFINITIONS OF CONTINUITY 

No one can speak about continuity without referring to Tall and Vinner’s paper about 

concept images and concept definitions in mathematics, whose particular reference is 

about limits and continuity (Tall and Vinner, 1981). Tall considers that the concept 

definition is one part of the total concept image that exists in our mind. Additionally, 

it is understood that learners enter their acquisition process of a newly introduced 

concept with preexisting concept images. 

Sierpinska (1992) used the notion of epistemological obstacles regarding some 

properties of functions and especially the concept of limit. Epistemological obstacles 

for continuity are very close to those observed for the concept of limit and they can 

be directly relied to students’ concept images, as a specific origin of theses 

conceptions (El Bouazzaoui, 1988). One of these obstacles can be associated to what 

we call a primitive concept image: it is a geometrical and very intuitive conception of 

continuity, related to the aspects of the curve. With this concept image, continuity 

and derivability are often mixed and continuity means mainly that the curve is 

smooth and have no angles. Historically, this primitive conception leads Euler to 

introduce a definition of continuity based on algebraic representations of functions. 

This leads to a second epistemological obstacle: a continuous function is given by 

only one algebraic expression, which can be called the algebraic concept image of 

continuity. This conception has led to a new obstacle with the beginning of Fourier’s 

analysis. Then, a clear definition is necessary. This definition comes with Cauchy 

and Weierstrass and it is close to our actual formal definition.  

We also refer to Bkouche (1996) who identifies three points of view about continuity 

of functions which are more or less connected to the epistemological obstacles we 

have highlighted. The first one is a cinematic point of view. Bkouche says that the 

variable pulls the function with this dynamic concept image. The other one is an 

approximation point of view: the desired degree of approximation of the function 

pulls the variable. This last point of view is more static and leads easily to the formal 

definition of continuity. These two points of view are also introduced by Robert 

(1982) when she studies the introduction of the formal definition of limit (for 

sequences). A third point of view is also identified by Bkouche that is the algebraic 

point of view, which is about algebraic rules, without any idea of the meaningful of 

these rules.  

At last, we refer to more recent papers and specifically the one of Hanke and Schafer 

(2017) about continuity in the last CERME congress. Their review of central papers 
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on concept images about students’ conceptions of continuity leads to a classification 

of the eight possible mental images that are reported in the literature: I : Look of the 

graph of the function : “A graph of a continuous function must be connected”  - II : 

Limits and approximation : “The left hand side and right hand side limit at each 

point must be equal” - III : Controlled wiggling : “If you wiggle a bit in x, the values 

will only wiggle a bit, too” - IV : Connection to differentiability : “Each continuous 

function is differentiable” - V : General properties of functions : “A continuous 

function is given by one term and not defined piecewise”- VI : Everyday language : 

“The function continues at each point and does not stop” - VII : Reference to a 

formal definition : “I have to check whether the definition of continuity applies at 

each point” -VIII : Miscellaneous 

We can recognize some of the previous categories, even if some refinements are 

brought. Mainly, concept images I, II, IV and VI can be close to the primitive 

concept image whereas VII refers to the formal definition and V seems to refer to the 

algebraic approach of continuity.  

CONCEPTUALISATION OF CONTINUITY 

We base our research work on these possible concepts image and concepts definition 

of continuity. However, we are more interested in conceptualisation, as the process 

which describes the development of students’ mathematical knowledge. 

Conceptualisation in our sense has been mainly introduced by Vergnaud (1990) and 

it has been extended within an activity theoretical frame developed in the French 

didactic of mathematics. These developments articulate two epistemological 

approaches: that of mathematics didactics and that of developmental cognitive 

psychology as it is discussed and developed in Vandebrouck (2018).  

Broadly, conceptualisation means that the developmental process occurs within 

students’ actions over a class of mathematical situations, characteristic of the concept 

involved. This class of situations brings technical tasks – direct application of the 

concept involved - as well as tasks with adaptations of this concept. A list of such 

adaptations can be found in Horoks and Robert (2007): for instance mix between the 

concept and other knowledge, conversions between several registers of 

representations (Duval 1995), use of different points of view, etc. Tasks that require 

these adaptations of knowledge or concepts are called complex tasks. These ones 

encourage conceptualisation, because students become able to develop high level 

activities allowing availability and flexibly around the relevant concept.  

A level of conceptualisation refers to such a class of situations, in a more modest 

sense and with explicit references to scholar curricula. In this paper, the level of 

conceptualisation refers to the end of scientific secondary school in Tunisia or the 

beginning of scientific university in France. It supposes enough activities which can 

permit the teacher to introduce the formal definition of continuity together with the 

sense of the continuity concept. The aim is not to obtain from students a high 
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technicity about the definition itself – students are not supposed to establish or to 

manipulate the negation of the definition for instance. However, this level of 

conceptualisation supposes students to access the FUG aspects of the definition of 

continuity.  

Of course, we also build on instrumental approach and instrumentation as a sub 

process of conceptualisation (Rabardel, 1995). Students’ cognitive construction of 

knowledge (specific schemes) arise during the complex process of instrumental 

genesis in which they transform the artifact into an instrument that they integrate 

within their activities. Artigue (2002) says that it is necessary to identify the new 

potentials offered by instrumented work, but she also highlights the importance of 

identifying the constraints induced by the instrument and the instrumental distance 

between instrumented activities and traditional activities (in paper and pencil 

environment). Instrumentation theory also deals with the complexity of instrumental 

genesis. 

We also refer to Duval’s idea of visualisation as a contribution of the 

conceptualisation process (even if Duval and Vergnaud have not clearly discussed 

this point inside their frames). However, the technological tool brings new dynamic 

representations, which are different from static classical figures in paper and pencil 

environment. These new representations lead to enrich students’ activities – mostly 

in term of recognition - bringing specific visualization processes. Duval argues that 

visualization is linked to visual perception, and can be produced in any register of 

representation. He introduces two types of visualization, namely the iconic and the 

non-iconic, saying that in mathematical activities, visualization does not work with 

iconic representations (Duval, 1999).  

At last, we refer on Vygotsky (1986) who stresses the importance of mediations 

within a student’s zone of proximal developmental (ZPD) for learning (scientific 

concepts). Here, we also draw on the double approach of teaching practices as a part 

of French activity theory coming from Robert and Rogalski (2005). The role of the 

teacher’ mediations is specifically important in the conceptualisation process, 

especially because of the FUG aspects of the definition of continuity (as we have 

recalled above).  

First of all, we refine the notion of mediation by adding a distinction between 

procedural and constructive mediations in the context of the dual regulation of 

activity. Procedural mediations are object oriented (oriented towards the resolution 

of the tasks), while constructive mediations are more subject oriented. We also 

distinguish individual (to pairs of students) and collective mediations (to the whole 

class).  

Secondly, we use the notion of proximities (Bridoux, Grenier-Boley, Hache and 

Robert, 2016) which are discourses’ elements that can foster students’ understanding 

– and then conceptualisation - according to their ZPD and their own activities in 
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progress. In this sense, our approach is close to the one of Bartolini Bussi and 

Mariotti (2008) with their Theory of Semiotic Mediations. However, we do not refer 

explicitly at this moment to this theory which supposes a focus on signs and a more 

complex methodology than ours. According to us, the proximities characterize the 

attempts of alignment that the teacher operates between students’ activities (what has 

been done in class) and the concept at stake. We therefore study the way the teacher 

organizes the movements between the general knowledge and its contextualized 

uses: we call ascending proximities those comments which explicit the transition 

from a particular case to a general theorem/property; descending proximities are the 

other way round; horizontal proximities consist in repeating in another way the same 

idea or in illustrating it. 

DESIGN OF THE TECHNOLOGICAL TOOL 

The technological tool called “TIC-Analyse” is designed to grasp most of the aspects 

which have been highlighted above. First of all, it is designed to foster students’ 

activities about continuity aspects in the two first points of view identified by 

Bkouche: several functions are manipulated – continuous or not – and for each of 

them, two windows are in correspondence. In one of the window, the cinematic-

dynamical point of view is highlighted (figure 1) whereas in the second window the 

approximation-static point of view is highlighted (figure 2).  

 

Figure 1: two windows for a function, the dynamic point of view about continuity 

The correspondence between the two points of view is in coherence with Tall’s idea 

of incorporation of the formal definition into the pre-existing students’ concept 

images. It is also in coherence with the importance for students to deal with several 

points of view for the conceptualisation of continuity (adaptations).   
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Figure 2: two windows for a function, the static points of view about continuity 

In second, the functions at stake in the software are extracted from the categories of 

Tall and Vinner (1981). For instance, we have chosen a continuous function which is 

defined by two different algebraic expressions, to avoid the algebraic concept image 

of continuity and to avoid the amalgam between continuity and derivability. We also 

have two kinds of discontinuity, smooth and with angle. 

There is an emphasis not only on algebraic representations of functions in order to 

avoid algebraic conceptions of functions. Three registers of representations of 

functions (numerical, graphical and algebraic) are coordinated to promote students’ 

activities about conversions between registers (adaptations). 

 

Figure 3: example of commentary given by a pair of students in the dynamic window 
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The design of the software is coherent with the instrumental approach mostly in the 

sense that the instrumental distance between the technological environment, the 

given tasks, and the traditional paper and pencil environment is reduced. However 

the software produces dynamic new representations – a moving point on the curve 

associated to a numerical table of values within the dynamic window; two static 

intervals, one being included or not in the other, for the static window – occurring 

non iconic visualisations which intervene in the conceptualisation process.  

 

Figure 4: example of commentary given by a pair of students in the static window 

The software promotes students’ actions and activities about given tasks: in the 

dynamic window, they are supposed to command the dynamic point on the given 

curve – corresponding to the given algebraic expression. They can observe the 

numerical values of coordinates corresponding to several discrete positions of the 

point and they must fill a commentary with free words about continuity aspects of 

the function at the given point (figures 1, 3). In the static window, they must fill the 

given array with values of α, the β being given by the software (figures 2, 4). Then, 

they have to fill a commentary which begins differently according to the situation 

(continuity or not) and the α they have found (figures 4, 5).  

As we have mentioned in our theoretical frame, students are not supposed with these 

tasks and activities to get the formal definition by themselves. However, students are 

supposed to have developed enough knowledge in their ZPD so that the teacher can 

introduce the definition together with the sense and FUG aspects of continuity.  

STUDENTS ACTIVITIES AND TEACHER’S PROXIMITIES 

The students work by pair on the tool. The session is a one hour session but four 

secondary schools with four teachers are involved. Students have some concept 

images of continuity but nothing has been thought about the formal definition. The 
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teacher is supposed to mediate students’ activities on the given tasks. Students are 

not supposed to be in a total autonomy during the session according to our socio 

constructivist approach.  

 

Figure 5: example of commentary given by a pair of students in the static window 

We have collected video screen shots, videos of the session (for each schools) and 

recording of students’ exchanges in some pairs. Students’ activities on each tasks are 

identified, according to the tasks’ complexity (mostly kinds of adaptations), their 

actions and interactions with computers and papers (written notes), the mediations 

they receive (procedural or constructive mediations, individual or collective, from 

the tool, the pairs or the teacher) and the discourses’ elements seen as “potential” 

proximities proposed by the teacher. 

It appears that the teacher mostly gives collective procedural mediations to introduce 

the given tasks, to assure an average progression of the students and to take care of 

the instrumental process. Some individuals mediations are only technical ones (“you 

can click on this button”). Some collective mediations are most constructive such as 

“now, we are going to see a formal approach. We are going to see again the four 

activities (ie tasks) but with a new approach which we are going to call formal 

approach...”. The constructive mediations are not tasks oriented but they aim at 

helping students to organize their new knowledge and they contribute to the aimed 

conceptualisation according to our theoretical approach.  

As examples of students’ written notes (as traces of activities), we can draw on 

figure 3 and 4. A pair of students explains the dynamic non-continuity with their 

words “when x takes values more and more close to 2 then f(x) takes values close to -

2,5 and -2. It depends whether it’s lower or higher” (figure 3) which is in coherence 

with the primitive concept image of continuity. The same pair of students explains 

the non-continuity in relation to what they can observe on the screen: “there exists β 
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positive, for all α positive – already proposed by the tool in case of non-continuity - 

such that f(i) not completely in j… f is not continuous”. We can note that the students 

are using “completely” to verbalize that the intersection of the two intervals is not 

empty. However, the inclusiveness of an interval into another one is not expected as 

a formalized knowledge at this level of conceptualisation. Their commentary is 

acceptable. Students are expressing what they have experimented several times : for 

several values of β (β = 0,3 in figure 4), even with α very small (α = 0,01 in figure 

4), the image of the interval ]2- α, 2+ α[ is not included in ]-2,5- β, -2,5+ β[. 

Concerning a case of continuity, the students are also able to write an acceptable 

commentary (figure 5) “for all β positive, their exists α positive – already proposed 

by the tool in case of continuity – such that f(i) is included in j.” 

Students’ activities on the given tasks are supposed to help the teacher to develop 

proximities with the formal definition. It is really observed that some students are 

able to interact spontaneously with the teacher when he wants to write the formal 

definition on the blackboard. This is interpreted as a sign that the teacher’s discourse 

encounters these students’ ZPD. Then the observed proximities seem to be horizontal 

ones: the teacher reformulates several times the students’ propositions in a way 

which lead gradually to the awaited formal definition, for instance “so, we are going 

to reformulate, for all β positive, their exists α positive, such that if x belong to a 

neighbour of  α … we can note it x0 – α, x0 + α….” 

Of course, it is insufficient to ensure proof and effectiveness of our experimentation. 

The conceptualisation of continuity is an ongoing long process with is only initiated 

by our teaching process. However, we want to highlight here the important role of 

the teacher and more generally the importance of mediations in the conceptualisation 

process of such a complex concepts. We only have presented the beginning of our 

experimentation. It is completed by new tasks on the tool which are designed to 

come back on similar activities and to continue the conceptualisation process.  
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This paper focuses on the problem of the ecology of mathematical modelling 
practices at university level through the systematic variation of teaching institutions.
Our aim is to deal with the variety of constraints appearing when modelling is 
implemented in university classrooms, and to study the way new teaching proposals 
can overcome them. Within the framework of the anthropological theory of the
didactic, a teaching and learning proposal in terms of study and research paths in 
tertiary education shows new possibilities to surmount some of these constraints. The
paper presents the design and successive adaptations of an SRP about an urban bike-
sharing system according to the specificities of different university institutions and
the reactions obtained by the students and lecturers. 
Keywords: Modelling; anthropological theory of the didactic; research and study
path; ecology; institutional relativity. 
INTRODUCTION 
The starting point of this research is delving into the problem of studying the variety 
of constraints appearing when mathematical modelling proposals are implemented in 
university classrooms, impeding their regular development, and to study the way new 
teaching proposals can overcome them. Several research projects have highlighted
the existence of strong constraints impinging on the large-scale dissemination of 
mathematics as a modelling activity in current educational systems at all school
levels (Doerr & Lesh, 2011; Kaiser & Maaβ, 2007). We use the term ecology to refer 
to the institutional conditions allowing and the constraints hindering the way a given 
activity is produced, transposed, taught and learned in a given educational setting.  
In previous research developed in the framework of the anthropological theory of the 
didactic (ATD), we propose the use of a general frame to detect and place the 
institutional constraints hindering the possible large-scale dissemination of modelling 
activities based on a hierarchy of levels of didactic co-determinacy (Chevallard, 
2002). In Barquero, Bosch and Gascón (2013), we use this general frame to detect
constraints appearing at different levels, from the specific ones related to how 
mathematical contents are proposed to be taught at school, to the more general ones 
regarding the general organisation of school activities and the role assigned to 
schools in our societies. This ecological analysis shows how institutional constraints 
are anchored in deep-rooted practices and are difficult – for teachers and also for 
researchers – to notice since they appeared as “the natural way of doing”. For 
instance, Barquero et al. (2013) characterise and empirically contrast the 
predominance of “applicationism” as the dominant way of interpreting, describing
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and conceptualizing mathematical modelling in natural sciences university degrees. 
Under its influence, modelling is understood as a mere application of previously 
constructed knowledge, as if the construction of knowledge were independent of its 
use. At a more general level, in many schools the prevailing pedagogy is still strongly 
influenced by the paradigm of “visiting works” (Chevallard, 2015), according to 
which school knowledge organisations are presented as interesting monuments to 
visit, instead of as useful tools to provide answers to problematic questions. 
In this paper, we focus on going one-step to study the ecological relativity of 
modelling practices in university institutions. As it is described in Castella (2004) and 
Sierra (2006), each institution endures an institutional relation with knowledge, in 
particular, with mathematical knowledge. Consequently, each institution establishes a 
set of specific conditions and constraints that can favour or, on the contrary, prevent 
certain teaching and learning processes and knowledge constructions to be 
appropriately developed. It is in this aspect where we want to look more carefully. 
Therefore, we focus on analysing the emergence, persistence and scope of the 
conditions and constraints for development of modelling through a variation of 
university institution. In our research, we work on the use of the study and research 
paths (SRP) as epistemological and didactic model (Chevallard, 2015; Winslow et 
al., 2013; Barquero et al., 2018) where mathematics are conceived as a modelling tool 
for the study of problematic questions. We here present an SRP based on an urban 
bike-sharing system inaugurated in Barcelona in 2007 that has been experimented in 
three different university settings. The starting point of this SRP is the difficulty to 
get a homogeneous distribution of bicycles in a city with many sloping streets. We 
present the successive transformations of the SRP to three different university 
settings, according to the specificities of each institution, and to the reactions from 
students and lecturers. Some of the commonalities found show the stable constraints 
hindering the development of the SRP, whereas the differences detected bring new 
insights about the conditions to surmount them. 

DESIGN OF AN SRP ABOUT A SHARING-BIKE SYSTEM 
In the following we describe the initial design of the study and research path (SRP) 
about the sharing-bike system whose starting point is the generating questions (Q0) 
about how to improve the distribution of bikes in the ‘Bicing’ system to provide a 
better service to users. When working with the a priori design of the SRP, there are 
foreseen several derived questions from Q0 that needs from a progressive modelling 
process. In general terms, the modelling project was organised around the following 
questions that structured the two phases the Bicing project: 

Q(A): How can we describe the daily flow of bikes between stations? What is the 
natural behaviour of the system when it is left alone (without redeployment)? 
Q(B): How can we predict the bikes’ redeployment needs? Which changes can be 
proposed to improve the current policy of bikes redeployment in the city? 
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Linked to these questions, we consider real data from Bicing about the distribution of 
bikes among the different bikes’ stations. We, the researchers and the experts who 
collaborated with us, agreed to organise these data in certain city areas according to 
the similarities different stations shared on the pattern of daily bikes trips and routes 
followed. Finally, we decided to present the data organised in six areas (as shown in 
Table 1), which corresponds to the origin-destination matrix (OD matrix) containing 
the potential number of daily bikes’ uses. Each number {odij} means the average of 
the amount of bike traveling in a day from area j and arriving to area i. 

 
Table 1: Origin-Destination matrix with daily bikes’ trips 
To face the first question Q0(A), and going beyond the descriptive analysis of the data 
contained in the OD matrix, models based on recurrent sequences of order d > 1 can 
be considered, which are equivalent to matrix recurrent sequences X (n)= f (X(n-1))) 
where X (n) = (x1 (n), x2 (n), …, x6 (n)) is the vector with the bike distribution in each 
of the six areas at time n. Next we summarize the a priori design in terms of 
hypothesis (H), questions (Q) and answers (A) delimited by the researchers about the 
models that might be used in an implementation of the SRP. 
One of the easier assumptions we can work with is considering that: 

H(A)1: There is no redeployment of bikes in the system and the bike flows between 
stations is the same every day. 

Q(A)1.1: Then, if we deploy different amounts of bikes in each station, what will be the 
distribution of bikes after 1, 2, 3,…, n days?  

The model that can be considered under these assumptions is: 

X (n) = M.X (n-1) à X (n) = Mn. X (0) for n > 0                              (1) 

where M is the transition matrix (or transition probability matrix) obtained from the OD 
matrix, where {mij} is the percentage of transition between two areas. That is, the potential 
number of daily travels with origin in j and arriving to i {(od ij)} divided by total amount of 
departures from j (d(j)). When working with this first model, several questions can appear: 

Q(A)1.2: Working with the transition matrix and with different X(0) at the beginning of the 
day, which traits from the trajectory of X(n) can be underlined? 
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Q(A)1.3: Does it exist any fixed point X f to which the sequence X(n) converges to? Do all 
X(n) converge towards a fixed point X f ? Is it possible to calculate  X f  in advance? 

Q(A)1.4 : Which relation there exist between X f and the n-power of the transition matrix? 

And, it can easily appear questions about the limitations of the hypothesis assumed and 
models built, such as: 

Q(A)1.5 : How can include other factors that are important for Bicing, such as: the total 
amount of trips made by a bike, the potential demand of bikes, the available bikes?  

Introducing questions about how to improve our hypothesis and the models to be more 
realistic with the system we want to analyse can open many possibilities. One possible new 
reformulation of the hypothesis we can work with is: 

H(A)2: We assume that (1) each bike trip takes about t minutes, (2) the entire fleet of bikes 
does not move every t min, (3) the total number of bikes that moves in period t depends 
on: (a) the potential demand for bike trips, and (b) the amount of bikes available. 

At this point, there appear more complex models where it is important to frame the time t, 
for instance, t = 30 minutes (which it is the average of a bike trip in Bicing). Then, we can 
define Bi (t) as the number of bikes in an area at time t and 
B(t) = (B1(t), B2(t), B3(t), B4(t), B5(t), B6(t)) as the vector with the bikes distribution in each 
area. Then, if we define the departures as D(t) = (D1(t), D2(t), D3(t), D4(t), D5(t), D6(t)) and 
the arrival as A(t) = (A1(t), A2(t), A3(t), A4(t), A5(t), A6(t)), B(t) can be modelled by:   

B(t +1) = B(t) - D(t) + A(t +1)                                              (2) 

where D(t) = min [demand_trips(30 min), B(t)] and  A(t+1) = M·D(t), with M the transition 
matrix in time periods t. When this second model is considered, several questions can guide 
the study process: 

Q(A)2.1 : Using this model (2), and considering different initial distribution of bikes at the 
beginning of the day B(0), which will be the bike distribution B(t) at the end of the day? 
And, if the system is left alone, after 2, 3, 4, …, 30 days?  

Q(A)2.2 : Which traits can we underline about the trajectory of B(t) through the simulation 
of model (2)? Are there also some fixed points to which the sequence B(t) converge? 

Q(A)2.3 : Is there any relation between the fixed points X f we reach with the ones detected 
with model (1)? 

Q(A)2.4 : Which relationship is there between the first and second models, defined in (1) 
and by (2)? Which of the two models do integrate more realistic conditions about Bicing?  

In the next section we retake this a priori design of the SRP in terms of Q0 and the likely 
hypothesis and derived questions Q(A).n to analyse the particular implementation of the SRP 
about Bicing project in the different university institutions. Besides underlying the 
adaptations that were necessary to the SRP in each university institution, we focus on the 
most important conditions (common or not) that favour the development of the SRP, and 
consequently of the modelling practice. In most of the occasions, these conditions and 

88 sciencesconf.org:indrum2018:174869



  
constraints were phrases by the students and lecturers involved in the implementations or by 
the survey and interview done at the end of each implementation. 

 
ECOLOGICAL ANALYSIS OF THE SRP IN DIFFERENT UNIVERSITY 
INSTITUTIONS 
First SRP adaptation: The ‘Bicing project’ at the University of Copenhagen 
The first implementation of the SRP about the bikes’ distribution in the Bicing system 
took place in the University of Copenhagen (UC). Twenty-three students participated 
in this implementation. They were taking the course called MathMod (Mathematical 
Modelling), which was an optional course in the third year of the Mathematics 
degree. The course run over seven weeks, plus two extra weeks to prepare their final 
team project. The course had three weekly sessions of two hours each. In general 
terms, the first session was a lecture, the second was a practical or exercise-based 
session to practice the content introduce in the previous lecture and, the third one, to 
work in teams in the computer room to simulate by Mapple some models introduced 
along the course or to work on the team final project. The teaching course proposal 
was based on the realization of four short projects (mini-projects), linked to some 
practical activities. These mini-projects mostly consisted of being introduced to some 
pre-existing models in the lectures sessions to then asked students to put them into 
practice in the practical sessions. Some example of the project composing the course 
are: “Mini-project 1: Using the Malthusian and logistic models to predict population 
evolution” or “Mini-project 4: The Lotka-Volterra models”.  
In the academic year 2009/10, the author of the paper participated in this course as 
researcher and the lecturer offered the opportunity of implementing the SRP about 
Bicing. It was integrated as the fifth (and last) project of the course. The SRP 
implementation ran over two weeks, with six sessions of two hours. At the end of 
each week, students working in teams had to deliver a report with their temporary 
results of the Bicing project. It was necessary to break with the above-mentioned 
organisation of the course sessions and to set up time for the presentations by the 
lecturer-researcher and for students’ presentation. There, students could compare 
their proposals and to collectively agree how to follow. During the first week, once 
the generating question Q0 was presented by the lecturer-researcher, students agreed 
to firstly focused on Q0(A) from where students developed most of the path described 
in the previous section about model (1). In the second week, we (students and 
instructors) worked on how to reformulate the H(A)2 and Q(A)2, as most of the groups 
noticed that in model 1 there were considered  some unrealistic assumptions. Due to 
time restrictions, we could not go further the second model. Finally, each team had to 
deliver a report one week later the ending of the project with some suggestions for 
Bicing about how to improve their bike replacing system, Q0(B). Figure 1 summarizes 
the path followed in this first implementation. 
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Figure 1: Summary of the path follow in the first implementation of the SRP at UC 

We counted on different conditions that favour that the SRP progress fruitfully. First, 
as it was the fifth project of the course, and the course was explicitly focus on 
modelling, students and lecturers shared a common discourse to refer to modelling. 
This was an important condition for modelling to be noticed (Barquero et al. 2013). 
Secondly, the second mini-project was about Leslie matrices and transition matrices. 
It thus facilitated that students autonomously posed many new questions, such as 
Q(A)1.3 and Q(A)1.4 and, thanks to the previous work developed with Maple, students 
easily worked on calculating and simulating sequences and studying their 
convergence. On the contrary, there were also some constraints that were manifested 
by students mostly at the beginning of the SRP implementation. When we started 
with the Bicing project, students were astonished by the new responsibilities that they 
were asked, such as: formulating hypothesis, looking for and building models, testing 
models’ appropriateness, formulating new questions, writing a report without any 
predetermined structure, etc. Although their initial confusion, consequence of a big 
rupture with the didactic contract established in the course, they started assuming 
these new responsibilities. In the previous activities of the course, students were only 
asked to “apply” the models they had been introduced to. So that, breaking some 
rules of the didactic contract and make students responsible of several new tasks in 
the modelling process were the main constraints we had to surmount. In fact, the 
course organisation shown many traits (and constraints) derived from 
“applicationism” (Barquero et al. 2013). For instance, it was assumed (throughout the 
course organisation) that the mathematical models had to be introduced in advanced 
and then applied to different situation, models that are rarely questioned and hardly 
reformulated. When the Bicing project started, many students’ resistances appeared 
that reflected the implicit assumptions about what modelling was suppose to be and 
what we (as students and as lecturer) were asked to do. At the end of the course, 
when students were asked through a survey and with the interviews with some of 
them, they stated how interesting it was this last project for several reasons. Some of 
main reasons mentioned by the students were: the openness of the questions, the 
possibility to delimit the questions to face, the necessity of clearly understanding the 
modelling process (the hypothesis assumed, the models’ construction and their 
validation), the possibility to compare teams’ proposals and results with the rest of 
the groups who could have been working differently, possibilities to discuss the 
limitation of the models proposed and make them evolve. 
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Ecological relativity of the second SRP adaptation implemented at UAB 
The second implementation of the SRP was the following academic year at the 
Universitat Autònoma de Barcelona (UAB). There was a course called 
“Mathematical modelling workshop” which started in 2009/10 with second-year 
students of Mathematics degree. It was the first edition of the course, which was 
compulsory, with a total of 45 students participating. The didactic organisation of the 
course was different from the previously described at the UC. The main aim of the 
course was to develop a project in working teams (composed of 4-5 students) that 
students selected from a list provided by the lecturers of the course. Running in 
parallel, there were planned some short activities about modelling. The first year this 
course was implemented, one of the modelling activities planned was the ‘Bicing 
project’. It ran over 5 weeks, with two 2-hour sessions per week. We invested more 
than the double of time than in its first implementation. Similarly, students were 
asked that at the end of each week they had to deliver a report with a synthesis of 
their advances in term of: (a) questions they had focused on, (b) hypothesis assumed 
and mathematical models considered, (c) temporary answers and (d) new questions to 
follow with). At the end of the Bicing project, each working team had to deliver a 
final report as summary of the whole modelling work developed. In general terms, 
the modelling process students and instructors followed in this occasion was not so 
different concerning Q0(A), although now none of the students’ working team tackled 
the second phase of the project with Q0(B), or posed any questions about the properties 
of the n-power of transition matrices, such as: Q(A)1.4 or Q(A)2.3.  

 

Figure 2: Summary of the path follow in the second adaptation of the SRP in UAB 

One important novelty (and extension of the SRP) was that some students asked 
about the possibility of working with partial matrices, for instance, by considering 
different OD matrix to describe differently the bikes’ flow in the morning and in the 
afternoon. Students had checked in the web how many bikes were available at 
different time frames and they had concluded that there were different patterns of 
bikes disposition depending in the daily time frame. The instructors asked to the 
experts we worked with about the possibility of having these new data. The external 
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experts provided us two new matrices: one for the morning pattern, from 05:00h to 
14:30h, and the other for the afternoon, from 14:30h to 00:00h. With this new data, 
the modelling process concerning Q0(A) was extended towards the construction of a 
third model, built upon the two previous ones (1) and (2), and taking into account 
these two different OD matrices. Figure 2 summarizes the path followed in this 
occasion and the extension it supposed for the first phase of the Bicing project. 
If we focus on analysing the conditions and constraints we detected in the second 
implementation of the SRP, we have to mention that in this occasion it was the 
lecturer of the course who expressed more clearly some important constraints. He 
expressed, in an interview at the end of the implementation, that we had invested too 
much time with the project. He manifested that students needed to work more 
independently and there was no need of planning common discussions among all the 
working groups. His main request was to let students work independently and ask 
them to present their finding at the end of the course. Reactions that were on an 
opposite sense than the ones expressed by the Danish lecturer, who expressed that the 
activity was too open and too less guided for students. We can say that these 
reactions corresponded to their spontaneous teaching models that both lecturers 
implicitly defended. In this second implementation, it shared traits of a modernist 
teaching model (Gascón, 2001), by considering knowledge construction as an 
individual process, also private. That is why the lecturer preferred not planning any 
teaching device where to share and collectively talk about the modelling work 
developed, and where to question, debate and agree about the questions, tools and 
strategies to follow along the modelling process. As the course organisation at the 
UAB showed, each team was supposed to work most of the time independently in 
their project, and it was not until the end of the course when they explained their 
results. We could observe several inconveniences, linked to important constraints, 
which were more evident in the following courses when the lecturers planned short 
modelling activities as complement to the working group project of the course. First, 
students showed a lack of terminology and of a common discourse (shared with 
lecturers) to talk and write about the modelling activity developed. Second, the main 
outcome from the students modelling work was their final presentation of the project 
at the end of the course. It was delivered as a report that mostly contained the final 
models and models simulation, as if all the intermediate modelling work may remain 
in the private space of each group. Consequently, most of final reports showed a poor 
progression of the models considered and of the tools to contrast and validate them. 

CONCLUSIONS AND DISCUSSION 
It has to be highlighted that the two adaptations of the SRP presented in this paper 
were done under advantageous conditions. First, it was experienced with students of 
the Mathematics degree who were taking a course on mathematical modelling and 
with lecturers who are experts on modelling. Second, in both cases, the schedule and 
programme of the course were flexible and we had longer sessions (2-hour sessions 
two or three times per week) than the prevailing university settings use to offer. 

92 sciencesconf.org:indrum2018:174869



  
Nevertheless, one could think that we may detect similar conditions and constraints in 
these two university setting, but it is important to see how different institutions 
established different relations with the knowledge at the stake, in this case, with the 
teaching of mathematics modelling. Then, for example, some conditions that appear 
in the first implementation can become strong constraint for the second one. For 
instance, it was the case of the necessity of sharing a common discourse to talk about 
and analyse modelling practices, which was an important condition underlined in the 
first implementation, becoming a constraints in the second one.  
But, if we move away from these “optimal” university conditions, do we find similar 
constraints? Which of them are sensitive to be surmounted? How to overcome some 
of the most important constraints? To face these questions, and follow enquiring into 
the institutional relativity of the conditions favouring and the constraints hindering 
modelling practices, we proceeded with the third adaptation of the SRP. It was 
redesigned and later implemented with first-year university students of business and 
administration degree (4-year programme) in IQS School of Management of 
Universitat Ramon Llull in Barcelona (Spain) during the entire academic year 
2013/14. In this occasion, the Bicing project was extended (called now “Cycling 
project”) to become the central project developed along the three terms of the 
mathematics first-year course. The SRP was broken into three branches. The one 
described in this paper (in section 2) was implemented during the third term, only 
focusing on the first model (1). During the entire course, not only the initial structure 
of the SRP was extended, but also we pay special attention to which teaching devices 
and strategies could help to overcome some of the most common constraints for 
modelling and to create appropriate conditions for modelling and for the SRP. We are 
in the process of analysing them in depth with the aim of extending our knowledge 
about the ecology of the SRP and its institutional relativity. 
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C’ (x) = C(x+1)-C(x)? - Students’ connections between the derivative 

and its economic interpretation in the context of marginal cost 
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The derivative concept plays a major role in economics. Therefore, students of 

economics should have a proper understanding of the concept and its application in 

economics. One important competence for these students is to interpret the 

derivative in economic contexts. In books of economics the derivative is commonly 

interpreted as amount of change while increasing the production by one unit. 

However, from a mathematical point of view, this interpretation does not directly 

correspond to the derivative. In the study presented here, it was investigated to what 

extent students can make an adequate connection between the derivative as a 

mathematical concept and its economic interpretation mentioned above. 

Keywords: derivative, students of economics, economic interpretation, concept 

image, marginal cost. 

INTRODUCTION  

The derivative plays an important role in economics. It is used to solve optimization 

problems, to describe and characterize economic functions, and in marginal analysis, 

in which the impact of small changes from the current state is examined (example: 

the effect of small changes in the price of a product on the demand) in order to make 

optimal decisions. Hence, students of economics should have an adequate 

understanding of the derivative concept in order to be able to use it in economics in a 

reflective manner. The study presented here focuses on students’ of economics 

understanding of the derivative after their Calculus course with special emphasis on 

its economic interpretation, which is essential for the ability to apply the concept in 

economics. It is part of a larger research project about the understanding of the 

derivative in mathematics for students of economics (my PhD-thesis, supervisor: 

Rolf Biehler) at the Centre for Higher Mathematics Education in Germany (khdm).  

LITERATURE REVIEW AND EMBEDDING OF THE RESEARCH  

There is a lot of research about students’ understanding of the derivative. Concerning 

the interpretation of the slope and the derivative in contexts, different difficulties are 

documented. Typical mistakes are the slope/height confusion or the graph-as-picture 

error (Beichner, 1994; Çetin, N., 2009; Carlson, M., Oehrtman, M. & Engelke, N., 

2010). An interesting study, which included a task to interpret the derivative in the 

context of motion explicitly, was conducted by Bezuidenhout (1998). He asked 

students to interpret '(80) 1.15S   if ( )S v is the stopping distance of a vehicle in metres 

in dependence of the velocity in km/h. Many students overgeneralized that the 

derivative is the acceleration or the velocity itself. Many also had problems with the 
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units. These students did not understand the derivative as rate of change of the given 

function S  properly.  

While there is some research of students’ understanding of the derivative in physical 

contexts (examples mentioned above), there is little research related to economic 

contexts. Wilhelm & Confrey (2003) showed that students cannot automatically 

transfer their knowledge about rate of change from a physical context to the context 

of money. Hence, an economic interpretation of the derivative should be explicitly 

taught in a Calculus course for students of economics. But even if an economic 

interpretation of the derivative was covered in the students’ Calculus course, 

problems occur. Mkhatshwa & Doerr (2015) showed that many students talked about 

marginal cost (the derivative of a cost function) as amount of change when solving 

economic problems, although it was underlined in the Calculus course that the 

derivative is a rate. This indicates a rather superficial understanding of the 

connection between the derivative as a mathematical concept and its economic 

interpretation. A similar result is also found in Feudel (2017). Students’ answers in a 

task to interpret '(73) 0.2
GE

P
ME

 (GE = units of money, ME = units of quantity) of a 

profit function P  economically indicated that many students were not aware of the 

numerical differences and the differences in the unit between the derivative and its 

economic interpretation as additional profit. However, in these two studies the 

students were not obliged to reveal their ideas about the connection between the 

derivative as a mathematical concept and its economic interpretation explicitly. The 

study presented here directly focuses on this connection.  

THEORETICAL BACKGOUND OF THE STUDY 

The economic interpretation of the derivative 

To be able to use the derivative in economics, students need to be able to interpret its 

values in economic contexts. However, understanding the interpretation of the 

derivative commonly used in economics is a special challenge for students because it 

does not directly correspond to any of the usual representations of the derivative as 

limit of the difference quotient, slope of the tangent line, local rate of change, or as 

instantaneous velocity. If :[0; ) [0; )C     is a cost function (the variable x represents 

the output of a product), the derivative '( )C x , called marginal cost, is often 

interpreted as additional cost of the next unit. However, if one takes this 

interpretation literally it corresponds to the difference ( 1) ( )C x C x  , which differs 

from the derivative in its unit and in its numerical value. Since the students already 

have previous knowledge about the derivative from school, e.g. as slope of a 

function at one point, this might confuse them. Hence, the economic interpretation of 

the derivative should be carefully connected to the students’ previous knowledge, 

and justified for economic contexts in the students’ of economics Calculus course. A 

typical justification is via the approximation formula ( ) ( ) '( )C x h C x C x h     for 
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0h  . Since 1h   can be considered as small in economics, the numerical values of 

'( )C x  and ( 1) ( )C x C x   are close to each other, and they can be identified (a more 

detailed explanation can be found in Feudel (2016)).  

The above mentioned perspective on marginal cost as being defined as derivative 

and interpreted as additional cost of the next unit coincides with what is taught in 

mathematics courses for students of economics (see e.g. (Sydsæter and Hammond, 

2013)) and with what is presented in some books of economics like Breyer (2015). 

However, marginal cost can also be defined as additional cost of the next unit like in 

Blum (2003). In this case the derivative is viewed as method of calculation of the 

additional cost. Nevertheless, the problem to justify the identification of the two 

different mathematical objects in economic contexts also remains in this approach. 

The notion of concept image to describe students’ conceptual knowledge  

The economic interpretation of the derivative and its connection to the pure 

mathematical concept, as it was explained above, should be part of students’ of 

economics conceptual knowledge of the derivative concept. To describe students’ 

conceptual knowledge I will refer to the notion of concept image by Tall & Vinner 

(1981), which describes the total cognitive structure associated to a concept. This 

includes all mental pictures, properties and associated processes. In the case of the 

derivative students’ of economics concept image should contain its representations, 

the differentiation rules, its connection to the concepts of monotonicity and 

convexity, its use as a tool for optimization problems, and in particular an adequate 

economic interpretation of the derivative. Since the common economic interpretation 

of the derivative as amount of change while increasing the production by one unit is 

a different mathematical object, it should be in particular carefully connected to the 

rest of the students’ concept image, called synthesizing in literature (Dreyfus, 2002). 

Knowledge concerning the derivative covered in the students’ Calculus course  

In the Calculus course for students of economics in which the study took place 

(University of Paderborn 2015, Germany), the sessions involving the derivative 

began with the definition of the derivative as limit of the difference quotient. 

Alongside with the symbolic definition, its representations as slope of the tangent 

line (tangent line introduced as limit of secant lines) and as rate of change were 

introduced. Afterwards, the unit of the derivative in the case of a cost function C  

was discussed and justified via the symbolic definition of the derivative. In the 

second lecture the economic interpretation of the derivative in the context of 

marginal cost was introduced, which is essential for the study presented here. Two 

possible economic interpretations of the derivative were presented in the lecture: 

1. Interpretation as approximation of the additional cost of the next unit 

This interpretation was justified via the approximation formula '( )C C x x   , which 

was derived from the definition of the derivative by using the approximation aspect 
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of the limit. The terms C and '( )C x x  were also visualized on the board with the 

help of the tangent line.  

2.  Interpretation as additional cost of the next marginal unit 

It was visualized that the mistake between C  and '( )C x x  becomes smaller if 

0x  . This results in the asymptotic equation '( )dC C x dx  in which the lecturer 

called the “fictive infinitely small quantities” dx  and dC  marginal units.  

Some lectures later the concepts of monotonicity and convexity and their connection 

to the derivative were discussed. The sessions finished with optimization problems.   

All the topics covered in the lecture were also practised in small groups, in which the 

students had to solve problems. Relevant for the study presented here is, that these 

problems also included a task to interpret the value '(5)C  of the cost function 
2( ) 8 10 700C x x x    in an economic context (in the way presented above).  

METHODOLOGY OF THE STUDY 

The study aimed to find out to what extent students of economics can make an 

adequate connection between the derivative and its economic interpretation after 

their Calculus course. Hence, eight economics students who successfully completed 

their Calculus Course at the University of Paderborn were interviewed. Each 

interview lasted about 30 minutes. The interviews were structured by four tasks:  

1. Consider the cost function C  that is given by the following equation:  

3 21 1
( ) 21 500, 0

1000 4
C x x x x x     . The output x  is given in units per quantity, the 

cost ( )C x  is given in Euro.  Determine the marginal cost for an output of 100x   

units of quantity.  Determine the unit (of the marginal cost), too.  

2. Is the derivative '( )C x  the same like the additional cost while increasing the 

production from x  units of quantity by one unit?  Justify yours answer.   

 

Figure 1: Graphs of the cost function from task 1 and the cost function from the task, 

in which the additional cost for the 11
th

 unit had to be determined 
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3. Justify with the picture (left graph of figure 1) why the numerical values of '( )C x  

and ( 1) ( )C x C x   of the function C  from task 1 are almost identical (for 100x  ). 

4. Justify with the definition of the derivative why it can often be assumed in 

economics that the values of '( )C x  and ( 1) ( )C x C x  are almost identical. 

The tasks were not always presented to the students in written explicitly, but were 

sometimes given by the interviewer verbally during the interview process.  

Task 1 was an introductory task with the aim to find out which of the two 

mathematical objects ( '( )C x  or ( 1) ( )C x C x  ) the students associated first with the 

term “marginal cost”. Task  2 was central in the interview. It aimed to find out to that 

extent students knew the differences between the derivative and the additional cost 

of the next unit. If the students claimed both objects to be equal they got the 

additional task to determine the additional cost of the 11
th

 unit of a function, which 

was only given graphically (see right graph of figure 1). Its aim was that the students 

could no longer use their algorithm to determine the derivative and would use the 

difference ( 1) ( )C x C x   instead. This should make the students’ concept image of 

marginal cost incoherent and provoke a cognitive conflict to make them rethink their 

ideas about the identity of the derivative and the additional cost of the next unit, and 

to reorganize their concept image. With the interviewer’s help the students were then 

led to the differences between the derivative and the additional cost of the next unit.  

Task 3 had the aim to find out if the students could justify the identification of '( )C x  

and ( 1) ( )C x C x   within the graphical representation with the help of the tangent line 

(similar to the visualization presented in the lecture). Task 4 finally aimed to find out 

to what extent the students have internalized the justification of the identification of 

'( )C x  with ( 1) ( )C x C x  in economics symbolically via the approximation formula 

( ) ( ) '( )C x h C x C x h    for 0h   (as it was taught in their Calculus course). The results 

of tasks 3 and 4 are not discussed in the paper in detail due to limited space.  

The interviews were recorded, transcribed, and interpreted. First, individual cases 

were interpreted line by line. Later the results between different individuals were 

compared. To ensure reliability, the author’s interpretations were discussed with 

colleagues of the Centre of Higher Mathematics Education in Germany (khdm). 

SOME DETAILED RESULTS 

Altogether eight students were interviewed. Due to limited space, two students 

(Holger and Lisa) with different understandings of marginal cost were chosen, whose 

interview parts referring to the tasks 1 and 2 are presented here in detail.  

Holger’s understanding of marginal cost 

Holger immediately solved the first task to determine the marginal cost at 100x  for 

the function 3 21 1
( ) 21 500, 0

1000 4
C x x x x x     by calculating '(100)C . This means his 
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first association of marginal cost was the derivative and not its economic 

interpretation. His result was '(100) 1C  . He did not mention a unit himself. After 

having been asked for the unit by the interviewer explicitly he mentioned “Euro”, but 

could not justify it. This shows that he had an incoherent concept image of marginal 

cost: he associated the derivative for calculations but did not think of marginal cost 

as a rate (otherwise the unit would have to be Euro per unit of quantity).  

In the next part of the interview Holger was explicitly confronted with the question if 

a definition of marginal cost as additional cost of the next unit would represent the 

same mathematical object like the derivative. He started thinking about it and then 

agreed. Therefore, the interviewer tried to provoke a cognitive conflict by giving 

Holger the task to determine the additional cost while increasing the production from 

10 units by one unit (see right graph of figure 1). Holger first wanted to use the 

derivative again, but then started to think about the task again: 

32 Holger: You would have to imagine the derivative. Then you would see the 
additional cost. The derivative is nothing else than the slope at a point. 
If we take any point. 

33 Interviewer: Here is one explicitly given. We search for it at a particular point. 

34 Holger: Here is one given, 10 units of quantity. So we have 10x   where the 
total cost is 21. Now we need the cost if one more is produced. Well, 
but we do not need this because if we are at 11 the cost is 22 point 
something. So the additional cost has to be one point, yes 1.1. 

Holger now used the difference ( 1) ( )C x C x   to solve the task. To the following 

question of the interviewer if the value would have been the same by using '( )C x , 

Holger agreed. He then determined the slope at 10x   graphically and got the 

solution “round about one” (correct value: 1, see right graph in figure 1). After the 

interviewer emphasized that Holger just said “round about”, Holger claimed that he 

cannot determine the value exactly by graphical means. Hence, the interviewer asked 

Holger afterwards to determine the cost difference for the cost function C  from task 

1 given by an equation. He now got the result 1.051 and justified the “error” 

compared to '(100) 1C   as follows:  

77 Holger: One nearly gets [1], but only nearly. This is probably due to rounding. 

One can see that Holger was really convinced that the derivative and the additional 

cost of the next unit are exactly the same, even if the calculated values differed. The 

interviewer now emphasized that there was no rounding involved. He then pointed to 

the graph of the cost function (left graph in figure1) and underlined that one can see 

the error in the graph, too. After the interviewer had asked Holger again to determine 

the value of the derivative by graphical means, now for the cost function of task 1 

(left graph in figure 1), Holger found for himself a resolution of the conflict:  

94 Holger: Oh, the reason is, because it is not exact. The origin of the derivative was to 
determine the slope at a point. To achieve this you take one point left and 
one point right of it, which have the same distance, and the slope between. 

100 sciencesconf.org:indrum2018:174442



  

Afterwards you try to make this distance as small as possible, as you could 
think of, but we cannot reach the one point, but in our mind we want to 
reach it. And I assume this the very small rounding mistake, no, not 
rounding mistake, but this small difference is due to the fact that you do not 
reach the point exactly.  

Two misconceptions of the derivative occurred here. Holger did not imagine the 

derivative as limit of slopes of secants through 
0 0( , ( ))x f x  and 

0 0( , ( ))x h f x h  for 

0h   but as limit of secants through 
0 0( , ( ))x h f x h   and 

0 0( , ( ))x h f x h  for 0h  . 

But the important misconception that now prevented him from questioning the 

identity of '( )C x  and ( 1) ( )C x C x   was his opinion that the “true slope” at a point 
0x  

was not reached by taking the limit. He imagined the derivative to be the slope of a 

secant through 
0 0( , ( ))x h f x h   and 

0 0( , ( ))x h f x h   with a very small 0h   (he 

repeated this several times later, even more explicitly than in the lines above). 

To sum up, at the start of the interview, Holger identified the derivative '( )C x  with 

its economic interpretation as additional cost of the next unit. During the interview a 

conflict occurred due to different numerical values of these two. But instead of 

questioning the identity between the derivative and the additional cost of the next 

unit he made his concept image coherent again by attributing this error to an error 

between the “true slope at a point” and the derivative as result of a limiting process. 

Lisa’s understanding of marginal cost  

Similar to Holger, Lisa also immediately solved the task to determine the marginal 

cost at the output 100x   by using the derivative. Unlike Holger she stated as unit 

“Euro per unit of quantity”, a unit of a rate. So Lisa also associated the derivative 

with the notion of marginal cost first. When confronted with the definition of 

marginal cost as additional cost of the next unit she replied: 

20 Lisa: Yes, I really thought about this last semester. In the economic subjects we 
really learn it this way. […] And I always had to say: If you increase x  by one 
unit, y  increases by these many units, eh? This is really the case. But I have, 
since I had mathematics last semester, always thought that you learn it 
differently in mathematics. In mathematics you say, if you increase x  by one 
marginal unit, y  increases by these many marginal units. 

Unlike Holger, Lisa did not identify the derivative with the cost of the next unit. She 

even felt a conflict between the knowledge about marginal cost she learned in her 

maths course and the actual use of marginal cost in econometrics. Her remarks point 

out that she was of the opinion that marginal cost is not the additional cost of the 

next unit but of the next marginal unit. In which way she understood the term 

“marginal unit” was not clear yet. Therefore, the interviewer asked about this term:  

21 Interviewer: Now the question, what is a marginal unit? 

22 Lisa: Well, a marg/ Shall I draw it?  

The interviewer gave Lisa the graph of the function of task 1 (left graph in figure 1). 
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32 Lisa: Well, one unit could be from 100 to 101 we said. So you increase x  by 
one unit from 100, eh? From the actual output. Then I would be here 
[pointing on (101)C ].  

After the interviewer’s comment to determine the accurate value by calculation she 

got (101) (100) 1.051C C   (compared to '(100) 1C  ), and continued as follows:   

48 Lisa: And a marginal unit I imagine very, very small. Here I would go a 
right very, very little bit to the right and then a very little, little bit 
upwards.   

We see here that Lisa understood a marginal unit as a very small, but finite unit. This 

understanding is also found in books of economics (and differs from the way a 

marginal unit was taught in the maths course as a “fictive infinitely small quantity”). 

After Lisa’s explanation of the “marginal unit”, the interviewer tried to induce a 

cognitive conflict by asking Lisa if the additional cost of such a small unit should not 

be close to zero. She then explained the following: 

52 Lisa: This has to do with the slope you have. For the derivative you 
calculate the slope of the tangent line. The slope of the tangent line is 
what you calculate, isn’t it?  

53 Interviewer: Right, the slope of the tangent line, yes.  

54 Lisa: Yes, and this is also what I get if you increase x  by a marginal unit, 
starting at 100. Ah, what do I get? No, if you increase x  by one 
marginal unit, the marginal cost still increase by one. I think the slope 
still remains one, right?   

This shows that Lisa understood the additional cost of a marginal unit as '(100 )C dx  

with dx  being a very small, but finite unit. This is in her opinion numerically the 

same like '(100)C  because the slope stays the same at 100 dx . The interviewer again 

asked if additional cost and slope are the same whereat Lisa agreed.   

To sum up, Lisa knew that the derivative is not the additional cost of the next unit. 

She remembered the interpretation of the derivative to be the additional cost of a 

marginal unit from her Calculus course. She imagined a marginal unit dx  to be a 

very small, but finite unit (and not in the way it was taught in the course as a “fictive 

infinitely small quantity” in the asymptotic equation '( )dC C x dx ) and identified the 

additional cost of a marginal unit in her mind with '(100 )C dx , which is in her 

opinion the same like '(100)C . She did not recognize the different nature of the 

derivative being a rate of change and the additional cost being an amount of change.  

SUMMARY AND DISCUSSION  

Just like in the cases of Holger and Lisa presented in detail here, the study showed 

that the students had difficulties to make an adequate connection between the 

derivative as a mathematical concept and its economic interpretation as additional 

cost. The author considered a connection as adequate if the students were aware of 

the differences between '( )C x  and the additional cost of the next unit, and were able 

102 sciencesconf.org:indrum2018:174442



  

to justify their identification in economics (it did not matter if they associated 

marginal cost with the derivative or the additional cost of the next unit first).  

At the beginning of the interview no student could make an adequate connection 

between the derivative and the additional cost of the next unit. The majority just 

declared these objects to be exactly the same (like Holger). 

During the interview, all students recognized the question concerning the identity of 

the derivative and the additional cost of the next unit as very relevant and became 

aware of differences between these two with the interviewer’s help. However, in the 

process of leading them to these differences on the graphical level via the tangent 

line, several problems occurred (not discussed here in detail due to limited space): 

1. Misconceptions concerning the derivative concept (like Holger’s misconception 

about the derivative being not the “true slope” at the point) 

2. Incomplete concept images (example: knowledge of the geometric representation 

of the derivative as slope at a point but no association of the tangent line) 

3. Problems in determining the slope of a linear function 

Only one student could make a connection on the symbolic level via the formula 

( ) ( ) '( )C x h C x C x h     for 0h   like presented in the Calculus course.  

Furthermore, most participants of the study had not thought about the differences and 

the connection between the derivative and its economic interpretation as additional 

cost before the interview, although these were presented in their Calculus course. 

A solution to these problems in a traditional Calculus course for students of 

economics, in which the concept of derivative is taught first, an economic 

interpretation afterwards, could be to confront the students with the two different 

notions of marginal cost in the tutorials of the course directly, and to provoke a 

cognitive conflict, just like in the interview. Afterwards, one could let them try to 

connect the derivative and the additional cost of the next unit by themselves or in 

small groups, and help them individually if misconceptions or incomplete concept 

images of the derivative occur. Another solution could be to start with the concept of 

marginal cost as additional cost first, which can be approximated by the derivative as 

linear approximation. However, an understanding of the mathematical concept of the 

derivative as slope of the tangent line is also necessary in this approach.  

Concerning future research, one has to emphasize that the study presented here relied 

on one perspective on the connection between the derivative as a mathematical 

concept and its use in economics: additional cost as interpretation of the derivative. 

This perspective is important because students of economics are often confronted 

with it their maths course and in courses about economic theory (it can be found in 

respective books of economics). But as explained in the theoretic part of the paper: it 

is not the only one. Other perspectives may further enrich the knowledge about 

students’ of economics understanding of the derivative and its use in economics.   
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Weekly homework quizzes as formative assessment for Engineering 
students are a fair and effective strategy to increase learning?  
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A strategy to apply online weekly homework quizzes as formative assessment for 
Engineering students was designed and tested in order to study if it increases 
student’s learning. The strategy was to make optional weekly online quizzes with 
questions not randomly generated that students may retry over and over again until 
to reach the correct answer, they contribute to 10% of grade but only if students get 
45% or more in usual pencil and paper assessment. 
The quizzes were applied to two different mathematics courses (Single and 
Multivariable Calculus) of two different Engineering degrees, each one to around 
100 students and during a semester. Student’s adherence was very high, nearly all 
students refer quizzes as fair and useful to learning. Students’ grades were compared 
with several other years.   
Keywords: The role of digital and other resources in university mathematics 
education, Assessment practices in university mathematics education, Teaching and 
learning of analysis and calculus. 

INTRODUCTION 
Frequent online quizzes have been suggested as a strategy to enhance learning by 
several institutions and researchers. The National Centre for Public Policy and Higher 
Education in the U.S.A (Twigg, 2005) consider computer based continuous 
assessment and feedback to be a key strategy for quality improvement in learning. 
According to Gibbs (2000), student assessment is an effective way to increase 
understanding and online quizzes force students to spend more time working 
productively outside of class. Tuckman (1998) refers this as being especially valuable 
to procrastinators. One method that can be used to address the crisis in college 
mathematics, according to Thiel, Peterman, and Brown (2008), is to ‘provide regular 
assessment of progress’ and they state that ‘online homework and quizzes with online 
grading provide students with immediate feedback, the opportunity to correct their 
homework mistakes, and ongoing assessment of their success in the course’. Booth 
(2012) considers that homework should be given out at regular times, over regular 
intervals, on a weekly basis; proposing that learning is work and students should 
develop regular work habits in order to succeed. Feedback is crucial for student 
success but giving adequate feedback with large class sizes is difficult and therefore 
automated systems are a useful solution to the large class size problem. 
Quizzes are part of several successful approaches with different kinds of students, 
both in top universities and in other higher education institutions. Examples include: 
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TEAL (Dori & Belcher, 2004) at Massachusetts Institute of Technology (MIT); 
SCALE-UP (Beichner, et al, 2007) at North Carolina State University; Peer Teaching 
(Lasry, Mazur, & Watkins, 2008) at Harvard University. 
Particularly, in higher education mathematics teaching, several approaches have been 
raised but literature is not yet in agreement about the effectiveness of quizzes to 
enhance learning (Siew, 2003; Varsavsky, 2004; Myers & Myers, 2007; Blanco, 
Estela, Ginovart & Saà, 2009; Lim, Thiel & Searles, 2012; Broughton, Robinson & 
Hernandez-Martinez, 2013; Shorter & Young, 2011). 

CONTEXT 
This research took place in two mathematics’ courses to Engineering students of 
Instituto Superior de Engenharia de Lisboa, Portugal, each during a semester. In those 
semesters, weekly online quizzes on Moodle (the learning management system of the 
institute) were made available for a week each. The AM2 course in 2013/14 was 
about Multivariable Calculus, the MAE course in 2015/16 was about Single Variable 
Calculus. Around 100 students and 3 teachers were involved in each course. 
The quizzes were called ‘Mini-tests’ to reinforce their relevance. The ‘regular’ 
assessment involved two face-to-face tests or the First Exam or the Second Exam. 
For AM2, the quizzes scored up to two values proportional to the best 12 (out of 14) 
grades in the quizzes and it was added if the student scored more than 9.0 values (out 
of 20) in ‘regular’ assessment. For MAE, it was slightly different: the quizzes valued 
10% of the grade if the student scored more than 9.0 values (out of 20) in the 
‘regular’ assessment and if this grade was better than the ‘regular’ grade. In both 
cases the quizzes were optional. 
The aim of the quizzes was not to assess students, it was to make them study more, 
not to postpone, not to study first the other subjects that were naturally more pleasant 
for them (since they belong to their study area); to make students more aware of their 
level of understanding (often students only realise that they cannot solve the exercises 
when they go to the first test, in the middle of the semester). Students are usually 
optimistic about their capabilities (Wandel, 2015). It was written in Moodle and 
teachers repeatedly reminded students that the aim of the quizzes was to make 
students study more and be aware of their level of understanding; that students could 
copy all quizzes but, probably would not get the 9.0 values required in ‘regular’ 
assessment and therefore, it not be worthwhile. 

THE QUIZZES 
The quizzes were produced through the ‘Moodle activity: test’. It allows the 
introduction of images and mathematical symbols using LaTeX (see Fig. 1). The 
possibility of creating questions with different instances for each student was 
considered, but it would take much more time to create questions and students also 
know how to solve a problem with a constant instead of a number, so it did not seem 
worthwhile.   
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Figure 1. Multiple-choice questions including a figure and mathematical text, MAE 
and AM2 example. (Translated) 

Whenever it was possible, we used numeric or short answers instead of multiple-
choice answers since in multiple-choice answers, with a few tries, students could get 
the correct answer. The type of questions that we most used was ‘embedded 
answers’, because this enables a teacher to embed more than one sub-question and 
those sub-questions may be chosen from all the different question types: numeric, 
short answers, multiple-choice, true or false, etc. The ‘embedded answer’ question 
type allows the teacher to evaluate the student through their pathway and not only 
their final result (see Fig. 3). The feedback does not show the correct answer.  
 

       

Figure 2. A question with multiple embedded questions along the path (including 
numerical answers), an AM2 and MAE example. (Translated)  

RESEARCH DESIGN, DATA AND RESULTS  
This research design is a quasi-experience (not an experience since not all variables 
could had been controlled) where two sets of quizzes were applied to two 
mathematics courses. The research question of this study is: are the quizzes (applied 
with this strategy) a fair and effective tool to increase students’ learning? The strategy 
for application of the quizzes is that they are weekly, online, non-mandatory, count 
towards grades if students achieve a certain level on traditional assessment, are not 
randomly generated and students may resubmit without penalty. This research 
question was split into four sub-questions: 

107 sciencesconf.org:indrum2018:174631



  
• RQ1: Did the students adhere to the quizzes? 
• RQ2: What was students’ perception of the quizzes? 
• RQ3: Did students felt quizzes as unfair? 
• RQ4: Did the quizzes increase students’ grades? 

The instruments utilized were: a students’ survey about the quizzes; data from the 
answers to the quizzes; and course grades over several semesters. The quizzes were 
applied to two mathematics courses: AM2 with 104 subscribed students and MAE 
with 108.  
The anonymous survey on Moodle was addressed to all students for each edition. The 
sample of students who answered the survey was reasonable. From the 104 students 
subscribed to AM2, all subscribed to Moodle, 65 answered the survey. From the 108 
students subscribed to MAE, 94 in Moodle, 61 answered the survey. Moreover, by 
splitting the students by their grade at the first test (the survey was applied before the 
second test), the number of students answering the survey with a given grade 
reasonably correlates to the number of students in general who achieved that grade. 
Pearson correlation coefficients areρ = 0.6 and ρ = 0.5 respectively. 

Students of the institute do not have precedencies among courses and may be 
subscribed to a large number of courses, so it is usual that students subscribe to many 
courses where, in fact, they do not attempt to achieve success. We may verify this, for 
example, by noticing that from the 108 students subscribed to MAE only 94 were 
subscribed to Moodle, so the 14 remaining students did not access anything from the 
course: syllabus, slides, quizzes etc. Since there is no simple and fair way of 
identifying these students, in this research we always use the subscribed students to 
make measures. However, it is relevant to have in mind that it includes those ‘ghost 
students’. 

RQ1: DID THE STUDENTS ADHERE TO THE QUIZZES? 
AM2 had 104 subscribed students, 79 attempted regular assessments and 76 students 
attempted at least one quiz. All but one of the approved students answered at least 
one quiz. The final quiz grade was the average of the best 10 out of 14 grades in 
quizzes, so it was natural that the last four quizzes had lower attendance (and for this 
reason we modified this rule for MAE, where the best 12 grades were chosen). 
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Chart 1. The number of students that answered AM2 quizzes split by grade.  

MAE had 108 subscribed students, 103 completed regular assessment and 93 students 
attempted at least one quiz. All approved students answered at least one quiz. The 
final quiz grades were the average of the best 12 out of 14 grades in quizzes, so it is 
natural that the last two quizzes had a lower attendance (this rule changed from 
AM2). It is important to note that, for example, in Q5 the number of students with a 
total grade was lower than in the other quizzes and the number of attempts to solve 
the quiz was higher than in the others (326). This shows that students were, in fact, 
trying to reach the correct answers (this test was particularly large and complex). 

 

Chart 2. The number of students that answered MAE quizzes split by grade. The 
number of attempts to answer the quiz, registered by Moodle, is in parenthesis. 

A large portion of students got a very high grade, but this was natural since students 
may retry without penalty and the questions were equal to all students, so it was 
expected that students talk to each other and reach the correct answer. 
The quizzes were not mandatory and improved the grade if the student got more than 
9 out of 20 values in regular assessment, so it could be expected that many students 
decided not to take it. However, on a regular basis, nearly half of the subscribed 
students answered the quizzes. 
An objective result was, despite of the optional policy, that students strongly adhered 
to quizzes. The percentage of subscribed students that answered one quiz was 
93/108=86% and 76/104=73%. All the quizzes had a high rate of attendance. Among 
the students that undertook ‘regular’ assessment, almost all took a quiz and a large 
percentage got high average grades on the quizzes.  

RQ2:  WHAT WAS STUDENTS’ PERCEPTION OF THE QUIZZES? 
Table 1 shows that, according to the survey, none of the students thought that the 
quizzes were of no interest and did not care about the quizzes, while a large 
percentage believed that the quizzes reminded them to study, showed them the level 
that they were reaching and encouraged them to learn new things; some of those 
things they thought they understood but in fact they did not. 
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AM2 MAE
Total 65 100% 61 100%
Quizzes remind me to study the subject every week. 55 85% 50 82%
Quizzes show me there are things I thought I knew but 
I didn’t.

48 74% 53 87%

Quizzes help me to have a better perception of the 
level I'm reaching.

47 72% 38 62%

I learn new things answering to quizzes. 33 51% 35 57%
Quizzes have no interest. 0 0% 0 0%
I do not care for quizzes, I just copy the results. 0 0% 1 2%
I do not care for quizzes, I not even copy the results. 1 2% 0 0%  

Table 1. Students’ answers to ‘Select ALL the statements that you agree with’ in both 
surveys.  

 

  

Chart 3. Percentage of students answers to ‘The quizzes were…’ in both surveys.  

Summarising, more than 90% of students found quizzes useful (Chart 3); that they 
study more due to the quizzes. Students agree that quizzes remind them to study, 
show them that there were things that they thought that had understood but did not, 
encouraged them to learn new things and gave them a better perception of level that 
they were reaching. 

RQ3: DID STUDENTS FELT QUIZZES AS UNFAIR? 
In daily life as a teacher, teachers tell several times that one reason why they do not 
use online quizzes is because students may be cheating and it may generate 
unfairness. To avoid that problem, it was strongly emphasised to students that quizzes 
were much more relevant as formative assessments than summative assessments; 
students could resubmit the quiz without penalty to stimulate them to try to answer by 
themselves without fear of being penalised; and a clause was included that the 
quizzes only count towards grades if students get 9.0 values (out of 20) in regular 
assessments, as in Varsavsky (2004). As result, the answers in the survey to the 
question ‘Quizzes generate unfairness?’ show that very few students perceive quizzes 
as unfair (see Chart 5). 
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Chart 4. Percentage of students answers to ‘How do you answer to quizzes?’ in both 
surveys.  

 

Chart 5. Percentage of students answers to ‘Quizzes generate unfairness?’ in both 
surveys.  

When questioned in the survey, no student stated that they had copied the results (see 
Chart 4), despite it being reinforced in that question that the survey was automatically 
anonymous.  
Therefore, with this approach, the level of unfairness of quizzes is not considered as 
relevant. 

RQ4: DID THE QUIZZES INCREASE STUDENTS’ GRADES? 
Since the goal was that all students achieve a total score in all quizzes, is was 
expected that quiz grades would not correlate to final grades. This did occur and it 
was verified using the non-parametric Spearman Rho for AM2 ( ρ = 0.34, N = 54, p = 
0.01) and for MAE ( ρ = 0.28, N = 61, p = 0.03), since data were not normal (Kolmogorov-
Smirnov, p < 0.01).  
According to Chart 6, around 70% of students that answered the survey, believe that 
quizzes helped them achieve a higher grade. 
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Chart 6. Percentage of students’ answers to ‘Without quizzes, I’ve scored…’ in both 
surveys.  

The data of Tables 2 and 3, relate to six responsible teachers/approaches and ten 
different teachers. The syllabus was essentially the same across the semesters but the 
approaches were naturally different. In the intervention semesters, the responsible 
teachers were also different. So, the quizzes were not the only different variable in 
that semester, thus we cannot attribute grade differences directly to the quizzes. For 
AM2, the pass rate nearly doubled in that semester, the average grade also increased 
significantly. 

AM2 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16 

 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 

Subscribed students 101 200 128 153 90 123 80 104 56 66 56 108 

Approv. students 27 38 31 41 20 23 12 54 10 19 16 33 

Average appr. grade  11.7 11.8 12.3 11.7    13.9 12.4 11.5 11.7 11.5 

Pass/Subscribed 27% 19% 24% 27% 22% 19% 15% 52% 18% 29% 29% 31% 

Professors A+… A+… A+… A+… A+B A+C D+E 
F+G

+H 
D+F D +I 

J+K+

IL 

J+K+

I 

Table 2. Grades of AM2 students across ten semesters, the letter representing the 
coordinator teacher is underlined and the experimental semester is shaded. 

The MAE course had, in some editions, five or six quizzes in class. It is curious to 
note that in the year that there were no quizzes, the pass rate was much lower. And 
the MAE pass grade and the average grade had the highest value in the experimental 
semester. However, it may have been a coincidence, we do not have enough data to 
reach any conclusions, it is just a positive indication.  

MAE 2011/12-SI 2012/13-SI 2013/14-SI 2014/15-SI 2015/16-SI 

Subscribed students 73 109 121 125 108 

Pass students 17 30 58 56 61 

Average pass grade 12.7 12.2 13.5 12.7 13.5 

Pass/Subscribed 23% 28% 48% 45% 56% 

Number of quizzes 0 6 in class 5 in class 5 in class 14 online 

Professors A A A A+B B+A 

Table 3. Grades of MAE students across five semesters, the letter representing the 
coordinator teacher is underlined and the experimental semester is shaded 

Summarising, as expected, quiz grades do not correlate to final grades; around 70% 
of respondents to the survey state that due to the quizzes they achieved a better grade. 
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The pass rate and the average grade increased significantly in the semesters that the 
quizzes were applied, which is a positive indicator but cannot be directly attributed to 
quizzes. 

CONCLUSIONS 
Two sets of 14 weekly quizzes on Moodle were available to all the engineering 
students on two mathematics courses (Single and Multivariable Calculus). The online 
quizzes were not mandatory, counted to grading if the student had more than 9 out of 
20 values on traditional assessments, were not randomly generated and students could 
resubmit without penalty. The research question is ‘Are the quizzes (applied with this 
strategy) a fair and effective tool to increase students’ learning?’  
In the answers to the survey, more than 90% of students found quizzes useful; more 
than 60% stated that studied more due to the quizzes; students agreed that quizzes 
reminded them to study; showed them that there were things that they thought they 
understood but did not; made them learn new things and gave them a better 
perception of the level that they were reaching. 
The quizzes were not mandatory so students may have just ignored them. Although a 
large proportion of students attempted quizzes and kept answering them until the last 
ones.  
Quiz questions were not randomly generated, so all students got the same questions 
and naturally, students shared the solutions with each other. To avoid unfairness, it 
was strongly emphasised that quizzes were important to students’ formative 
assessment, to allow them to test themselves and get feedback on their level of 
understanding. Moreover, quizzes only contributed to grades if the students got more 
than 9 out of 20 values in ‘traditional’ assessments. Moreover, if a student copied 
many quiz results, probably would not achieve the minimum grade and it would not 
be worthwhile. The result was that, in the answers to the surveys, very few students 
stated it as being unfair. Over 70% of respondents to the surveys stated that due to the 
quizzes they achieved a better grade. The pass rate and the average grade increased 
significantly in the semesters that the quizzes were applied, which is a positive 
indicator, but it cannot be directly attributed to the quizzes. 
This research suggests that these quizzes, with this strategy, are a fair and useful tool 
to increase students learning.  
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Research has reported on the difficulties engineering students face in relating the 

content of their mathematics courses to what is taught in their professional courses. 

One way to address these difficulties is by better understanding how mathematical 

notions are used in professional engineering courses. This paper analyses how the 

notion of first moment of an area – which is defined as an integral – is used in civil 

engineering courses. Basing our analysis on elements from the anthropological 

theory of the didactic, we are currently analysing a classic Mechanics of Materials 

book. Our findings indicate that although first moments are introduced as an 

integral, the textbook’s tasks do not require students to use techniques typically 

introduced in a traditional calculus course. 

Keywords: Mathematics for engineers, teaching and learning of analysis and 

calculus, textbooks, anthropological theory of the didactic, first moment of an area. 

INTRODUCTION 

Engineering courses are usually organized into two groups: basic science courses 

(which are taught in the first two years, including foundational skills in mathematics 

and physics), and technical courses (which appear later in the programme and are 

more specific to each field of engineering). However, research in engineering 

education and mathematics education indicates that engineering students encounter 

many difficulties in their mathematics courses in the first years of study, which can 

lead to high failure rates, and in many cases, result in students dropping out of 

engineering programmes (Ellis, Kelton, & Rasmussen, 2014). In this sense, “poor 

mathematics skills are a major obstacle to completing […] engineering programs” 

(Fadali, Johnson, Mortensen, & McGough, 2000, p. S2D-19). 

Researchers have identified some negative situations for students who pass these 

mathematics courses. One situation is that these students often find it difficult to 

relate the learned mathematical content to the content of the professional courses. 

For Flegg, Mallet, and Lupton (2011, p. 718) “without the explicit connection 

between theory and practice, the mathematical content of engineering programs may 

not be seen by students as relevant”. Another situation is that in spite of having 

passed the mathematics courses (with a rather rigid structure and rare concrete 

applications relevant to engineering), students must apply mathematics in their 

engineering courses, where many new mathematical notions appear without having 

been encountered in the previous mathematics courses (Hochmuth, Biehler, & 
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Schreiber, 2014, p. 694). Faced with these problems, the mathematics and 

engineering education communities have been engaged in research and discussion on 

“how to improve engineering students’ mathematics learning, and hence their service 

teaching” (Bingolbali, Monaghan, & Roper, 2007, p. 764). 

Our current research program investigates how calculus notions are used in 

engineering courses, aiming at identifying possible ruptures between how notions are 

first introduced and used in calculus, and how they are later used in professional 

courses. First, we analyse how engineering textbooks present these notions, working 

under the principle that most tertiary instructors organise their teaching using 

textbooks as an important resource (e.g., Mesa & Griffiths, 2012). The manner in 

which mathematics notions are used in professional courses has not been the subject 

of much research. However, we believe this type of research could help bridge the 

gap between two communities. On the one hand, mathematics lecturers in 

engineering programs could benefit from knowing how their course content is used 

in professional courses; on the other hand, professional course instructors could 

benefit from a critical analysis of their use of mathematics, to help their students 

make connections between the content of mathematics and professional courses. For 

example, our analysis of the way integrals are used to define bending moments for 

beams in strength of materials textbooks for civil engineering reveals different uses 

of “the same” object (González-Martín & Hernandes Gomes, 2017a). Although 

bending moments are defined as an integral, the tasks, techniques, and justifications 

used in calculus courses are very different from the ones presented in professional 

engineering courses; this may result in students not recognising “the same” object in 

two different courses, and they may question the relevance of integration techniques 

that are not used in tasks concerning bending moments. In this paper we develop the 

content of González-Martín & Hernandes-Gomes (2017b) as we explore the use of 

integrals to introduce another engineering notion: first moment of an area. We aim to 

address two questions: how is the content related to integrals used in engineering to 

work with first moments of an area, and how does this use relate to the content in 

calculus courses? 

Defining first moment of an area 

Moments of areas are topics commonly taught in engineering courses that cover 

strength of materials. Due to space limitations, in this paper we focus on the first 

moment of an area. In civil engineering, for example, to solve bending problems one 

must take into account some specific geometrical characteristics of cross-sections of 

a bar, which is the general term for structures that include beams (Feodosyev, 1973). 

In this situation, the notion of first moment of an area is used to calculate the 

centroid of an area and the shearing stresses in transverse bending. The centroid of 

an area A is its geometrical barycentre and is the point C of coordinates  and  such 

that the following relationships hold true: xAdAx
A

    and yAdAy
A

   . 
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Let A be an area situated in the xy plane (Figure 1), using x 

and y as the coordinates of an element of area dA. 

According to Beer, Johnston, DeWolf, and Mazurek 

(2012, p. A2), the first moment of an area A with respect 

to the x axis (resp. y axis) is mathematically defined as the 

integral  A
x dAyQ    (resp.  A

y dAxQ   ). In both integrals, 

the index A in the integral sign indicates that the integral is 

calculated over the whole cross-sectional area. Both 

integrals characterize the sum of the products of each 

element of area dA and its distance to the respective axis 

(x or y) and are measured in cubic units (Beer et al., 2012). 

When an area possesses an axis of symmetry, the first moment with respect to that 

axis is zero, since every element of area dA of abscissa x (resp. ordinate y) 

corresponds to an element of area dA’ of abscissa –x (resp. ordinate –y). This implies 

that when an area possesses an axis of symmetry, its centroid is located on that axis. 

For instance, in a rectangular cross-section (two axes of symmetry), its centroid C 

coincides with its geometric centre. Determining the position of the centroid is 

important, since several forces in a bar pass through its centroid. 

To illustrate these definitions and their calculation with an 

example, let us consider the case of a bar with a 

rectangular cross-section (Figure 2). If we consider the 

expression above,  A
x dAyQ   , we can take dA as the area 

of the grey rectangle, whose dimensions are b and dy. 

Substituting dA in the integral, we have that 

 
AA

x dybydAyQ      . Calculating this integral throughout 

all the vertical extension of the rectangular cross section, 

we obtain: 
h

x dybyQ
 

0 
   . Calculating the integral, we 

obtain: 
2

0

22

22

0

2

b
h

b
y

bQ

h

x  , therefore 
2

2h
bQx  . 

THEORETICAL FRAMEWORK 

As stated above, we are interested in analysing how calculus notions are used in 

professional engineering courses, aiming at identifying possible breaks from the 

content in calculus courses. For our research, we use tools from the anthropological 

theory of the didactic (ATD – Chevallard, 1999) because it considers human 

activities as institutionally situated. In this sense, knowledge about these activities 

and their raison d’être is also institutionally situated (Castela, 2016, p. 420). In 

particular, ATD offers a general epistemological model of mathematical knowledge, 

 

Figure 1: General area 

A with infinitesimal area 

dA in the xy plane (Beer 

et al., 2012, p. A2). 

 

Figure 2: Determination 

of the first moment with 

respect to the x-axis of 

an area with rectangular 

cross-section. 
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where mathematics is seen as a human activity through which various types of 

problems are studied (Barbé, Bosch, Espinoza, & Gascón, 2005, p. 236). 

The key element we use in our analysis is the notion of praxeology (or, in our case, 

mathematical organisation or mathematical praxeology – MO hereinafter), which is 

formed by a quadruplet [T/τ/θ/Θ] consisting of a type of task T to perform, a 

technique τ which allows the task to be completed, a discourse (technology) θ that 

explains and justifies the technique, and a theory Θ that includes the discourse. The 

first two elements [T/τ] are the practical block (or know-how), whereas the 

knowledge block [θ/Θ] describes, explains, and justifies what is done. These two 

blocks are important elements of the ATD model of mathematical activity that can be 

used to describe mathematical knowledge. Furthermore, ATD distinguishes different 

types of MO: punctual, which are associated with a specific type of task; local, which 

integrate multiple punctual MOs that can be explained using the same technological 

discourse; and regional, which integrate local MOs that accept the same theoretical 

discourse (Barbé et al., 2005, pp. 237-238). 

Praxeologies, like knowledge in general, may move from the institution where they 

emerge to other institutions that find them useful (Castela & Romo Vázquez, 2011). 

This is the case, for instance, of mathematical notions that are used to solve 

engineering problems. In this process, there are transposition effects on the 

concerned praxeologies (Castela & Romo Vázquez, 2011; Chevallard, 1999). We 

consider the work of Castela (2016), who identified that “when a fragment of social 

knowledge, produced within a given institution I, moves to another one IU in order to 

be used, the ATD’s epistemological hypothesis states that such boundary crossing 

most likely results in some transformations of knowledge, called transpositive 

effects” (p. 420). In this boundary-crossing process, some (or all) elements of the 

original praxeology may evolve. Therefore, it is important to analyse the types of 

tasks and techniques as well as the discourses and theories employed. To that end, 

our research identifies specific local MOs present in professional courses; we analyse 

how calculus notions are used (practical block) and whether this use relates to the 

way the notions are usually presented in calculus courses (knowledge block). 

METHODOLOGY 

It is worth noting that, in order to understand how calculus notions are used in 

engineering courses, we have had several exchanges with an engineering teacher 

holding bachelor’s and master’s degrees in civil engineering, with more than 28 

years of experience teaching a variety of professional engineering courses at 

Brazilian universities. This teacher has explained notions related to his field and has 

helped us identify course content in which first-year calculus notions are used. 

At this teacher’s university, first moments of area are introduced during the third 

semester of the programme (second year), in the Strength of Materials for Civil 

Engineering course (students take calculus in their first two semesters). The course’s 
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reference book is Beer et al. (2012). First moments are initially cited in chapter 4 

(4.2. Stresses and deformations in the elastic range). We proceeded in two stages: 

 First, we analysed the general structure of the content related to integrals in the 

calculus courses. We identified the main tasks proposed to students, grouping 

them according to the technological elements needed, identifying therefore the 

main local MOs that structure this content. 

 Second, we started our analyses of the reference book for the Strength of 

Materials course. We identified all instances where first moments appear in the 

book (using key words to search in an electronic version of this book). For 

each occurrence of this notion, we are currently analysing the tasks presented 

in the book where first moments are used. For each task, we are analysing the 

techniques and discourses (technologies) the textbook uses. As the notion of 

first moment is used in different chapters of the book, where different 

professional notions are introduced and explained, the technological 

discourses are quite varied, giving place to various MOs. The next section 

provides specific details of our analysis. 

DATA ANALYSIS AND DISCUSSION 

Calculus is taught in the first year of the program over two semesters in two courses: 

Calculus I and Calculus II. Up until a few years ago, integrals appeared only in 

Calculus II, but some content was moved to Calculus I because Physics II (a course 

in the second semester) requires a knowledge of integrals. Integrals appear towards 

the end of the first course and are the main topic in the second course (the second 

author of this paper has taught Calculus I for 15 years and Calculus II for two years). 

The content covers indefinite integral (antiderivative of f), Riemann sum and definite 

integral, applications for the calculation of areas, integration by substitution, 

volumes (Calculus I), and integration techniques, improper integrals, and arc length 

(Calculus II). The main source for the calculus courses is the classic book by Stewart 

(2012). The content concerning integrals is basically structured using two local MOs. 

The first, MOM1, introduces techniques for calculating indefinite integrals 

(immediate integration to begin with, followed by various integration techniques); 

however, theoretical elements justifying the different integration methods are mostly 

absent and those present are explained without a proof. The second MO, MOM2, 

introduces Riemann sums to formally define integrals and interpret them as areas, 

and leads to the Fundamental Theorem of Calculus and the calculation of definite 

integrals using Barrow’s rule; this leads to some applications of the integral (area, 

volume …). Many of the techniques used in MOM2 are derived from MOM1. 

We are currently analysing the use of first moments and centroids in the engineering 

textbook (Beer et al., 2012), which numbers more than 800 pages. So far, our first 

analyses indicate that although this content is introduced as an integral, the 
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techniques employed do not call for integration. Our ongoing analyses of the use of 

first moments in the textbook are summarised in Figure 3. 

Description of use Terms used Chapter – Sections 

The term appears in a theoretical 

explanation. It appears with an 

expression using the integral sign, 

but no calculation is required. 

First moment; 

First moment 

of an area; Q; 

centroid 

4.2 (p. 245); 4.2 (p. 245); 4.4 (p. 262); 4.6 (p. 274) 

6.1 (p. 421); 6.1 (p. 421); 6.3 (p. 437) 

The term appears in a theoretical 

explanation. It appears without an 

expression using the integral sign. 

First moment; 

First moment 

of an area; Q; 

centroid 

4.3 (p. 262) 

6.1C (p. 424); 6.1C (p. 424); 6.4 (p. 440); 6.6 (p. 454;    pp. 459-460); 

Review (p. 467) 

8.1 (p. 559); Review (p. 591) 

9.5A (p. 651); 9.5A (p. 651); 9.5A (p. 654); 9.5A (p. 654); 9.6B (p. 666) 

Concept application: It is 

involved in some calculations, but 

no calculation of integrals is 

required. 

First moment; 

First moment 

of an area; Q; 

centroid 

4.2 (p. 247; p. 248) 

6.1 (p. 422); 6.1 (p. 422); 6.3 (p. 438); 6.6 (pp. 456-457) 

8.3 (pp. 577-578) 

9.5A (p. 652); 9.5A (p. 653); 9.5A (p. 655); 9.5A (p. 656);                

9.6B (p. 667); 9.6C (p. 669) 

Sample problem: It is involved in 

some calculations, but no 

calculation of integrals is required 

First moment; 

Q; centroid 

4.3 (p. 251); 4.5 (p. 265); 4.10 (p. 326) 

6.2 (p. 429); 6.5 (pp. 443-446); 6.6 (p. 462) 

8.3 (p. 583) 

Figure 3: Synthesis of uses of first moments in Beer et al. (2012). 

Here, due to space limitations, we describe our analysis of two MOs present in the 

textbook at points where first moments come into play. It is worth noting the book 

advises students that they should already have completed a course in statics, that the 

properties of moments and centroids are explained in Appendix A, and that this 

material can be used to reinforce the discussion of the determination of normal and 

shearing stresses in beams in chapters 4, 5, and 6 (Preface, p. x). 

First case: MOE1 

The initial use of first moments, MOE1, concerns stresses and deformations in the 

elastic range (section 4.2 of the book). Its aim is to calculate the maximum stress that 

beams can resist, resulting in some recommendations about the size and shape of 

beams. Using some formulae, the book arrives at   0ydA  and concludes: “This 

equation shows that the first moment of the cross section about its neutral axis must 

be zero. Thus, for a member subjected to pure bending and as long as the stresses 

remain in the elastic range, the neutral axis passes through the centroid of the 

section” (p. 245, italics in the original). This is the first apparition of first moments in 

the book; however, they are not explained and the authors refer readers to Appendix 

A. In Appendix A, first moments and their link with the centroid are introduced in a 

similar manner as in this paper, using implicitly theoretical elements from MOM2 

(namely, the interpretation of an integral). However, the book makes the connection 

with the centroid and deduces many integrals using geometric considerations (and 

the properties of the centroid), and adds “Centroids of common geometric shapes are 

given in a table inside the back cover” (p. A3). Therefore, this content is justified 

vaguely through some basic integral content (present in MOM2), but mostly by using 

geometric considerations. The tasks in MOE1 calculate stresses and bending moments  
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in known geometrical shapes. In 

the case of a rectangle (Figure 4-

left), the coordinates of the 

centroid are deduced using 

geometry (and not techniques 

derived from MOM1 or MOM2); the 

same approach is used in the case 

of a semicircular cross-section 

(Figure 4-right).  

Thus, although the notions of first 

moment and centroid are necessary 

to solve tasks in MOE1, the 

techniques employed are not based 

on elements derived from MOM1 or MOM2. Students can solve the tasks present in 

this MOE1 without using any of the techniques learned in MOM1 or MOM2, or hardly 

any of the technological elements present in them. 

Second case: MOE2 

First moments and centroids are also used in chapter 6. In section 6.1A, Shear on the 

horizontal face of a beam element, MOE2 seeks to determine the horizontal shear per 

unit length (or shear flow) on a beam. Defining Δx as the length of a section of the 

beam, V as the shear force, ΔH as the horizontal shearing force exerted on the lower 

face of the element, Q as the first moment, and I as the centroidal moment of inertia, 

and using techniques and technological elements covered in this and previous 

chapters, the horizontal shear per unit length (q) is deduced as: q = 
I

VQ

x

H





. It is 

worth noting that the techniques used to arrive at this expression involve integrals, 

but they are referred to in terms of notions belonging to MOE2. The above expression 

is used to solve tasks such as the 

one in Figure 5. 

The resolution of the task is 

based on the determination, via 

different expressions, of Q and I 

(since V = 500N is provided) to 

find the horizontal force exerted 

on the lower face of the upper 

plank. For the first moment, Q, 

the following technique is 

presented: “Recalling that the 

first element of an area with 

respect to a given axis is equal to 

the product of the area and of the 

  

Figure 4: Left: The centroid is placed calculating 

the half measure of each side of the rectangle 

(Beer et al., 2012, p. 247). Right: The centroid is 

placed using geometric formulae (p. 248). 

A beam is made of three planks, 20 by 100 mm in cross-

section, and nailed together. Knowing that the spacing 

between nails is 25 mm and the vertical shear in the beam 

is V = 500N, determine the shearing force in each nail. 

  

Figure 5: Task and diagrams used concerning 

horizontal shear (Beer et al., 2012, p. 422). 
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distance from its centroid to the axis, Q = A y ” (p. 422). The area of the cross-section 

of the upper plank is calculated as 0.020m × 0.1m, and the coordinate of the centroid 

of this horizontal plank with respect to the axis of symmetry of the cross-section is 

0.05m + 0.01m (that is, half the measure of the central plank, plus half the measure 

of the horizontal plank). Q is thus obtained as: Q = A y  = (0.020m × 

0.100m)(0.060m) = 120 × 10
-6

m
3
. We see that, once more, the tasks to solve in this 

MOE2 involve cross-sections with geometrical shapes that make use of geometrical 

considerations, thus avoiding techniques belonging to MOM1 or MOM2. 

Although the technological elements of MOE2 refer to elements that imply the use of 

integrals, tasks are presented in such a way that previously deduced formulae can be 

used and magnitudes can be deduced using these formulae and geometrical 

considerations. The book later provides a table with values (Figure 6). Therefore, it 

is possible for students to simply memorise the formulae or use the tables to solve 

the given tasks without actually using any technical or technological element derived 

from MOM1 or MOM2. 

 

Figure 6: Areas and centroids of common shapes (Beer et al., 2012, p. 654). 

FINAL CONSIDERATIONS 

The data presented here, together with the data from González-Martín & Hernandes 

Gomes (2017a), indicate that two notions used in civil engineering (bending moment 

and first moment) are defined as integrals. This may often be used to justify the fact 

that “engineers need to learn integrals”. However, our analyses show that the types 

of tasks and the techniques developed are not actually derived from praxeologies 

explored in a calculus course. In the two cases presented in this paper, both MOE1 

and MOE2 have their own set of tasks and techniques, and both develop their own 

technological discourse, which uses the notion of integral to define their own notions 

and deduce properties. As Figure 3 shows, this seems to be the general situation 

throughout the textbook. 

As Castela (2016) states, when a fragment of knowledge (in this case, the notion of 

integral) produced within a given institution moves to and is used by another 
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institution, this process results in a transformation of knowledge. In the case 

analysed here, it is clear that all the technological discourse proper to a calculus (or 

even an analysis) course pertaining to the notion of integral is transformed when it is 

used to define first moments (and centroid) in a professional course, where 

explanations mostly rely on basic geometric considerations. In this case, it seems that 

the transpositive effects cause the notion of integral to be used very differently in 

both courses. The techniques presented in the Strength of Materials course make use 

of given formulae and geometric considerations, rendering the techniques introduced 

in the calculus course irrelevant for the use of first moments in MOE1 and MOE2. This 

may result in students not recognising the object “integral” when they move from 

MOM1 and MOM2 to MOE1 and MOE2. Students may encounter many difficulties in 

learning MOM1 and MOM2, but this knowledge is not necessary to solve tasks in 

engineering courses, so students may question the need to learn these MOs. 

It is therefore important that mathematics lecturers in engineering programs become 

aware of how the notions they teach are used in professional courses. Once they 

develop a better understanding of the techniques and tasks used in professional 

courses, mathematics instructors may be prompted to reflect on the mathematical 

praxeologies developed in their own courses and make stronger connections with the 

techniques used in professional courses. This could help students transition from 

mathematics courses to professional courses, enabling them to relate mathematical 

content to the content of their professional courses and better understand its 

relevance (Flegg et al., 2011). 

We plan to continue analysing the use of integrals in professional courses in 

engineering. This will be the source of future papers. 
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Mathematics in university courses was identified as a main obstacle for engineering 

students in the beginning of their study. Since difficulties with mathematics could 

lead to a dropout, our research aims to analyse students’ profiles referring to 

individual characteristics that allow identifying possible risks for students’ 

achievement or success in the first year of study. As a first step to identify possibly 

risky profiles, we started to find possible predictors of students’ performance. For 

this, we give a short overview of the research state and our derived research 

interest. We discuss theoretical constructs that are possibly crucial characteristics of 

students with respect to encountering mathematics as an obstacle. Further, we 

describe the method for measuring different variables of 182 engineering students. 

Finally, we present results referring to predictors of performance in engineering 

mathematics and discuss further steps of our research. 

Keywords: Teaching and learning of specific topics in university mathematics, 

Mathematics for engineers, motivational variables, students’ profiles, students’ 

achievement. 

INTRODUCTION 

Besides the technical disciplines, mathematics is a crucial part of higher engineering 

education (SEFI, 2013). Especially in the first year, mathematics is usually taught 

without considering practical applications. In lectures and tutorials mathematical 

basics are provided for subsequent technical courses. However, engineering students 

“encounter epistemological/ cognitive, sociological/ cultural and didactical 

obstacles” (Gómez-Chacón et al., 2015, p. 2117) with mathematics struggling with 

the transition from school mathematics to university mathematics (Gueudet, 2008). 

Considering mathematical school skills, students show remarkable deficits at the 

beginning of their study (e.g. Knospe, 2012; Thomas et al., 2012). Empirical studies 

show the importance of cognitive variables, since school grades and domain-specific 

previous knowledge are identified as important predictors of academic achievement 

(e.g. Hailikari et al., 2008). Moreover, there is also some evidence that mathematics 

plays a crucial role when dropouts from engineering studies are regarded. Heublein 

(2014) stated the highest dropout rates for mathematics laden studies that were partly 

caused by a low motivation and partly by excessive demands in the first part of the 

studies. Also, an international review study mentioned mathematical competencies as 

part of reasons for dropping out at universities (Søgaard Larsen, 2013). 
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Apart from cognitive aspects, further individual characteristics are relevant in the 

context of learning and study success. The importance of these different aspects, e.g. 

socio-demographic, motivational, emotional and social aspects, are explained by 

different theoretical models (e.g. utilization of learning opportunities model: 

Schrader & Helmke, 2015; models of dropout: Heublein et al., 2010) and proved by 

empirical findings. The meta-analysis by Hattie (2009) summarizes the results of 

over 800 studies and provides an overview of factors influencing learning success in 

school. Moreover, there is evidence for the impact of self-efficacy beliefs (e.g. 

Fellenberg & Hannover, 2006), academic self-concept (e.g. Hattie, 2009) and interest 

(e.g. Schiefele et al., 1993a) on performance. 

RESEARCH QUESTION 

In view of the research state, empirical findings show insufficient mathematical 

skills, high dropout rates and difficulties with mathematics at the beginning of 

engineering study. Research concerning higher engineering education mostly deals 

with the improvement of mathematics teaching through developing and evaluating 

interventions (e.g. through integrating mathematical and technical disciplines: Rooch 

et al., 2013). According to the utilization of learning opportunities model, learning 

success does not only depend on the teaching offer but also on its utilization by 

students. Therefore, in this project engineering students should be explored in more 

detail, especially with respect to mathematics and individual characteristics. 

Moreover, the study of Fellenberg & Hannover (2006) gives hints that a domain-

specific investigation is also empirically meaningful. Concerning the time frame, our 

project focuses on the first year of engineering study because the secondary-tertiary 

transition and dropout surveys indicate serious problems at the beginning of study. In 

particular, more students decide to abandon one’s studies within the first two 

semesters (Heublein et al. 2010).  

Empirical basis for the relevance of individual characteristics in learning processes 

exists. However, most of the studies were conducted in the context of school. Since 

the subject matter and learning environment changes with the transition from school 

to university, these results cannot be transferred immediately. In contrast, studies of 

higher education with a special view of mathematics are rather rare. In particular, 

most studies concentrate on single aspects and not on an overview of different 

impacting variables (e.g. Schiefele et al. 2003). Therefore, our project draws on 

previous findings to explore a multitude of impacts of individual characteristics in 

learning processes of higher education with the main aim of developing mathematics 

related profiles of engineering students. As a student’s profile we understand the 

characteristic of different individual variables, e.g. performance, motivational 

variables like interest (Gómez-Chacón et al., 2015), or engagement (Rach & Heinze, 

2013), and further the relationships among these variables. Students’ profiles should 

allow identifying possible risks for study success in the first year of the study. The 
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identification of students’ profiles is useful because it allows the development of 

goal-oriented and adequate support services for students who encounter difficulties.  

Since insufficient motivation and excessive demands for achievement are primary 

reasons for dropping out, we focus on motivational and cognitive variables as a first 

step to developing students’ profiles. Moreover, students leaving their course of 

study are difficult to access, so we focus on available data like students’ performance 

and individual characteristics with respect to the following research question: 

Which domain-specific predictors of study success or failure can be 

determined in the first year of engineering mathematics?   

THEORETICAL CONSTRUCTS 

As a main construct that impacts on students’ achievement, we refer to the construct 

of learning motivation as an umbrella term for different motivational variables 

(Spinath, 2011). Firstly, we choose all of the motivational variables that are 

summarized by the term learning motivation in order to identify the crucial impacting 

factors. Furthermore, all of the constructs are connected to the subject matter, so they 

might play a crucial role in the transition from school to university mathematics, a 

situation characterised by a changing subject matter and learning environment.  

A first and main part of motivation is an individual’s goal orientation (Dweck, 1986). 

This dispositional variable involves individual’s beliefs about appropriate goals as a 

trait referring to specific and, thus, context-related tasks (Elliot et al., 1999). A 

further dispositional and motivational variable is interest which is differentiated into 

three components: feeling-related valences, value-related valences and an intrinsic 

character. Interest could be understood as an individual’s development of an 

appreciation for a specific subject like mathematics (Wild & Möller, 2009). This 

definition involves the necessity to regard interest context-specific. One aspect of the 

construct of interest, i.e. the feeling-related valences is also a part of the expectancy-

value-theory of Wigfield and Eccles (1992). They derive an individual’s motivation 

for doing a task from the individual’s expectancy of the success on a specific task 

and the incentive value of this task. Besides the intrinsic value, which is similar to 

the feeling-related valences of interest, further variables, i.e. attainment value, utility 

value and costs are part of achievement-related values. The expectancy of a success 

referring to specific tasks could be understood as individuals’ self-efficacy beliefs 

(Wigfield & Eccles, 1992) that are close to the construct of self-concept (Shavelson 

et al., 1982). 

Learning strategies is a further umbrella term that includes variables which also 

could have an impact on students’ achievement (Wild, 2005). Learning strategies 

include cognitive learning strategies like strategies for elaborating a specific issue, 

meta-cognitive strategies like planning or monitoring the process of learning, or 

strategies to use resources like a specific learning environment. Finally, although 

students’ achievement or success is hardly to define (Heublein, 2014), it could be 
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understood as the achievement in exams referring to a specific subject like 

mathematics or to proceed in a field of study like engineering despite encountered 

difficulties. 

METHODOLOGY 

Sample  

Our first research step involved 182 engineering students at the University of Kassel 

enrolled in a calculus course in the summer semester 2017. Among the participants 

were 158 men and 24 women. Most of them started their second semester (67 %), 

though a small group of beginners is integrated (14 %). In the beginning of the 

semester, students of the calculus course were given a questionnaire concerning 

sociodemographic factors and motivational orientation towards mathematics. To 

achieve a high response rate, the students had two weeks to answer the questionnaire 

and received additional points for their permission to the final exam that could be 

achieved by solving weekly exercises. Students were also assured of the anonymity 

of their responses.  

 

 

 

Figure 1: Time of data collection  

Instruments 

The so called SELLMO instrument (Spinath et al., 2012) was used to measure 

students’ goal orientation towards mathematics. Twenty out of thirty-one items were 

chosen and especially referred to mathematics courses at university. Goal orientation 

is divided in four sub-scales with each five items concerning approaching and 

avoiding achievement goals, work avoidance and learning goals. One example for an 

item referring to learning goals is: “My aim for mathematics courses at university is 

to gain a deep understanding for the content.” 

For interest, we used a scale with nine items of Schiefele et al. (1993b) and adapted it 

to mathematics. One example for a negative formulated item of this scale is: “To be 

honest, I less care for mathematics.” Referring to the expectancy-value-theory, we 

measured values with a scale involving six items that we developed according to 

Wigfield and Eccles (1992). One example for an item of this scale is: “Mathematical 

skills will be crucial for my future professional career.” Further, we adapted each 

three items from the PISA study (Kunter et al., 2002) to measure students’ self-

concept and self-efficacy with respect to mathematics. 

To measure the students’ learning strategies, we focussed in the first step of our 

research on students’ self-reports about the use of resources like lectures, tutorials 

      winter semester 2016/17       semester break       summer semester 2017        semester break 

 

    linear algebra course                                                   calculus course 

exam 
(exam) 

questionnaire 
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and special exercises. Whereas in lectures different mathematics topics are taught, 

students practice in tutorials by means of additional exercises. In the special 

exercises they discuss their homework and resolve open questions. Finally, students’ 

success was measured by the self-reported grade in the final exam of the linear 

algebra course (see Fig. 1). By contrast, further grades of final exams in the 

abovementioned calculus course was directly given but is not analysed yet. Finally, 

we collected sociodemographic variables, e.g. the type of matriculation standard, 

according to a questionnaire used for dropout studies (Heublein et al., 2010).  

RESULTS 

Results in the first step of our research firstly refer to an evaluation of the 

instruments concerning the quality of scales. We further proved the predicting power 

of different variables on the students’ performance measured by the self-reported 

grade in the final exam of the linear algebra course that students have taken the 

previous semester. 

Evaluation of the instruments 

In the first analyses, Cronbach’s alpha estimates of reliability were determined for 

the scales from each instrument (see Tab. 1). Measures are adequately reliable, with 

values ranging from .552 to .844. Most of the values are appropriate, the lowest 

value (.552) was found for a scale with only three items. 

Construct Number of Items Cronbach’s Alpha 

Mathematics Interest 9 .844 

Goal orientation:   

Approach achievement goals 5 .722 

Avoidance achievement goals 5 .827 

Word avoidance 5 .727 

Learning goals 5 .739 

Expectancy-value-theory   

Mathematics self-concept 3 .704 

Mathematics self-efficacy 3 .552 

Value of mathematics 6 .690 

Table 1: Sample constructs and Cronbach’s Alphas 

Possible predictors of performance in engineering: correlations 

In each of the following analyses, we defined students’ achievement as the self-

reported exam grade of the linear algebra course that students have taken the 

previous semester. We firstly assessed the relationship between students’ individual 
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characteristics referring to grades achieved in school. As seen in Table 2, the school 

grades and exam grades of the linear algebra course are significantly and positively 

correlated. 

 Math school grade Final school grade 

exam grade  .321** .393** 

Table 2: Pearson’s correlation coefficients between the exam grade and students’ 

achievement in school (*p < 0.05; **p < 0.01) 

We further proved the correlations between the exam grade and variables 

constituting the expectancy-value-theory. Except for interest, the correlations 

between the motivational variables and the students’ achievement are significant. 

Particularly, there is a considerable relationship between the mathematics self-

concept and the students’ achievement. 

 self-concept self-efficacy values interest 

exam grade .554** .363** .385** .166 

Table 3: Pearson’s correlation coefficients between the exam grade and students’ 

individual characteristics (expectancy-value-theory) 

By contrast, the correlations between the students’ achievement and the students’ 

individual characteristics referring to the construct of goal orientation are weak and 

except of the working avoidance, not significant. 

 AAG1 AGG2 WA LG 

exam grade  .000 .177 .207* .109 

Table 4: Pearson’s correlation coefficients between the exam grade and students’ 

individual characteristics referring to AAG1 (Approach achievement goals), AAG2 

(Avoidance achievement goals), WA (Work Avoidance), LG (Learning goals) 

Using correlation analysis, we finally assessed the relationships between students’ 

achievement and the students’ engagement referring to external resources given by 

the attendance rate of lectures, tutorials and special exercises. However, the 

attendance rates seem to be independent of the students’ achievement. 

 Lecture  Tutorials  Special exercise  

exam grade  .133 .074 .120 

Table 5: Pearson’s correlation coefficients between the exam grade and students’ 

engagement 
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Possible predictors of performance in engineering: group comparison 

To identify other possible predictors of the performance in engineering mathematics, 

we compared between distinct groups using t-tests. Firstly, we compared students 

that were enrolled in an advanced math course and students that were enrolled in 

usual math courses. Students in advanced math courses get more math lessons in a 

week and, thus, examine mathematics in a greater extent than students of usual math 

courses. As expected, students attending a math advanced course have significantly 

better grades in the exam of the linear algebra course (see Tab. 6). Further, we 

compared the group of students who were at a technical secondary school in which 

the extent of mathematics is lesser than in usual secondary schools. As expected, on 

average, students who had attended a technical secondary school obtained in the 

exam of the linear algebra course a grade of 4.0, whereas the corresponding grade for 

students who had not attended a technical secondary school was 3.5. Thus, students 

from a technical secondary school significantly perform worse in the linear algebra 

course than those who attended another type of school (see Tab. 6). 

  Technical secondary school Math advanced course 

  1             0                          1 0 

Exam grade M 

SD 

4.0 

1,0 

3,5 

1,0 

3.3 

1,2 

3.9 

1,0 

 Sig. .016 .019 

Table 6: Exam grade of the linear algebra course depending on different subgroups    

(1 = attended; 0 = not attended) 

DISCUSSION AND CONCLUSION 

The development of engineering students’ profiles referring to cognitive and 

motivational variables could potentially result in identifying students’ risks for an 

undesirable low success or a dropout. For identifying possibly risky profiles, we 

started to find possible predictors of the students’ achievement. Final school grades, 

maths self-beliefs, values of maths, the type of matriculation standard and the choice 

of advanced courses in school are meaningful predictors of performance in 

engineering mathematics. Hence, the results show that several variables determine 

the maths performance which should be considered seriously for the development of 

support services. However, the results reveal new questions leading to further 

possible research steps.  

In conformity with the research state, the mathematical achievement as well as the 

amount of mathematics in school seem to be a predictor of the success in a final 

exam of the first semester. As a subsequent issue it is a crucial question if the impact 

of the former school time on the students’ success in mathematics courses at 
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university decreases or disappears. Moreover, it is interesting whether previous 

knowledge measured by a skills test has a greater effect compared to the school 

grades. Perhaps, domain-specific skills can be recognised as special predictors of 

mathematics courses in engineering. In addition, the results show that the highest 

correlation exists between the final school grade and students’ performance. This 

implies further influencing variables developed in the students’ school time that 

impact on the students’ achievement at university, especially learning activities and 

strategies. The fact that the attendance rates seem to be independent of the students’ 

achievement strengthens this perspective.  

Concerning the motivational variables, it is interesting that not all of them have an 

impact on the students’ achievement. The students’ mathematics self-concept that is 

also developed in the time of learning mathematics in school shows the highest 

correlation to the students’ achievement. Therefore, support services should not only 

focus on the deficits in mathematics skills but also on the assistance of students’ self-

beliefs. Mathematics interest shows no impact on the mathematics performance. This 

result could approve findings like Eilerts (2009). Since engineering students do not 

choose mathematics voluntarily, mathematics interest might have no predicting 

power in this context. In this respect, it could be also interesting to differentiate in 

further analyses specific groups of students, e.g. concerning gender, the school form 

or other variables and to investigate if different groups show different relationships 

between motivational variables and the students’ achievement.  

Regarding the method, proven scales have been used and adapted to mathematics. 

Only scales with a low number of items can be extended to improve the reliability. 

All analyses base on simple correlations. Results can be improved and deepened by 

using further methods like regression analyses or structural equation models, so that 

an investigation of indirect effects is facilitated.  

To conclude, in further steps of our research, the observation of motivational 

variables of engineering beginners should be continued and extended to the 

investigation of their development. Additionally, engineering students should be 

surveyed in respect of learning activities and strategies that we involved in this first 

study only by collecting data to the use of attendance rates (external resources). A 

detailed investigation of students’ motives for non-attendance would give more 

information about engineering students’ learning behaviour. Thus, building upon the 

first results of our research, we expect to deepen the desirable insight into students’ 

profiles in the next steps of our research.  
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Abstract: This paper concerns the teaching of mathematics for future engineers, 

focusing on the theme of trigonometry. We claim that the use of trigonometry in 

engineering courses requires different kinds of connections: connecting different 

domains, different concepts, frames and registers. We use here the concept of 

connectivity, developed in the frame of e-textbooks analysis, to analyse online 

courses for future engineers in France. We evidence that these courses propose some 

connections; but their connectivity is not developed enough to meet the requirements 

of engineering courses.  

Keywords: Connectivity, Teaching and learning of specific topics in university 

mathematics, The role of digital and other resources in university mathematics 

education, Teaching and learning of mathematics in other fields, Mathematics for 

engineers.  

INTRODUCTION 

How can a teaching of mathematics answer the needs of engineering courses, i.e. can 

provide the mathematics needed to understand the course and solve the problems 

proposed? Which should be the features of such a teaching, and do existing courses 

present such features? This is the general theme of the work presented here. Previous 

works addressing this theme observe a gap between the mathematics taught in 

“mathematics courses” and the use of them to solve problems in engineering courses 

(e.g. Redish 2005; Biehler, Kortemeyer & Schaper 2015). Winsløw, Gueudet, 

Hochmut and Nardi (2018) note that several works presented at CERME conferences 

identify “a lack of connectedness of curricula integrating mathematics and other 

disciplines”. Interviewing French engineers about their mathematical needs in the 

workplace (Quéré 2017), and how the mathematics courses they followed as students 

answered or not these needs, we noticed that several of them declared that the 

mathematics courses “did not make enough connections”. These connections, 

according to the engineers, can be of different kinds: links between mathematics and 

the real world, between different mathematical contents, between different 

representations etc. We consider that this is an important issue for understanding 

mathematics applied to engineering and their teaching. Which kinds of connections 

should propose a teaching of mathematics for engineering?   

Moreover, in the frame of another starting study, we are interested by the possible 

design of innovative curriculum resources for the teaching of mathematics for 
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STEMSS (Science, Technology, Engineering, Medicine and Social Sciences) 

courses. Before starting the design of such resources, we have investigated existing 

resources, trying in particular to observe whether they tried to build the kind of 

connections evoked by the engineers.  

This investigation led us to choose a focus on trigonometry. Indeed, trigonometry 

appeared as extensively used in different kinds of engineering courses, and offering 

many possibilities of connections of all the kinds evoked above. In what follows, we 

firstly introduce our theoretical tools and research questions; then we present related 

works on the teaching of trigonometry. To exemplify the mathematical needs, we 

analyse the use of trigonometry in an electricity course for first year students; then 

we consider the trigonometry content in two online mathematics courses for 

engineering students.  

THEORETICAL PERSPECTIVE AND RESEARCH QUESTIONS 

The overarching perspective guiding our work is an institutional perspective 

(Chevallard, 2006). We consider that the mathematics taught are shaped by the 

institution where they are taught. Engineering studies at university or in engineers’ 

schools constitute an institution, different from mathematics courses for maths 

majors. Within engineering studies, engineering courses also constitute an institution 

different from mathematics courses. Our aim here is to compare how these two 

institutions shape the mathematics contents, more precisely the trigonometry 

contents. 

Our central focus is on “making connections”. Students’ understanding in terms of 

mathematical reasoning and problem-solving has been linked by several authors to 

“making connections” and “connectivity” (e.g. Hiebert & Carpenter 1992). Drawing 

on these works, we have chosen to look for: 

“connections in, between, and across individuals’ cognitive/learning tasks and 

activities, and how e-textbooks may support those (micro level); as well as for 

‘connected learning’ between and across groups of individuals, teachers or students 

(macro level).” (Gueudet, Pepin, Sabra, Restrepo & Trouche to appear) 

We have therefore proposed a concept of “connectivity” to analyse e-textbooks 

(encompassing various kinds of digital curriculum), with the intention to evaluate 

their potential for the building of connections for the students.  

Thus, connectivity has two components: “macro-level connectivity”, which considers 

the e-textbook as a whole; and “micro-level connectivity”, where the focus is on a 

particular mathematical topic (trigonometry here). In this paper we only use “micro-

level connectivity”; more precisely, we observe in curriculum resources available 

online the presence of: 

- Connections between different topic areas or frames;  
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- Connections between different semiotic representations (e.g. text, figures, 

static and dynamic); […] 

- Connections between different concepts […]” (Gueudet et al. to appear).  

Here we want to compare the connections concerning trigonometry when it is used in 

engineering courses and the connections concerning trigonometry in mathematics 

courses for engineers, more precisely the connectivity of online courses for 

engineers. Our purpose is not to discuss whether trigonometry should be introduced 

in mathematics courses or engineering courses, but to compare how it is 

introduced/used in these institutions. Hence the research questions we study here can 

be formulated as: 

- Which connections concerning trigonometry appear in non-mathematical 

engineering courses? 

- Which connectivity, concerning trigonometry, can be observed in online 

resources for mathematics courses for engineers, and how does this compare 

with the connections in non-mathematical courses? 

In terms of methods, we have searched for curriculum resources and online courses 

on three major websites used in France: Unisciel
1
, meaning “online science 

university”, gathering many online courses; IUTenligne
2
, a website for technicians 

institutes within universities; and FUN
3
, meaning France Digital University, the 

national platform offering MOOCs. We have selected all the resources 

corresponding to mathematical courses for engineers or technicians on trigonometry, 

and have looked at the same time for resources on non-mathematical subjects using 

trigonometry. We have eventually chosen the theme of electrical engineering, 

because we have identified in it specific mathematical needs in trigonometry. Before 

analysing these resources, we now consider some works about trigonometry in 

mathematics education, and how they enlighten the connections issue.  

CONTEXT AND RELATED WORKS 

In France, trigonometry is firstly introduced in grade 8 or grade 9 through the 

definitions of cos, sin and tan as quotients of lengths in a right-angled triangle. The 

angles are measured in degrees. In grade 10, the unit circle and the radian are 

introduced, together with a new frame for cos and sin, which are now the coordinates 

of a point on the unit circle. In grade 11, cos and sin are studied as functions. Hence 

connections between frames and registers are extensively present in this teaching, 

and these connections can raise difficulties for the students (Berté et al. 2004). For 

                                           

1
 http://uel.unisciel.fr 

2
 http://www.iutenligne.net/ 

3
 https://www.fun-mooc.fr/ 
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example, grade 9 students already use for solving geometry exercises the “cos
-1

” key 

on their calculator; nevertheless, this key refers to a reciprocal trigonometric 

function, which is only presented at university, and moreover belongs to the 

functional frame (Bueno-Ravel & Gueudet 2010).  

The international research on the teaching and learning of trigonometry acknowledge 

the existence of all these different registers and representations and investigate their 

consequences. Kendal and Stacey (1997) compare two teachings in grade 10 in 

Australia, using respectively ratios and the unit circle to introduce sin, cos and tan; 

they conclude that the ratio method appears as a better choice. Also at the university 

level, trigonometry remains a difficult subject for the students (Weber 2005). Mesa 

and Goldstein (2017), studying the presentation of trigonometry in college textbooks, 

have evidenced that these textbooks propose different conceptions of angles, 

trigonometric and inverse trigonometric functions; depending on these conceptions, 

some problems can be delicate to tackle for the students. The textbooks do not try to 

link different conceptions, and do not highlight which one is more relevant for a 

given problem.  

Trigonometry clearly requires many connections between frames and registers. It is 

moreover linked with many different mathematical subjects (geometry, functions, but 

also complex numbers); and is extensively used in physics. Several researchers have 

also studied trigonometry within physics courses. Chiu (2016) studied the impact of 

a new curriculum in Taiwan, where contents of physics requiring trigonometry are 

taught before the corresponding mathematics courses. She observes that, while 

curriculum designers are positive on the possible consequences of a teaching of 

trigonometry by the physics and then by the mathematics teachers, the students and 

the teachers are mostly negative about this experience. A teaching of trigonometry in 

mathematics courses seems necessary before using it in physics.   

In his comparative study between France and Vietnam, Nguyen Thi (2013) shows 

that in both countries, trigonometry is present in physics courses with mathematical 

models for periodical phenomena, under two forms: uniform circular motion 

(represented by a point moving on a circle, in a graphic or algebraic register) and 

harmonic oscillation (represented by functions in a graphic, algebraic or vectorial 

register). Nevertheless only a few exercises propose modelling activities (in physics 

as well as in mathematics); and the two models are almost never connected.  

TRIGONOMETRY IN ELECTRICAL ENGINEERING COURSES 

In this section we draw on the content of several courses for future engineers or 

technicians, available on French websites (e.g. Piou 2014). In electrical engineering, 

one of the major subjects is the study of the “alternating sinusoidal regime”. In 

circuits with such a regime, the different signals (current and voltage in particular) 

are of the form: s(t) = A2sin(t+).  
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In a circuit where reactive loads are present (like capacitors or inductors) energy 

storage in the loads results in a phase difference between the voltage (u) and the 

current (i) waveforms. This difference is firstly introduced in the context of 

functions, with formulas like: u(t)=U2sin(t); i(t)=I2sin(t-), and associated 

with a graphical representation as two curves on the time axis (Figure 1, left part).  

A connection is immediately established with a geometrical representation of these 

signals, through “Fresnel vectors”. A signal defined by s(t) = A2sin(t+) (where A 

is positive) can be represented by a vector of length A, and a direction forming an 

angle  with the horizontal direction. Hence u(t) can be represented as a horizontal 

vector, and i(t) as a vector forming an angle (-) with it (figure 1, right part). Some 

courses also propose an interpretation in terms of complex numbers; for the sake of 

brevity, we do not present it here.  

 

 

 

Figure 1. Signals in the alternating sinusoidal regime and phase difference. On the left: 

functional frame; on the right, Fresnel vectors in the vectorial frame.  

We argue that the students in this case have to master connections between these two 

representations of signals: as two curves with a gap of  on the horizontal axis; or as 

two vectors forming an angle . Some courses propose animated pictures or 

exercises to work explicitly on this connection (see figure 2 for an example extracted 

from a teacher’s website, http://fisik.free.fr/.) 
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Figure 2. Connection between a rotating vector and the corresponding curve, extract 

of an animated picture. The blue points on the right appear when the vector rotates. 

In terms of micro-level connectivity, electrical engineering courses naturally connect 

trigonometry with electrical engineering; they also connect different concepts: in the 

example we considered here, functions and vectors, and in other courses also 

complex numbers. Since vectors are represented as arrows, and functions represented 

by their graphs, these two kinds of representations are also connected in the text of 

the course.   

TRIGONOMETRY IN MATHEMATICS ONLINE COURSES FOR 

ENGINEERS 

A MOOC presenting the basics of mathematics for future engineers 

The MOOC “Basics of mathematics”, available on the FUN platform (freely 

available after inscription) presents its objective on its first page: “This MOOC aims 

at revising the basic notions of mathematics, needed to start engineering studies”. 

The MOOC lasts 12 weeks, corresponding to 12 chapters. Chapter 2 is entitled 

“trigonometry”. It comprises 7 course videos (from 5 to 12 minutes), interactive 

multiple-choice questions, and a final assessment. Most of the notions presented in 

chapter 2 of the MOOC are taught in France at secondary school; nevertheless the 

reciprocal functions (like sin
-1

) are only presented during the first year of university. 

The course proposes almost no connection with engineering activities. The first 

video says that “Trigonometry appears in many domains, like drawing plans, 

navigating or mechanics”; the last video mentions the task of “triangulation”, 

without definition. Three exercises are associated with each video. Most of these 

exercises are situated in the geometrical frame; some of them are in the frame of 

trigonometric equations. There is only one exercise in the whole chapter with a 

concrete context: computing the length of a cable joining the top of a pole to the 

ground, over a mountain with slope of 15%. The final evaluation is composed of two 

problems; the first one has a concrete context, measuring lengths, and the second one 

concerns trigonometric equations.  

The definitions of cos, sin, tan are introduced in the geometrical frame in the right 

triangle (video 1). In video 2, a software (Maple reader) is used to establish a 

connection between cos, sin and tan in the unit circle and their graphs as functions 

(figure 3). The animated picture supports the discourse of the teacher explaining this 

link. This picture associates in fact the unit circle with the graphs of the functions, 

but also with the triangle. In fact the radius of the circle can be changed; it is not 

only the unit circle, but any circle; and the words “Adjacent” and “Hypotenuse” on 

the left of the screen link the circle and the other geometrical view as a triangle.  

140 sciencesconf.org:indrum2018:171131



  

 

Figure 3. A dynamic representation making connections in the Mooc, case of cos. 

This dynamic image is clearly used to connect the geometrical frames (triangle and 

unit circle) and the analytical frame; nevertheless, it might be very difficult to 

understand for participants who do not remember their school courses.  

As a summary, we retain that micro-level connectivity in this MOOC comprises 

some connections between concepts and representations, including dynamic 

representations; but almost no connections with other domains or engineering 

contexts. Moreover the connections with dynamic representations can remain unclear 

for students because of a lack of explanations.  

“Mathematical tools for physics”, an online course 

“Mathematical tools for physics”
4
 is an online course addressed to first year students 

in physics, freely accessible (without inscription). It belongs to a complete first year 

course, which is always organised in three sections: “learning” (course) “practice” 

(exercises) and “self-assessment”. It comprises 11 chapters; chapter 6 is entitled 

“Circular trigonometry – Hyperbolic trigonometry”. This chapter comprises 8 

subsections; here we are only interested in the 4 subsections concerning circular 

trigonometry.  

After recalling the definition of an angle, the first subsection defines sin, cos and tan 

in the frame of the unit circle. Nevertheless, an animated picture proposes a link with 

the frame of the right-angled triangle. A subsection about formulas associates a 

functional frame: specific values of sin, cos and tan and register of the unit circle. 

Then two sections are dedicated to the properties of the “direct circular functions” 

and of the “reciprocal circular functions”, and only mention the functional frame. 

This course makes no link with physics or any real-life context.  

                                           

4
 http://uel.unisciel.fr/physique/outils_nancy/outils_nancy/co/outils_nancy.html 
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There is only one problem, divided in three questions, in the “practice” section. 

Interestingly, it is a problem of physics: “the Compton effect” (scattering of a photon 

by an electron). To solve this problem, the students must master contents of physics: 

the law of conservation of energy and quantity of movement (and the associated 

formula). The initial model is in the frame of vectors; these vectors are projected on 

the two axes, and the students have then to use trigonometric formula, and finally to 

work in the frame of functions. The difference between the wavelengths before and 

after the scattering is indeed of the form coswhere is the angle 

characterizing the direction of the photon after the scattering; the students must 

observe that this function is increasing over [0, ]: a larger angle corresponds to a 

larger change in the wavelength.  

The “assessment” section comprises five parts: 2 on circular trigonometry, 2 on 

hyperbolic trigonometry and one entitled “composition of vibratory motions”. There 

is here again a connection between trigonometry and physics. Nevertheless its 

mathematical part remains entirely in the functions’ frame.  

Finally, concerning the micro-level connectivity of this online course, we retain that 

it proposes some connections with physics in the exercise and assessment part (but 

no such connection in the course part). The connections between concepts and 

between registers are restricted to the case of a single problem.  

CONCLUSION 

Trigonometry is a domain of mathematics where many different concepts (angles, 

vectors in geometry; functions) and semiotic registers (triangles, arrows, circle in 

geometrical register; curves in a graphical register; equations etc.) can be connected. 

It is recognised as a difficult domain for students. Nevertheless, within mathematics 

some exercises are limited to a single register: the study of trigonometrical functions 

for example does not always require thinking in terms of angles. Using trigonometry 

in engineering courses, on the opposite, always requires such connections. The 

students must be able to associate an expression like s(t) = A2sin(t+) both with a 

function and its graph; and a vector represented by an arrow. Engineering courses 

have a high degree of micro-level connectivity, for trigonometry. Our analyses of 

two online courses of trigonometry for engineers in France lead us to observe that 

they have a reduced level of micro-level connectivity: limited to connections 

between concepts and semiotic registers for the first one, while the second one on the 

opposite offers more connections between trigonometry and physics, but reduced 

connections between concepts and semiotic registers.  

Our exploratory work leads to formulate recommendations for mathematics courses 

for future engineers, concerning trigonometry (and possibly other topics). Our study 

of engineering courses confirms that developing the ability of these students to make 

connections is an important aim. Connections between frames, between registers, but 

also connections with engineering are possible, as evidenced by Nguyen Thi (2013).  
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Online resources could propose such connections, and moreover could draw on the 

possibilities offered by dynamic representations and various kinds of software. 

Contributing to the development of such resources is an important aim for 

mathematics education research, to address the need for students to make a relevant 

use of the mathematics they learn at university in and for their engineering courses. 
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In this paper, we investigate how undergraduate engineering students interact with 

an online learning environment provided to them in a Calculus course. The 

constituent resources of this environment include tutorial videos, textbook and 

MyMathLab – an online interactive system for mathematics. A qualitative case study 

involving a small group of students has been conducted. We investigated which 

resources these students used and the manner in which they incorporated these 

resources in their online mathematical work. 

Keywords: Students’ interactions with resources, the role of digital and other 

resources in university mathematics education, mathematics for engineers. 

INTRODUCTION 

In recent years, digital resources are increasingly used for teaching and learning of 

mathematics (Borba et al., 2016; Pepin, Choppin, Ruthven, & Sinclair, 2017). The 

presence of wide range of digital resources in terms of their functionalities allows 

various possibilities of creating digital environments for students to learn 

mathematics. Each digital environment might afford unique interactive and learning 

opportunities; therefore, empirical research closely looking at students’ engagement 

and the opportunities for their learning in such environments is well needed. This 

study deals with one digital learning environment provided to undergraduate 

engineering students for practicing mathematics. The aim is to explore students’ 

interactions with the constituent resources of this environment to elucidate the 

learning opportunities in this environment.  

Adler (2000) introduced the term resource to embrace several agents such as 

physical, human and cultural tools and aids intervening in a teacher’s activity. In this 

paper, however, we distinguish between digital and classical resources and focus on 

students’ work with resources. The use of digital resources is relevant in the context 

of engineering mathematics in the sense that engineers during their professional 

activities rely on technology for solving mathematical tasks (van der Wal, Bakker, & 

Drijvers, 2017). The framework for mathematics curricula in engineering education 

(Alpers et al., 2013) recommends the use of technology aimed at fostering 

engineering students’ mathematical competencies. In the next section, we present the 

theoretical framework, and the subsequent section contains introduction to the 

constituent resources of the online learning environment. 
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THEORETICAL PERSPECTIVE 

In order to study students’ interactions with the resources, we employ the 

documentational approach to didactics (Gueudet, Pepin, & Trouche, 2012; Gueudet 

& Trouche, 2009) which is grounded on Rabardel’s work (Rabardel, 2002) and 

enlarges the instrumental approach (Trouche, 2004) in mathematics education. One 

important distinction between the two approaches lies in the extension of the concept 

of artefact, in the former approach, to resource which allows considering wider set 

of materials intervening in the teachers’ and students’ activities. A resource can be 

conceptualised “as both noun and verb, as both object and action that we draw on in 

our various practices (Adler, 2000, p. 207)”. Thus, the approach has the potential to 

take in consideration material, human and cultural resources such as language, time, 

mathematics teachers, etc. Moreover, a resource is never isolated but belongs to the 

wider set of resources (Gueudet & Trouche, 2009).  

While one focus of this approach is on the teacher’s work with the resources, the 

study of students’ use of resources can provide the overview of their actual use 

(Gueudet & Pepin, 2016). Also, this approach has the potential to provide rich 

analyses if used to evaluate students’ work in terms of interactions with different 

resource systems (Trouche & Pepin, 2014) or with a particular resource (Aldon, 

2010). We will employ this approach to analyse how students interact with available 

resources. 

In particular, we analyse students’ techniques when working digitally in mathematics 

(Artigue, 2002). A technique is perceived as “a manner of solving a task (Artigue, 

2002, p. 248)”. While students work on mathematical tasks in a digital environment, 

they might adopt paper and pencil based techniques or instrumented techniques. The 

obvious and easily observable objective of each technique is to reach the goal of the 

activity i.e. to produce the results whereas the contribution of a technique to the 

learning of involved mathematical concepts might not be easily recognisable. The 

former corresponds to pragmatic value while the latter corresponds to 

epistemological value liked to each technique. 

We seek to explore the kind of techniques implemented by the students in the digital 

environment to make sense of how students interact with this environment while 

working on mathematical tasks. Furthermore, realisation of the values attached to the 

students’ instrumented techniques will also help to understand the role of digital 

resources in their learning (Guin, Ruthven, & Trouche, 2005). There are several 

resources involved in present situation, therefore, we confine to the general features 

of corresponding techniques in the present paper. By this, we mean to consider 

students’ general organisation of digital work with several resources related to all 

contents in a Calculus course. We ask the following question: How do engineering 

students incorporate resources during their work in an online learning environment? 
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THE SETTING 

This study took place in a Norwegian public university during the spring of 2017. 

Undergraduate students enrolled in electronics engineering program participated in 

this study. In their Calculus course, students were offered an online learning 

environment such that they could work remotely by interacting with the provided 

resources. These resources were made available to them electronically to work and 

proceed through the course. There were no mandatory lectures, and they could access 

the lecturer in the case they needed additional support. The final examination was 

also in digital format where the students were allowed the access to tools and aids.   

The resource system comprised MyMathLab environment, tutorial videos coupled 

with the notes, and the textbook. The students’ homework and the formative 

assessments were administered online through MyMathLab system. MyMathLab is 

an interactive learning system for practicing mathematics online (figure 1). While 

this system provides an online platform for homework and assessments, it also 

facilitates students in solving the tasks by providing help and feedback. Students can 

seek help through utilising “help me solve this” or “view an example” functions in 

the system. The former lets the student solve a similar task by guiding on each step 

whereas the latter shows a similar worked-example. The interactive nature of 

MyMathLab system allows considering it as a resource which can potentially 

influence students’ activity in this course. 

 

 

Figure 1.  Interface of MyMathLab environment. 

The tutorial videos are created by the lecturer, and recorded by using a document 

camera. Each video deals with a specific section in the book and is named 
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accordingly.  In these videos, the lecturer explained the topics in the book and 

worked through the relevant examples occasionally. The notes pertaining to the 

video tutorials were available online. The length of these videos varies depending on 

nature of the concerned topics. The tutorial videos replaced lectures and it was 

expected that students would watch the videos to learn mathematical topics. The 

textbook served as the central resource in the sense that MyMathLab and tutorial 

videos were based on contents in the book. 

In this course, a compulsory task was the group project in which students were 

required to prepare a question bank related to integration. That question bank was 

needed to be programmed in the STACK environment, a computer aided assessment 

platform. Maxima is the programming language used in the STACK, thus they were 

required to learn Maxima to complete the project. The intention was to make 

students familiar with programming language and its use in mathematics. 

RESEARCH DESIGN AND METHODS 

The case study research design (Yin, 2013) has been followed in this study. A group 

of three students has been observed over the semester. The methods used to generate 

data include group observations, semi-structured interviews, individual weekly 

journals and field notes. Using multiple methods for data collection contributed to 

triangulation of data.  

In order to be able to observe participants’ activity, we requested them to work at 

campus each week for which they agreed. During these sessions, they worked on 

their routine work including homework and assessments. Video recordings of their 

group work accompanied with the screen recordings to follow the activity on their 

computer screens have been collected. Screen recordings of their individual work 

external to these group sessions have also been collected. Furthermore, weekly 

journals containing self-reports about their use of resources were included to get the 

detailed overview. The journal was provided to participants in tabular format which 

they filled and submitted electronically each week. In the journal, they were asked to 

specify the resources they used and state how the use of a particular resource helped 

them in their work each week. The semi-structured interviews were held occasionally 

to understand the emerging patterns in their use of resources. During the group work 

sessions, participants communicated in their native language whereas the interviews 

were held in English. Both the group sessions and the interviews were transcribed. 

We analyse participants’ weekly journals, a semi-structured interview in the middle 

of the semester, screen recordings, and the field notes for reporting on students’ use 

of resources in their work. This interview is being counted on because the 

participants were inquired about the general manner in which they used the 

resources. The observations, screen recordings and the field notes are being counted 

on while identifying participants’ techniques during their work. 
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ANALYSIS 

Participants’ weekly self-reports about use of resources 

Table 1 presents the overview of participants’ use of several resources as they 

reported in their journals.  The manner in which they used them in their work and 

their evaluations of resources have been extracted from their journal inscriptions. 

Table 1: Overview of participants’ use of resources. 

Resource used How they incorporated resources 

in their work  

Comments about resources (if any) 

Tutorial videos Watched to get information to 

complete homework 

Easy to understand through videos  

MatRIC videos  Skimmed through the video at 

amplified speed 

 

Own note Used the already solved similar 

problems in the notes, to recall the 

problems (methods for solution) 

 

Textbook Read through the book, found 

formulas to work on homework, got 

questions from book (during project) 

 

Maxima Programmed tasks in Maxima for the 

project, used while doing homework, 

solved tasks using Maxima 

Programming in Maxima is hard but 

when it is done, all the problems are 

easy to solve 

WolframAlpha Used as a shortcut to get answers, 

compared answers obtained from 

Maxima, got help with solving 

difficult tasks 

Easier to use than Maxima, Faster 

than using calculator, useful when the 

answer is in the form of expression 

instead of numbers 

MyMathLab Worked on homework, learnt 

specific topic, solved some questions 

with higher difficulty 

Powerful tool, easier to get help and 

information online 

Internet   

Lecturer’s notes  Tailored” for the tasks at hand, the 

most relevant piece of information 

Youtube vidoes  Watched Maxima tutorials  

Mathway and 

other online 

calulators 

Solved questions Severely increase the probability to 

get the correct answer, and therefore 

the overall score. 

STACKS Made some questions in STACKS  
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The three participants, Tor, Per and Jan, used MyMathLab almost every week 

because homework and assessments were required to be done in this system. As 

regards the textbook, Tor did not report the textbook in the journals rather he used 

the lecturer’s notes. While in Per and Jan’s weekly reports, they pointed out few 

ways in which they used the textbook on different occasions. The textbook served as 

a source of getting questions, checking answers to those questions, getting help with 

formulas, and going through examples in the book. During their project work, they 

consulted the book to take questions and subsequently checked the answers for those 

questions. 

The tutorial videos were reported to be used by Jan and Per during their work. Jan 

occasionally watched the videos and when specifying about the kind of help, he used 

the word understand linked with this resource such as “to try to understand how to 

calculate…” and “to understand the calculation behind the math”. Per has also 

mentioned the use of videos and commented, “I easily understand it when someone 

explains me the way of solving a problem”. Tor did not mention any tutorial video 

provided by the lecturer, however he watched few videos on other platforms, 

MatRIC TV (an online resource containing videos aiming to support students in their 

transition from high school to university) and YouTube, once for getting introduction 

to partial integration and at another occasion to learn Maxima – the programming 

language. 

It can be seen that participants used some other resources in their work such as 

online calculators, WolframAlpha, Maxima and internet (cf. Table 1). Tor named 

several online calculators including Mathway (https://www.mathway.com) and 

WolframAlpha (https://www.wolframalpha.com) to solve the tasks and to compare 

the answers they got in Maxima while working on the project. He mentioned that he 

used online calculators for saving time, however, he wrote, “I did not learn anything 

doing this, but it severely increases the probability to get the correct answer, and 

therefore the overall score”. Wolfram Alpha has also been used by Per and Jan in 

order to verify whether the answers they got were correct. While working on the 

project, they picked some questions from the book and programmed in Maxima. To 

check the answers to those questions, they used WolframAlpha.  

After completing the group project that involved learning Maxima, this programming 

language became an important resource for them to solve tasks in homework and 

assessments. Both Per and Jan began making programs for solving each task to 

liberate themselves from calculations. Per inscribed in a weekly journal, “(I) used 

Maxima to make a program to solve the problems in an easy way. This is hard to 

make, but when it is done, all the problems are easy to solve”. Tor did not seem to 

use Maxima a lot, he spent some time on learning how to use Maxima for solving 

tasks in one week, and then spending some more time in the next week, he rather 

chose to focus on MyMathLab. He inscribed that, “it’s (MyMathLab) a more 

powerful tool and it’s easier to attain help and information online”. 
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In response to a question about using videos in a semi-structured interview, Per 

explained his way of working on homework using the provided resources. 

Per:             These topics I think are quite hard to learn all by yourself. When I get a new 

topic, I first try to solve it myself, if I can’t do that I try to look at the 

examples in MyMathLab… and if I don’t completely understand the 

examples I take a look at Olav’s (lecturer) video…mainly the examples’ 

videos because then I get to see the practical kind of way to do..to solve 

questions. 

Int:              How would you rank the provided resources? Which one do you first consult 

with? 

Per:               First, I will try to do it myself because then I think I… remember and learn it 

the best because then I have to think and ….and if I can’t do it that 

way…then I will try to look at example just to get a few hints. If that does 

not work then I watch the videos because I can’t look at the notes (provided 

by the lecturer)…I have to get explanation of what he is doing step by step.  

Tor’s response was somewhat similar as he replied: 

Int:                 Did you use any video while working on last week’s homework? 

Tor:                No, I think MyMathLab seemed sufficient so far. 

Int:                Ok. So which resource did you use for getting introduction to the new topic? 

Tor:                I tried first MyMathLab but it went fine so I just carried on. …I check the   

                       notes and watch the videos if I get stuck.. 

Int:                So, you turn to the videos when you get stuck. 

Tor:              When it is a new topic, then I just skim through his notes, but since we have 

integration from a couple of weeks now, I am pretty confident and go 

straight with it. 

While Jan responded to the same question as follows. 

Jan:            I did not watch that many videos. I mostly use MyMathLab and just see the 

examples…and if I can’t get it from there then I go to…to the book because 

it is faster… and eventually go to the videos if I do not get constructive help 

from there. 

The participants preferred MyMathLab during their work for being the source of 

quick and most relevant help in comparison to the other available resources. This 

approach of working on the tasks saved them time and effort to search for the 

required piece of information from other resources such as the videos and the 

textbook. However, the use of MyMathLab can be considered more pragmatic as 

both Per and Jan mentioned that the kind of help they get from MyMathLab is in the 

form of examples which contributes more towards producing the results.  
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Another approach was to watch the videos when the help from MyMathLab was not 

sufficient as evident through participants’ responses in the interview. The use of 

videos has not been preferred much but participants reported that they consulted the 

videos when they needed to understand something. As discussed earlier, the help and 

feedback in MyMathLab concern the task only as it offers the formula and solution- 

steps for the task. They might have needed to consult the videos to learn the concepts 

involved in those tasks in case when just knowing the solution steps in a question did 

not work. In the journal data, Jan and Per wrote that they used the videos to 

understand thus it indicates the epistemic value linked to usage of videos. 

Observing participants’ activity helped in finding that the use of different resources 

affected their manner of working on tasks i.e. techniques. We seek to categorise the 

participants’ techniques pertaining to different resources they used, and by 

considering their motives behind use of each resource helped in recognising the 

pragmatic and epistemic value of their techniques. It is found that they increasingly 

used the digital tools to solve the tasks in MyMathLab environment with the 

progression in the course. This led to the use of more instrumented techniques 

instead of paper and pencil techniques promoted in the lecturer’s videos and through 

MyMathLab. For instance, Tor mentioned in his weekly journals and it is observed 

in the screen recordings of his individual work that he used several calculators to 

work on homework as well as assessments. The participants themselves perceived 

this technique of using online calculators to solve the task as pragmatic. 

Two of the participants used Maxima in their work as evident from journals and 

could be seen through the screen recordings of their work. They wanted to be 

pragmatic in order to make their future work easier. Making programs for each task 

for the first time can not be considered as merely pragmatic as Per mentioned that he 

found it hard. The difficulty in making programs may be linked to their knowledge of 

programming in order to code mathematical tasks. However, the extent to which it 

contributes epistemically in learning mathematics is not covered in present paper. 

DISCUSSION AND CONCLUSION 

In this study, we observed how a small group of three students interacted with the 

resources when provided with an online learning environment in their Calculus 

course. The environment allowed self-regulated learning and students could work 

remotely on their homework and assessments. To make sense of the opportunities for 

students’ learning with resources in this environment, we explored their manner of 

incorporating the resources in general organisation of their digital work. 

Furthermore, we discussed the epistemic and pragmatic potential of participants’ 

techniques. 

In terms of resource usage and the corresponding techniques, participants opted for 

the resources and the techniques which were pragmatic in terms of producing results 

for the assigned tasks. Pragmatic techniques involved the use of online calculators, 
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using help in the MyMathLab to produce the results for tasks.  Watching videos for 

learning mathematical concepts seemed to be time consuming and hence not 

preferred much. Participants appropriated the programming language to work on the 

tasks with the motive to be more pragmatic and produce results easily in their work. 

An important factor which is likely to cause the preference for more pragmatic 

instrumented techniques was the online final examination where they could use the 

resources. As for students, it is quite important to prepare according to the 

examination to be able to score better.  

This case study provides an example of a self-regulated learning environment created 

for students to work independently. Our findings suggest some general prospects 

which are worth paying attention when assigning online homework to students. 

Combination of an online homework with online examination is likely to cause 

students to use unexpected use of resources and techniques, for instance, online 

calculators and solution tools in the present case. This observation also relates to the 

nature of tasks posed in an online homework environment. Variety in the nature of 

tasks, such as open-ended tasks, may lead students to interact with resources 

epistemically.  
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This paper presents the a posteriori analysis of a study and research path (SRP) on 

comparing reality and forecasts of the number of users of certain social networks, 

which appears as a teaching and learning proposal for mathematical modelling. We 

analyse the main elements of the SRP that have been experienced with a first-year 

course at university in management sciences degrees in two consecutive courses, 

2015/16 and 2016/17. We focus our analysis on two essential dialectics for 

mathematical modelling to be developed: the questions-answers and the media-

milieu dialectics. In particular, we take empirical results from the two successive 

implementation of the SRP to outline through which mechanism these two dialectics 

could be prompted. 

Keywords: Mathematical modelling, study and research paths, dialectics, questions-

answers, media-milieu. 

INTRODUCTION: THE SRP AS TEACHING PROPOSAL FOR 

MATHEMATICAL MODELLING 

The starting point of the research is the problem of inquiring into the conditions that 

can help, and constraints that hinder, that mathematical modelling can be integrated 

and developed in the teaching and learning of mathematics into current educational 

systems, in particular, at university level. Researchers and practitioners agree that 

teaching should not be focused only on the formal transmission of knowledge, but 

also should provide students of the tools for enquiring into the study of real 

phenomena and integrate mathematics as an essential modelling tool. This change 

requires moving from a more traditional pedagogical paradigm of transmission of 

knowledge, which mostly focuses on introducing students to already built 

mathematical knowledge, to a paradigm of inquiry where the solving of problematic 

questions leads learning processes and motivates the study of new knowledge. 

In the particular case of the research on modelling and their applications and on 

inquiry-based approaches some big steps have been made showing how, under 

certain suitable conditions in different educational levels and curricular frames, 

modelling activities may be successfully put into practice (Artigue & Blomhøj, 

2013). However, although school institutions and researchers agreed that modelling 
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should play an important role for a change towards a new pedagogical paradigm, the 

real situation in school and university is not satisfactory (Stillman et al. 2013) and 

the dissemination and long-term survival of these teaching proposals based on 

modelling follows as a big challenge for mathematics education (Galbraith 2007, 

Burkhardt 2006). 

In the case of applications and modelling a shared excitement unites many who have 

enthused about early experiences in the field, for example when students unleash latent 

power that for whatever reason had remained fettered in their previous mathematical life. 

However this very exhilaration can work against further progress, both individually, and 

particularly at a system level, by creating a sense of adequate achievement that obscures 

the reality that there is so much more to do. 

In our research, developed in the framework of the anthropological theory of the 

didactic, we focus on the use of the study and research paths (SRP) as 

epistemological and didactic model (Chevallard, 2015; Winslow et al., 2013; Serrano 

et al., 2013) to face the problem of moving towards a functional teaching of 

mathematics and, particularly, where mathematics are conceived as a modelling tool 

for the study of problematic questions. According to Barquero and Bosch (2015), the 

starting point of an SRP should be a lively question of real interest for the 

community of study (students and teacher/s). The study of Q0, called the generating 

question, evolves and opens many other derived questions Q1, Q2,…, Qn. The 

continuous looking for answers to Q0 (and to its derivative questions) is the main 

purpose of the study and an end in itself. As a result, the study of Q0 and its derived 

questions Qi leads to successive temporary answers Ai that can be helpful in 

elaborating a final response R
♥ 

to Q0. These first characteristics can be associated to 

the first level of analysis of the SRP that we here consider, it consists in the 

dialectics establishing between the questions posed and the likely answers appearing 

(questions-answers dialectic) which also provide the basic structure of an SRP to be 

implemented and to be enriched after each implementation. This first layer refers to 

the evolution of questions to be faced and the necessary knowledge to be used. 

Another central dimension for an SRP is the media-milieu dialectics, which 

constitutes the second level of analysis. As described in the aforementioned 

investigations, the implementation of an SRP can only be carried out if the students 

have some pre-established responses accessible through the different means of 

communication and diffusion (that is, the media), to elaborate the consecutive 

provisional answers Ai. These media are any source of information, such as: 

textbooks, treatises, research articles, class notes, or the teacher acting as main 

media. However, the answers provided are constructions that have been elaborated to 

provide answers to questions that are different to the ones that may be put forward 

throughout the mathematical modelling process. Thus they have to be re-constructed 

according to the new needs. Other types of milieus will therefore be necessary to test 

the validity and appropriateness of these answers. This second level of analysis put 

attention to the evolution of the students’ milieu. 
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With this aim, we present an analysis of a particular SRP about the evolution of users 

of certain social networks that we will analyse in term of these two central dialectics 

and, more concretely, focusing on two critical questions:  

(1) How to enhance dialectics between posing questions and looking for answer as 

engine of the modelling process? How to transfer to students the responsibilities of 

posing questions and looking for answers? (2) What milieu is necessary for students 

to facilitate a rich development of modelling? How a richer media-milieu dialectics 

can be developed? 

DIDACTIC ANALYSIS OF A MODELLING PROCESS: THE CASE OF AN 

SRP ABOUT THE EVOLUTION OF THE NUMBER OF FACEBOOK USERS 

We focus on analysing the case of an SRP on Comparing forecasts against reality in 

the case of Facebook users’ evolution. The first time it was experienced was during 

the winter term of the academic year 2015-16 with first-year students of Business 

Administration Degree and of Innovation Management (BAIM), all from the ‘Escola 

Superior de Ciències Socials i de l’Empresa-Tecnocampus’, Pompeu Fabra 

University (see Barquero, Monreal, Ruíz-Munzón & Serrano, 2017). During the 

academic year 2016-17 it has been implemented again in the same university degree. 

The SRP has run in a modelling workshop that was optional activity for students 

during these last two academic years. In this paper we analyse and compare both 

implementations by using two central dialectics: the questions-answers and the 

media-milieu dialectics. 

The initial situation starts from real news about a research performed by Princeton in 

2014, in which it was predicted that Facebook would lose the 80% of its users before 

2017. Hence, the generating question Q0 presented to students is about: Can these 
forecasts be true? How can we model and fit real data about Facebook users’ 
evolution to provide our forecast the short- and long-term evolution of the social 
network? How can we validate the conclusions of Princeton? The experimentation 

was structured in three interconnected phases linked to the generating question Q0, 

building up the a priori design of the SRP, then reflected in the design of the c-book 

unit. A first phase that focuses on the open research of real data about Facebook 

users, a second one focused on finding mathematical models (mainly based on 

elementary functions) that may provide a good fitting to real data, and a third one 

about the use of these models to forecast the behaviour of the social network in short, 

medium- and long-term in terms of number of users and about how to decide about 

best and most reliable model. 

Previously, during the first term (4 ECTS of the subject) students had been getting 

familiar with the main properties of some groups of functions (polynomial, rational, 

irrational, exponential and logarithmic functions) as well as with basic topics on 

differential calculus and its applications to the study of the monotony and 

optimization of one real variable functions. Actually, before starting the first session 
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we asked the students to answer a test on some of the mathematical tools that mainly 

make the workshop up, as indentifying some types of elementary functions or the 

concept of fitting model in certain scatter plots. 

In the first experimentation 27 students, working in ‘consultant teams’ of 3-4 people, 

got the order from MS2 Consulting (‘Mathematical Solutions Squared’) previously 

described as Q0 and they were asked to deliver a final report by the end of their work 

as an oral presentation as response to the MS2 request. The implementation 

combined face-to-face sessions in the teaching device called ‘Math modelling 

workshop’ (in a total of six 90-minutes weekly sessions) for the miss-in-common of 

the junior consultant teams’ partial reports, with work out of the classroom. For the 

second experimentation 12 students (18 students started the workshop, but they left it 

in the second session due to external matters) worked also in teams of 3-5 people. 

This time we opened a Moodle virtual classroom to provide the students the teaching 

aid of the workshop, as well as some communication and collaborative tools (forum, 

a different wiki for each phase, etc.) to write their progress and pose their new 

questions. The generating question Q0 was presented in a small dossier, next to the 

initial subquestions of each of the SRP phases (Q1, Q2 and Q3). The workshop run 

over seven face-to-face 90-minutes sessions before the final session, in which 

students should present their conclusions in an oral presentation in front of an 

external committee with representatives from MS2 Consulting.  

Next we sketch in the case of the two implementations how the different dialectics 

were prompted by both: (a) the design of the unit (by its initial design but also by the 

different changes introduced according to students’ requirements: new questions and 

answers not envisioned, new media required, etc.) and (b) the didactic gestures and 

devices to manage its implementation.  

Integrating the dialectics of questions-answers as engine of the SRP 

The a priori design of the SRP was basically the same in both implementations, 

structured in three interconnected phases linked to Q0, which guided the design of 

the workshop throughout its implementation. A first phase focuses on the open 

search of data about Facebook users; a second one focused on mathematical models 

(mainly based on elementary functions) that might provide a good fit to Facebook 

users data; and a third part focused on the use of these models to provide short-, 

medium- and long-term forecasts about the number of users of Facebook and on how 

to decide on the best and most reliable model. Figure 1 (and the explanation below) 

shows the link between different questions (Qi) that were planned as likely to appear 

in the real implementation of the SRP and some expected answers (Ai) from the 

working teams. The only difference of the second design with respect to the first one 

was motivated for the context in which Q0 was presented originally: the predictions 

made by Princeton were supposed to happen in 2017, and this year was present tense 

for the students of the second experimentation. Hence, we decided to make the same 
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questions, but giving freedom to students of focusing in any other social network 

students were interested in.  

 

 

 

 

 

 

 

 

Figure 1: Tree of questions and answers of the different phases of the SRP 

 

Q1: Which data sets about the users of the social network are better to consider in 

our research?  A1: Each group look for the data to be used and shared; the whole 

community agree on the terminology (year, period, units, etc.) and on the 

dependent and independent variables to take into account. 

Q1.1: Which time intervals may be considered? Q1.2: How can data be well-organized? Q1.3: How to 

organise and visualise data? Q1.4: What can we say about the growth tendency of the data analysed?  

Q2: Which mathematical models provide the best fitting of data about the network 

users?  A2: Each consultant group is asked to propose and justify three 

mathematical models fitting real data. 

Q2.1: Which models (based on elementary functions: linear, parabolic, exponential, etc.) may fit the 

data? Q2.2: How can the coefficients of the model be determined? 

Q3: How can we decide about the ‘best’ fitting model? Can we use this model to 

predict the future evolution of users?  A3: The teams need to create tools to 

justify why a mathematical model/s is/are the ‘best’ with respect to: (a) fitting data 

and (b) forecasting the evolution of users.  

Q3.1: How can we compare the error committed between reality and forecasts provided by models? 

Q3.2: Can be the same model used for the short- and long-term forecasts? 

Let us now comment the main features of the a posteriori analysis of the 

experimentations, referring here to the questions-answers dialectics level.  

Regarding the first phase, we should remark the ease with which the students found 

real data about the evolution of the social net. The students mainly found the 

information by means of a graphical representation. This fact strongly determined 

their analysis, since they mainly focused in the graphical analysis growth tendency of 

the data, but not in their numerical versant, making Q1.4 being treated before the 
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other ones (it was considered that students would have data in table format before 

having graphs). With respect to the first experimentation, the fact that many groups 

found the same data triggered an intense debate and interchange of ideas among 

them, which took us to consider a brainstorming session about the previous 

hypothesis in the classroom, and as a consequence, the duration of the first phase 

was extended from 3 to 4 sessions. Due to the wealth of answers collected during the 

brainstorming we asked the students to deliver a first report in a poster format, 

synthesizing their findings, conclusions and new questions made by them. In the 

second experimentation the fact that students could choose a social network implied 

a disruption with the usual topos of the students in the process of study, since they 

were responsible on the delimitation of the field of study. They noticed about the 

difficulty of finding reliable data of some of their choices (Snapchat, Instagram, 

Twitter…), so finally only Facebook and Instagram were object of study, and not 

only the number of users with respect to the time, but also other variables that could 

have a relation. Another question that raised here was the role of the intervals of time 

of the data obtained, and how to work when data are not regularly spaced in time. 

These questions enriched the a priori design of the SRP. The presentation of the first 

phase was done on the third session, and there had not been interchange of ideas with 

other groups during the first phase. Furthermore, we asked students to present their 

plan of work: the questions that they wanted to deal with, when and how. This 

showed that each group had planned the next steps in many different ways and with 

many different variables. Nevertheless, the lack of time and our interest in the study 

of one real variable function made us proposed the students to use only the variables 

“Time” and “Users”. 

Let us focus now on the second phase. In both experimentations the analysis of the 

different proposals made arise a non-expected aspect: the use of piecewise functions. 

Then the expected answer to Q2 about the consideration of models based elementary 

functions (linear, quadratic, exponential, etc.) was extended. In the case of the first 

experimentation, since many groups worked finally with very similar data on the 

worldwide evolution of FB users, we took two new decisions: (a) give each team a 

second set of different data, corresponding to different geographical areas, in order to 

contrast their hypothesis and extend their study; and (b) ask for more than one fitting 

model for each data set. This was not necessary in the second experimentation, since 

each group had different data sets. Besides, in both workshops new questions and 

answers appeared at this stage with respect to the change of tendency of the fitting 

models, in accordance to a particular action or to decisions of the corresponding 

social network (IPO, new rival social nets, purchases of the company, new 

developments, etc.), which determined the moments of change of tendency. 

Furthermore, in the second experimentation we let the students choose a software for 

representing their data and the functions. This made question Q1.2 emerge again, 

since they needed to adapt their data to the different software used. Just one group 

decided to use Geogebra, so they were provided the applets we used in the previous 
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experimentations (Barquero et al. 2017). Instead, another one decided to make 

interpolation in order to find functions fitting their data, so they used Symbolab and 

added some questions about how to solve non-linear systems of equations. The third 

group worked with Excel for representing a scatter plot, and used linear and non-

linear regression. This motivated a big change in the SRP, since question Q3.1 

emerged naturally in the exposition of their findings at the beginning of the third 

phase (since they have used the R-squared of their model given by the software). 

This gave birth to an interesting discussion on different ways of measuring the error, 

and the professors had to present this question as a central matter. 

Concerning the third and last phase, in both experimentations we only had two face-

to-face sessions of the workshop, but were not enough for a rich development of Q3. 

Although this time constraint, in the first implementation of the SRP there were some 

applets designed and made available for students to help on the simulation of models 

and its contrast to real data. It helped students to delve into Q3, but not many new 

questions appeared from this work. With respect to question Q3.2 only one group 

dared with long term forecasts to give a date for the moment in which the users of the 

chosen social net would start decreasing. Both implementations finished with a final 

presentation of their modelling work and conclusions to an external committee. 

Before finishing, we should remark that in both implementations the common 

discussions, presentations and brainstorming session became the main device for 

students to formulate and organize new questions, debate answers and contrast them. 

The progressive enrichment of the milieu: the media-milieu dialectics 

Since we have the first layer of analysis of the SRP in terms of the arborescence of 

the questions-answers, it is important to ask when, where and how questions can 

arise and answers can be developed. It is at this new level when there may appear the 

different elements taking part of the milieu, composed of varied elements: questions, 

temporary answers, pre-existing answers in or out school, means to validate answers, 

experimental data, etc., accessible through different kind of media (textbook, 

lectures, website resources, etc.). The relation among these elements can be analysed 

through the media-milieu dialectics. The constant dialectics between the search for 

data (for instance, real data about users of social networks, or about the company 

changes) and pre-existing answers (ways to organise data, common models to fit 

population evaluation, elementary functions, tools to control error, etc.) that exist in 

different media available for students (web resources, contents of Mathematics 

course, answers from lecturers from other courses...) and the creation of the 

appropriate means (milieu) to integrate (or refuse) them has been central in our SRP. 

Let us stress the importance of some of them. 

In the first phase of the SRP, it was important to some groups the topics worked in 

another course called ‘Introduction to digital communities’ (running in parallel to the 

workshop) who helped on providing a general sense and functionality to Q0 and to 
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show how the students could look for real data and some techniques to organise 

them. All these elements took part of the media accessible to students, at the time it 

enriches students’ milieu mainly composed at this stage of the data sets that each 

team chose to work with (shared and debated early with the whole class in the first 

implementation, and before the second phase in the second implementation; even 

strongly in this case, since the variety of data found was higher and let them make 

comparisons between different social networks). All these elements helped them to 

prepare a first report with the first temporary answer A1 (a poster format given in the 

first implementation, and a face-to-face presentation in the second). Here we should 

remark the importance of making their plans explicit (especially in face-to-face 

sessions) to construct a common frame to be the source of new questions, as well as 

and to integrate in their milieu new concepts about modelling, and ideas of other 

groups that could help them. It is in the second phase in which we find more 

differences. In the first experimentation, the a priori design contained some 

Geogebra applets proposed to help students to explore different models based on 

elementary functions (Q2). These applets provided the main media for students to 

visualize data jointly with model simulation, and also took part of their milieu as 

main tools for contrasting, comparing and deciding on the ‘best’ models to choose. 

Nevertheless, there were other tools not planned in the a priori design (as piecewise 

functions, or Gaussian functions, most of them part of their milieu, since they had 

been introduced in previous courses) but provided by designing new applets. In the 

second experimentation only one group used these applets, so their path followed 

was more similar to the first ones; but two groups decided to use other software 

mentioned above (that they could know from Statistics or other subjects), which 

made the main difference with the first implementation: meanwhile the first applet 

seemed to drive students to apply only a trial-error method, tools like interpolation or 

regression made students arise an earlier answer. Here again the common forum 

stated as a face-to-face session motivated an enrichment of the student’s milieu. 

Regarding the third phase, there were several important questions that were not 

addressed properly, such as Q3.1 about the way to measure the differences between 

data and forecasts, but here there is a main difference between both implementations. 

In the first one the students assumed and uncritically used the milieu made available 

through the design of an applet, a sort of black box to get immediate answers. 

Instead, in the second one students had to construct their own tool for measuring the 

error, and one group made it with Excel. Just one group could answer Q3.1 but the 

answer was totally produced by them, so they could communicate it to the rest of the 

class, extending the appropriate milieu to other groups.  

FINAL REFLECTIONS 

First of all, we should mention that students are not in general motivated to validate 

their results after a work of research, since a lecturer will finally do it. In this 

workshop students were responsible to validate or justify every decision they made 
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by the end of each phase. And this is the main reason why other questions arise and 

contribute to enrich the a priori design of the SRP. 

In this paper we focus on the case of an SRP on comparing forecasts against reality 

in the case of the evolution of the number of users of certain social networks to show 

the use of two dialectics: the one of the questions-answers and of the media-milieu, 

corresponding to two of the three complementary level of didactic analysis of 

teaching and learning processes (Chevallard, 2008). Besides their analytic use, they 

suppose a productive framework to enrich teaching and learning practices, in 

particular, on modelling.  

In what concerns to the questions-answers dialectics, the generating question Q0 

about the controversy of the article by Princeton was adopted by the students with a 

great interest from the very beginning and, up to the end of the process, was kept 

alive. From the two presented implementations we can underline very important 

conditions that were created. First, the flexibility of the lecturers and designers team 

that were opened to readjust the schedule according to students’ team work. 

Furthermore, they were very attentive to integrate in their presentations all new 

questions and means that the students asked for. Second, students were very active 

on the sessions to share their proposals, making derived questions emerge naturally, 

some of them planned in the a priori design, some others that extended the initial 

proposal. Regarding the media-milieu dialectics, in the case of this SRP, we took 

several decisions along the implementation of transforming the media offered to 

students to help them in the modelling process and also to observe the impact new 

media had on students’ milieu. Nevertheless, giving students the chance of using 

their own ICT tools, as was decided for the second experimentation, enriched the 

media-milieu dialectics, since it helped to arise other different answers that had not 

happened during the first experimentation. We may insist again on the role played by 

very important contributions, such as collaboration with other subjects, focusing 

some workshop sessions on discussing external answers that students brought, the 

creation of applets to foster students’ experimental work, among other interesting 

aspects.  
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We present and analyse principles and process employed at the Danish Technical 
University to use authentic problems from engineering (APE) in a first year 
mathematics course, along with some of the products (actual student assignments).  
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INTRODUCTION 
Mathematics is as important in most branches of engineering, as engineering is to the 
prosperity and development of contemporary society. Thus, it is of great importance 
to investigate exactly what mathematics is needed by (future) engineers, and how it 
could be effectively taught to them; such research is only emerging (see e.g. Winsløw 
et al., to appear, sec. 2.5). In the common case where mathematics is taught in 
separate “service” courses which cater to several different study programmes, these 
questions may be considered in entire separation: a syllabus for the mathematics 
course is decided based on needs in the different study programmes of engineering 
which include the course, and subsequently the syllabus is delivered by mathematics 
faculty. This amounts to a complete separation of external and internal didactic 
transposition, in the sense of Chevallard (1992), where the selection of mathematical 
contents to be taught may be based on needs and priorities from the engineering 
disciplines, while the actual teaching is carried out according to generic standards and 
methods for teaching mathematics. The aims of the overall study programme (in 
engineering) are only considered in the external transposition of the mathematical 
knowledge (see Fig. 1). We can call this model a parallel model for teaching 
mathematics to engineers, as the internal didactic transposition runs in parallel to the 
rest of the programme and does not interact with it (while it is certainly intended that 
the students’ learning serves in other courses, later on).  

 
Figure 1: The parallel model for didactic transposition in engineering education 

 Coordinated 
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Transpositions  

Engineering 
knowledge to be 
taught (syllabus) 
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In the literature on university mathematics education, it is widely agreed that the 
parallel model has drawbacks:  

- students may experience the mathematics teaching as unmotivated and 
difficult, which is reflected in relatively high failure and attrition rates for some 
engineering programs (e.g. Baillie & Fitzgerald, 2010). 

- the knowledge they acquire in the mathematics course may not transfer readily 
to engineering contexts, in the sense that students are able to invest the 
knowledge acquired in mathematics courses when they need to do so in other 
courses of the programme (e.g. Britton et. al., 2005). 

Motivated by these well-known problems, the model in Fig. 1 has been modified, in 
many universities, by various attempts to relate the internal didactic transposition of 
mathematics more closely to the rest of the engineering programs (e.g. Kumar & 
Jalkio, 1999).  
One of the most common ideas to further such an interaction is that to include, in the 
mathematics course, more or less simple examples and student assignments where 
engineering problems are solved based on mathematical methods and theoretical 
notions (see, for instance, Härterich et al., 2012). A main challenge here is that 
university mathematics teachers usually have no in-depth knowledge of any 
engineering discipline, let alone of all the specialties which the course they teach 
caters to. Of course they may then ask engineering specialists for help to identify 
authentic problems from Engineering which can be solved using the mathematics to 
be taught in their course (we abbreviate this kind of problems as APE). In that way, 
“Scholarly Engineering” may exercise a more direct influence on the internal didactic 
transposition of mathematical knowledge (cf. Fig. 1). In this paper, we investigate 
some general questions related to the implementation of this (quite common) idea at 
the level of the internal didactic transposition: 

RQ1. How could the identification and transposition of APEs be organised, given 
the academic and institutional separation of university mathematics teachers from 
their colleagues in engineering? 
RQ2. What didactic variables (cf. eg. Gravesen, Grønbæk and Winsløw, 2017) are 
relevant to the construction of assignments based on APEs? 

It is clear that answers to these questions will depend on institutional conditions and 
that even when such conditions are given, one will at most obtain very partial 
answers in the sense of reasonably validated examples of organisations (RQ1) and 
didactic variables (RQ2). As always in education, transfer of “answers” from one 
context to another will require some adaptation and interpretation, but this limitation 
may in fact be less important for the above questions, given the relatively high 
similarity of mathematics courses, the engineering programs they serve and the 
institution which deliver them. For these reasons, and given the importance of the 
matter already argued, it appears worthwhile to present such locally and partially 
validated answers. Concretely we will present and analyse the process, principles and 
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products of APE design done at the Technical University of Denmark since 2000. 
Founded by H. C. Ørsted in 1829, this is one of the most prestigious Schools of 
Engineering in Europe, and by far the largest in Denmark.  
A TASK DESIGN PROCESS 
Mathematics 1 (hereafter Mat1) is the basic mathematics course for 17 different 
B.Sc.Eng.-programmes at the university, catering to about 1100 students per year. 
The course occupies 1/3 of the students’ time during the first year, and covers 
complex numbers, basics of Linear Algebra, Ordinary Differential Equations 
including linear systems, and multivariate and vector Calculus up to Gauss’ theorem. 
Besides ensuring a technical foundation for later work, the university also considers a 
common course on mathematics as important to the formation of an engineer identity. 
Most of the course is quite traditional, however with intense use of the computer 
algebra system Maple. Exercises with easy applications to engineering occur. 
However, during the last four weeks of the course, the students work on a “project”. 
This is an assignment containing about 20-30 more or less challenging tasks, related 
to a mathematical model related to an APE. The model is usually given in the 
assignment, and while some new mathematics may be introduced, the starting point is 
Mat1. Each project assignment is presented in a text of varying extent (ranging from 
4 to 29 pages, averaging 11); it is those texts which we aim to analyse in this paper. 
The students do the projects in groups, hand in a report of about 20-50 pages, and 
defend their work during an oral exam, which accounts for 25% of their grade. 
The groups can choose their assignment from a list of 4-5 projects, in part depending 
on the study programme, with titles like those shown shown in Fig. 4. As the titles 
suggest, the project problems come from many different areas of Engineering. Every 
year, new projects are added and some are dropped; and the details of retained 
projects are updated based on teachers’ experiences. The elaboration of new projects 
is a particularly delicate undertaking. When the first projects were done from 2000-
2006, a systematic effort was deployed to engage researchers from the university – 
both applied mathematicians and researchers from Engineering at large - to propose 
project topics; they were then, mostly, drafted or adjusted by the course responsible. 
Some are still used in revised form.  
It is the task of the course responsible to organise the production and revision of 
projects. The initiative can come from teachers at the course or other mathematicians, 
who identify a more or less classical APE which can form material for a project; then, 
the motivation is often that some specific parts of Mat1 can be worked on in new 
ways. But the initiative also frequently come from colleagues from other 
departments. In some cases, their motivation is personal fascination with mathematics 
in a more or less current APE, and possibly ongoing collaboration with mathematics 
colleagues in this relation (reflecting an interaction between Scholarly Mathematics 
and Engineering, which could be added to Fig. 1). In other cases, they propose an 
attractive current APE for a Mat1 project, in order to attract students to their specialty 
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later on – these colleagues then, sometimes participate for free as supervisors on the 
students’ project work.  
Summing up what the process involved in Mat1 could contribute to RQ1, at least two 
venues can be identified in relation to Fig. 1: 

- Scholarly (applied) Mathematics and other basic sciences such as chemistry 
and physics, where the main source of motivation is mathematical contents 
related to Mat1; but work done here can still involve or lead to APE.  Project 
proposals from this source are typically mathematically “rich” but are not often 
related to current research. 

- Scholarly Engineering, often with current APE’s; the elaboration of a project 
typically necessitates considerable adaption to fit Mat1, and is often tailored to 
the interest of students from a small range of study programmes.  

Finally, the genesis of a project may involve a mixture of both sources, when the 
APE is identified by scholars with a deep involvement in both areas.   
DIDACTIC VARIABLES AND PRINCIPLES  
To present and analyse the project assignments which have appeared over the last 15 
years, we have defined 10 didactic variables (DV) which are relevant to classify 
them according to the aims which have, explicitly or implicitly, been pursued (Fig. 
2). Each variable has, in principle, a non-numerical range, but can be determined with 
relatively high objectivity for each assignment, based on the text. The detailed 
presentation of any project in terms of the variables will, naturally, be difficult to 
compare with others when given in this form. So when considering all projects it 
appears useful to assign indicatory numerical values to the DVs on a scale from 0 to 
2: for instance, to assess the breadth of Mat1 contents which a given project requires 
the students to work with, 0 indicates that only one topic (such as systems of linear 
equations) is involved, 1 that a few topics from both Calculus and Linear Algebra are 
involved, and 2 that the project combines many topics. Naturally, this “grading” is 
not absolute but relative to other projects (cf. also Fig.2). In the next section, we 
outline a concrete assignment and explain, at the same time, how the numerical 
values of the other DV’s are set. The variables were initially formulated in by the 
authors (based on the first authors’ many years of involvement in the design) and 
subsequently validated and adapted during the actual analysis of assignments. The 
variables thus constitute a concrete answer to RQ2, which is of course a partial 
answer based on experiences from context we described. In the rest of this paper, we 
provide more explanation on how the variables can be used to analyse concrete 
projects and, potentially, to direct and systematize the design of student assignments. 
For each DV, Fig. 2 also includes a brief description of the more or less explicit aims 
which have been pursued in the construction of projects over the past 17 years. The 
brevity required in the Table format does not allow for much nuance. We note that 
what is ideal use of Maple is not subject to complete consensus among the teachers of 
the course, or in relation to the rest of the institution. On the one hand, some course 
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teachers consider that students should use Maple whenever it is useful; while others, 
including colleagues from other departments, often insist on the value of students’ 
mastery of basic manual computation (as reflected in the aims for DV3 given in Fig. 
2). The variables DV4-10 all describe aspects of the relationship between the internal 
transposition represented by the assignment, and Scholarly Engineering (cf. Fig. 1). 
Their values are thus of specific importance to go beyond the parallel transposition. 
Didactic variable (DV): Aim of designers: 
DV1 What breadth of content areas from 
Mat1 are needed to solve the 
assignment? What depth of use? 

As many as possible, preferably 
involving new combinations. Depth 
beyond “standard tasks” required. 

DV2 What new mathematical contents 
are introduced? 

Contents in continuation of Mat1, not 
excessive for students to cope with 

DV3 How must/can Maple be used? Maple should mostly be used to: 
- DV3a How essential is the Maple use? 
- DV3b What types of Maple functions (numerical, 

symbolic, graphical…) are relevant? 
- DV3c Are the relevant use known or new to students? 
- DV3d Is there black box use of Maple ? 
- DV3e What parts of the Maple use are prescribed? 

avoid tedious 
computations, 
and for tasks 
which the 
students could not 
handle otherwise 

DV4. What is the ”theme” and source of 
the problem the project attacks  

Origin in APE, if possible source in 
paper or ongoing research in engineering 

DV5. Breadth of engineering problem – 
are more disciplines involved? 

Ideally more than one branch of 
engineering involved 

DV6. How is the mathematical model 
established and worked with? 

Ok if model is given in the assignment, 
but the students should work with its 
details and structure  

DV7. How realistic is the model? As much as possible for the students 
DV8. How are data used?  Data from the source, used as there 
DV9. Should the students look up 
information outside assignment?  

This is not a main aim, except students 
should use Mat1 course material 

DV10. How complete answers does the 
model give to the main problem? 

Clear and definite answers/points, to 
give students a satisfying experience 

Figure 2. Didactic variables for the analysis of project assignments. 

PRODUCTS 
A total of 37 projects have been proposed during the past 10 years. Not all projects 
are used every year, and all are revised before use, in the light of past experience, 
new needs in the course, and in a few cases, updates to the APE and its solution from 
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Scholarly Engineering. We first give a relatively detailed presentation and analysis 
(based on the DVs) of one project; at the same time, we describe how each of the 10 
DVs is assigned a value as described above, for a rough analysis of the projects. Then 
we present an overview and rough analysis of the whole inventory of projects. 
In-depth presentation of one project 
We now take a closer look at one of the projects, entitled: Heat flow in a house – 
simulation and dimensioning. The assignment is relatively long, 18 pages, including 
about 5 pages of data. The first paragraph outlines the underlying APE: 

The building sector accounts for about 40% of the total energy consumption in Denmark. 
It is a common assumption that there is a large unrealized potential for reducing the 
consumption (…) in a financially sound way. This requires knowledge of the physical 
processes which affect the energy consumption of buildings, the financial aspects of the 
construction and maintenance of buildings, as well as the mathematical methods used to 
compute these. 

It turns out that the energy flow in the building is modelled as an analogy of currents 
in electric circuits (cf. Fig. 3). The project is based on a genuine APE, and 
bibliography of the assignment includes a reference to Nielsen (2005) which is the 
essential source (DV4 = 2), along with a “pricelist” from the construction industry, 
and the last part of the assignment draws on a simple model of investments and 
interest. Relative to other projects, this assignment involves a relatively broad area of 
Engineering fields, and DV5 is set to 2. The introduction acknowledges that the 
model proposed in assignment is “a bit simplified”, but in fact it still gives similar 
results; we assign DV7 to 2, in spite of some problems (see end of this section). 

 
Figure 3. A figure from the project assignment “Heat flow in house”. 

The central model, illustrated in Fig. 3, concerns a house with three rooms, called 
“climate zones”. Here 𝑄𝑄𝑘𝑘′  are the internal and external heat sources (heaters and 
sunlight), while 𝐶𝐶𝑘𝑘 are the heat capacities of the rooms and 𝐾𝐾∗ are the heat 
transmission coefficient of the walls of the house, reflecting that these walls involve a 
variety of layers. Before introducing the final model house, the students’ work with 
the simpler case of a one-room house, and an external temperature 𝑇𝑇𝑒𝑒 which is a 
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given sine function. Based on further assumptions, this leads to the model for the 
internal temperature 𝑇𝑇𝑖𝑖, as a function of time 𝑡𝑡: 

(*)                                      𝐶𝐶 𝑑𝑑𝑇𝑇𝑖𝑖
𝑑𝑑𝑑𝑑

=  𝐾𝐾(𝑇𝑇𝑒𝑒 − 𝑇𝑇𝑖𝑖) + 𝑃𝑃(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑖𝑖)  

where 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 is the desired internal temperature (constant), and 𝑃𝑃 is the performance of 
the internal heat source. While (*) is just a first order ODE, it still gives rise to 
interesting Engineering tasks: the investigation of stationary solutions, the 
performance needed to ensure an average temperature of 19.80C, and the thickness 
required to respect given limits on the oscillation of 𝑇𝑇𝑖𝑖. The full model consists of a 
system of three differential equations which are similar to (*) but with an added 
complexity due to the heat contribution from sunlight which, moreover, is 
investigated with two different models. The students must also take into account a 
model of the walls involving layers of materials to be computed using authentic data. 
Finally, to take into account the cost of construction, the students are given a simple 
mathematical model for the total economy involving investment, interest, and 
operation costs; the mathematics is very simple but still gives rise to interesting 
questions regarding how to optimize, for instance, insulation thickness. Throughout, 
the students use real data (DV8=2) but these are all given, so DV9=0. Throughout the 
models are given to the students, and while students are given full and extensive 
explanations, they are not really asked to do more than apply them; thus DV6 = 1. 
The project draws on a broad range of Mat1-topics: harmonic oscillations and 
complex exponential function, single and coupled differential equations, solved using 
advanced matrix algebra, involving both eigenvalue problems and quadratic forms. 
Thus DV1=2, while DV2=0 as almost no new mathematics is introduced (the 
exception being the argument required to justify the stationary solution to the system 
of differential equations, which involves an extended eigenvalue problem). 
While most of the tasks can in principle be solved manually, the visualizations of 
temperature variations corresponding to different parameter values decisively require 
a tool like Maple. The assignment moreover invites to numeric experimentations, 
possibly based on graphical representations, and standard use for tedious operations 
like inversion of matrices, make the overall potential of Maple-use relatively average 
for projects; we thus assign DV3=1, even if the realized use by some students in 
some cases goes beyond a mere use of techniques known from the rest of the course. 
In real practice, the project also suffers from some flaws. Some of the questions lead 
to less interesting results (like tedious computations leading to a requirement of a 
four-doubling of the wall thickness in order to reduce an already negligible 
oscillation of 0.120C for 𝑇𝑇𝑖𝑖). More serious is the breakdown of the model when taking 
into account the contribution of sunshine at low temperatures such as 80C, where the 
stationary answer cannot be found. It can be argued that such problems often arise 
with simplified models, but it still leaves a negative impression on many students, 
which might be avoided by future revisions. Altogether, we consider DV10=1. 
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Inventory of project assignments 
Fig. 4 lists the inventory of projects used in the last 10 years, analysed using the DVs.  
    DV (cf. Fig. 2) 
Project name (shortened in a few cases) 1 2 3 4 5 6 7 8 9 10 
Oscillations in Axle-bearing Systems 2 0 1 2 1 1 2 2 1 2 
Micro/Nano Cantilever Based Mass Sensor 1 2 1 2 1 1 2 1 1 1 
Enzymatic Hydrolysis of Cellulose 1 1 1 0 1 2 1 1 0 1 
Modelling 2D Halbach permanent Magnets  1 2 2 2 1 2 2 1 0 2 
Factorization of Integers  0 2 2 0 1 0 1 0 0 1 
Heat flow in house – simulation, dimensioning 2 0 2 2 2 1 2 2 0 1 
Quantum Mechanics in a Nutshell 2 2 2 2 2 1 2 2 0 1 
Red Blood Cells – Optimization in Nature 1 2 2 1 1 2 1 0 0 2 
Utilization of the Waste Product Whey  1 0 1 2 1 2 1 1 0 2 
Forced Pendulum 1 2 2 1 1 2 1 0 0 2 
Stability in Chilled Tank Reactor 1 2 1 1 1 1 1 1 0 2 
Optimization of Work Cycles  2 1 2 2 1 1 1 0 0 2 
GPS and Geometry 1 2 2 2 2 1 1 1 2 1 
Oscillations in Grid Constructions 2 2 1 2 1 2 1 0 1 1 
Groundwater Flow in the Forest Vestskoven 1 2 2 2 1 1 2 2 0 1 
Internet Hit lists  1 2 2 2 1 1 2 2 1 2 
Short Circuit in Electric Networks 1 2 2 1 1 1 1 0 0 2 
Simulation of Stretch Reflex 1 1 1 2 1 1 1 0 0 1 
Parking Orbits of Satellites 2 1 0 1 1 2 1 0 1 2 
Solar Energy Absorption in Curved Glass houses 2 0 2 1 1 1 1 0 0 1 
Flow in Chemical Reactors 2 0 1 1 1 2 1 0 1 2 
Finite elements in One Dimension 1 2 2 2 1 2 1 0 1 1 
Geodesic Curves 1 2 2 0 0 2 2 0 0 2 
The Brains Glycose Metabolism 1 2 2 2 1 1 2 1 1 1 
Resistors and Markov Chains 1 2 2 1 1 1 1 0 0 2 
Dosage of Anaesthesia  2 1 1 2 1 2 1 1 0 2 
Anthrax – Attack, Escape and Rescue 1 2 2 2 1 2 1 1 2 2 
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Decomposition of PCE 1 1 1 2 1 1 1 2 1 0 
Modelling Concrete Moulding 1 2 2 2 2 1 2 2 2 1 
Soap Membranes 1 2 2 1 1 1 2 0 0 1 
Distribution of Electrons in Semiconductors 1 2 2 1 1 1 2 0 0 1 
Methane Concentration Profiles in Soil 1 2 1 1 1 1 1 1 0 2 
Train Running in the Alps 2 1 2 1 2 2 1 0 1 1 
Proteins’ 3 Dimensional Structure 0 2 2 2 1 1 1 2 1 1 
Reaction Kinetics 1 2 2 1 1 1 2 1 0 2 
Error Correcting Codes 0 2 2 1 1 1 1 0 0 2 
Phononic bandgaps 2 0 2 2 2 2 1 0 0 2 

Figure 4: Inventory of current projects with values of the didactic variables 

A number of interesting tendencies can be identified in the above table, including 
apparent dependencies of some variables, potentials which appear relatively 
unexplored (like DV9), etc.; some of these are still not fully analysed. We stress that 
a simple sum of the values of didactic variables, for a specific project, cannot be 
construed as a measure of the “didactic quality” of the assignment. One reason is that 
the variables are not of equal importance (in particular, DV1, 4 and 10 are essential). 
But more importantly, one cannot always construe the number two as being 
objectively “the best possible value” of the DV; the aims listed in Figure 2 are open 
to debate and the viewpoint of teachers and designers may differ. A good example is 
DV4, where we have given “2” for projects with a clear APE, “1” for projects with an 
authentic problem from basic science (e.g. Chemistry)  and “0” for projects which are 
not based on an APE but on a (prima facie) purely mathematical problem, such as the 
project “Geodesic curves”. One can argue that a project of the “0” type can also be of 
high quality as a project for engineers, in view of the importance in several branches  
of the mathematical problem (in the example, DV2=2 and indeed, geodesic curves 
have multiple applications in many branches of engineering, see e.g. Patrikalaksis 
and Maekawa, 2010, 265-291). A similar uncertainty must also be pointed out for 
other variables such as DV3, where the further graduation suggested in Fig.2 could be 
useful to provide a more nuanced picture than in the analysis in Fig. 4, where “2” 
merely means that Maple is indispensable for large parts of the project. 
SUMMARY AND OUTLOOK 
We have presented the principles, process and products of a relatively longstanding 
effort to integrate elements of scholarly Engineering (APE’s) in the internal didactic 
transposition of basic mathematics in a course catering to a wide range of 
Engineering programmes, going well beyond isolated “applications” of a Calculus or 
Linear Algebra. We have emphasised the multiple dimensions which such an effort 
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needs to consider, in order to maintain the link with the mathematical knowledge to 
be taught within the module in question, and to establish non-trivial links with 
Scholarly Engineering (cf. Figure 1). Certainly, the concrete inventory of variables 
can be developed and adapted further, and we believe it can eventually become a 
valuable explicit basis for the discussion of aims (right column in Fig. 3) of projects 
in our and other similar contexts. More importantly, considering such explicit 
variables could be an important tool for systematizing the design process, both as a 
check list for constructing new projects and (in combination with the analyses behind 
Figure 4) to identify potentials for enriching existing projects. We expect that the 
variables will also become useful guidelines for investigating the effects of the 
project work in this course as a means to facilitate the transition to later courses 
where mathematics is so fully integrated into the Engineering knowledge to be taught 
that the latter is in practice as inseparable from mathematics as music is from sound. 
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We studied how engineering students in a large class (n=346) can be activated by a 

project-based task, in which they have to model mathematically the motion of an 

object. The students had to throw an object, use (1) their smart phones for filming, 

and (2) tracker software for capturing the motion. Through a poster, they had to 

report their video analysis. We framed activation through the concept of flow, which 

is a state of being fully absorbed by an activity. We administered a web-based 

questionnaire (response rate 69%). The results show that such a project-based task is 

feasible with >300 students and activated them: three out of five experienced flow. 

Also, we validated the theory that for experiencing flow, a task must be perceived as 

challenging and that one’s skills should match that challenge.  

Keywords: flow, large class, mathematical modelling, mathematics for engineers, 

novel approaches to teaching, project-based tasks. 

INTRODUCTION 

Harris et al. (2015) studied engineering students’ values regarding mathematics 

finding that not many first-year engineering students have a positive stance towards 

mathematics. The students see mathematics as a hurdle in their studies, and they are 

disappointed by the mathematical demands in the first year of their studies. Some 

even indicate that they wouldn’t have chosen the engineering direction if they had 

known about the mathematics demands before. Nevertheless, mathematics needs to 

be part of engineering studies, because alumni from engineering studies, such as 

engineers, managers, researchers, etc., need mathematical modelling competencies to 

describe, analyse, and predict phenomena to solve problems at the workplace (Alpers 

et al., 2013). This means, that in particular mathematical modelling needs to be 

included in engineering studies. It can be integral part of the mathematics curriculum, 

but the learning of mathematical modelling can also take place in other disciplines, 

such as physics, where mathematical models are used to describe and analyse 

physical phenomena. The study described in this paper centres on a mathematical 

modelling task situated within kinematics (the physics of movement). 

In university first-year studies, engineering students often attend large-scale lectures 

and have tutorial sessions to practice examination-like exercises. However, research 

has demonstrated the advantages of activating, inquiry-based tasks over these 

traditional instruction methods (De Jong, Linn, & Zacharia, 2013; Freeman, et al. 

2014). This means that we need research in engineering education into what 

mathematical modelling tasks can be activating, how these can be organised, how 
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students experience these tasks, what task characteristics create challenges, etc. 

Moreover, studies with large groups are scarce; the review by Freeman et al. (2014) 

shows that most studies on students’ activation are carried out with small or medium 

size classes (up to 110 students). With more than 300 first-year students, we can add 

to the research on how engineering students in large classes can be activated.  

Sullivan et al. (2011) describe challenging tasks as requiring students to: plan their 

approach, especially sequencing more than one step; process multiple pieces of 

information, with an expectation that they make connections between those pieces, 

and see concepts in new ways; choose their own strategies, goals, and level of 

accessing the task; spend time on the task and record their reasoning; explain their 

strategies and justify their thinking to the teacher and other students. We used a task 

format that fits this description: a project-based task, which is a task that cannot be 

completed within limited time, which has a clear, but not straight-forward goal, there 

are various approaches to tackle it, and results must be presented through a product, 

such as a written report or an oral presentation (Blomhøj & Kjeldsen, 2006). 

THE TRACKER PROJECT TASK 

Domínguez et al. (2015) did research with a group of 20 engineering students and 

asked them: a child is throwing a candy to another; make a mathematical model of 

this movement. This modelling task is an open-ended task with characteristics of ‘a 

challenging’ task (Sullivan et al., 2011): students need to sequence more than one 

step; process multiple pieces of information and connect the throwing and the model; 

choose their own strategies, goals, and level of accessing the task; spend time on the 

task. We adapted the task in the following way: (1) students could choose whatever 

movement of whatever object: throwing a ball, jumping their skate board, etc.; (2) 

students were asked to use their smart phones for filming, as nearly all students 

nowadays have smart phones with high quality cameras; (3) students were asked to 

download tracker software ( http://physlets.org/tracker/ ), which captures motion in 

videos based on contrasts and yields a table of time and position coordinates 

(measurements). We made a tutorial video on the use of Tracker. The measurements 

were to be mathematically modelled (i.e. create a formula that approximates the 

movement). The required, final product was a poster, in which students presented 

their reasoning – another characteristic of a ‘challenging task’ (Sullivan et al., 2011). 

The poster had to contain the video analysis, including a discussion of the accuracy of 

their mathematical model in comparison to the measurements. The task had to be 

done in groups of two or three. Collaboration was convenient, because one student 

alone cannot throw and film simultaneously. In our communication with the students 

we indicated the task as the Tracker Project. 

It was our first time to implement a project-based mathematical modelling task with 

such a large group. Unlike earlier studies (e.g. Domínguez et al., 2015) we did neither 

have a group of 20 students, nor uniform equipment, nor sufficient staff. We couldn’t 

learn from earlier experiences, as – to our knowledge – there are no reports of similar 
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studies carried out with more than 300 students. The few studies on the activation of 

students in large classes centre on using clickers in lectures (Freeman et al., 2014). 

Thus, we didn’t immediately want to focus on students’ learning, but instead, first 

study the feasibility of such a task with such a large group, with the variation of 

cameras, and with students who have little experience with open-ended tasks. We felt 

that we – as lecturers – should first take the opportunity to learn how it worked in 

practice, whether students liked the task and how they engaged with it. 

In this paper, we report on our research into the extent to which students’ were 

activated by the modelling task. By activation, we mean – for the time being – that 

the task grasped them and that they liked working on it. Thus, our study is on 

students’ attitudes, which is an aspect of their affect. Based on Harris et al. (2015), we 

expected the engineering students to have preconceived beliefs about mathematics, 

and we wanted to avoid that our research would be contaminated by their biases. 

Therefore, we undertook our research by limiting the use of the word mathematics in 

our communication with students. Abundant use of the term mathematics could 

trigger memories and bias of traditional mathematics education, which could interfere 

with their evaluation of the Tracker Project Task. 

THEORETICAL FRAME 

Recent research in the field of mathematics education and affect conceptualize the 

latter in terms of complex, dynamic systems and participatory environments (Pepin & 

Roesken-Winter, 2015). However, while distinguishing between aspects of affect 

(values, emotions, beliefs, attitudes, etc.), these researchers don’t differentiate 

between aspects of mathematics education. Yet, mathematics education contains 

many aspects, such as instruction formats, teacher attitudes, tasks, etc. These become 

invisible when researchers address mathematics holistically and ask students to mark 

their (dis-)agreement to statements such as: ‘mathematics is my favourite subject’. 

(Dis-)agreement to such a statement gives little room for nuances and contexts. A 

student partly agreeing with this item might rather have said: “mathematics with this 

particular teacher is my favourite subject, but last year it was the opposite” or 

“mathematics could be favourite, if it had relevance for my future”. 

We wanted to study students’ affect through an activity that differed from standard 

activities within traditional mathematics education. Thus, we sought an activity-based 

conceptualisation of affect. An activity-based perspective in mathematics education 

aligns with a socio-cultural perspective. One of its promoters, Lerman (2000), 

describes mathematics as a socio-cultural practice embedded within a community. 

Within a school institution, mathematics is a practice embedded in a community of a 

teacher and a group of students, its rules, language, etc. The activities consist, among 

others, of explanations by the teacher, and work on tasks by students. This practice 

differs markedly from mathematics as a practice within a research community, 

whereby the actors organize mathematical patterns, solve creatively a non-routine 

problem by using mathematics, and actors may reach different answers. Describing 
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mathematics socio-culturally as a practice embedded within a community entails 

focusing on the activities undertaken by the actors, which are mediated by language, 

tools, etc. Using an activity-based conceptualisation of mathematics enabled us to 

relate affect to distinct activities and not to mathematics holistically, whereby we 

could distinguish mathematical activities as having different contexts. In our study 

the activity was guided by the Tracker Project Task and students had to use 

mathematics within a kinematics context. 

We sought an activity-based conceptualisation of students’ affect with respect to 

them being activated. Activation is an aspect of attitude, just like boredom or anxiety 

(Pepin & Roesken-Winter, 2015). For this conceptualisation, we turned to a concept, 

which describes “a state in which people are so involved in an activity that nothing 

else seems to matter; the experience is so enjoyable that people will continue to do it 

even at great cost, for the sheer sake of doing it” (Csíkszentmihályi, 1990, p.4). 

Nakamura and Csikszentmihalyi (2009) describe how they observed rock climbers, 

gamers, painters and researchers during their challenge, and how these people got 

absorbed in their activities, felt happiness, forgot about time and basic needs (eating, 

resting), and were intrinsically motivated (motivated by the activity itself, not by an 

external incentive). They coined this state: flow.  

Flow is an activity-based concept: without activity, there cannot be an experience of 

flow. Flow is an experience of an individual, yet, the activity is culturally embedded 

(e.g. gamers play a game created by others, painters expose their work). In fact, social 

activities can intensify flow through group cohesion (group flow). We will use 

students’ self-reported experience of flow as an operationalisation of their activation 

through the Tracker Project task. Flow has also been studied in mathematics 

education (a.o. Armstrong, 2008; Drakes, 2012; Liljedahl, 2016), observing that 

many students in traditional mathematics classes is to not experience flow at all.  

Figure 1 (left) illustrates how flow depends on the perceived challenge of a task and 

perceived skills of a person engaging in the task (Nakamura & Csikszentmihalyi, 

2009). If the activity is too challenging for the skills, then the task may cause anxiety. 

If the activity is too easy for the skills, then the task may cause boredom. When 

challenge and skills match, a person engaging in a task may experience flow. In later 

work, Csíkszentmihályi and colleagues adapted the diagram, adding more affective 

states, and stating that flow can be only experienced when a participant perceives the 

task as more than averagely challenging, and that he/she thinks to have the skills that 

match this challenge, see Figure 1 (right). The older diagram still appears in recent 

studies (e.g. Liljedahl, 2016). Therefore, we opted to use our study to empirically 

validate the old versus the new theory and see whether flow occurs only when the 

actor perceives a more than average challenge. Our research was guided by two 

questions. The first was empirical: To what extent did the Tracker Project Task make 

students experience flow? The second was about the choice of flow diagram:  Can 
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one of the Csíkszentmihályi diagrams of flow be confirmed by plotting skills, 

challenge, and flow into one diagram? 

 

 

 

 

 

Figure 1: Flow and other affective states related to task challenge and a person’s skills 

(adapted from Nakamura & Csikszentmihalyi, 2009) 

METHODS 

In the Spring of 2017 we offered the Tracker Project task to all first-year students in 

engineering at our university (Mechatronics, Electrical Eng., Data Eng., Renewable 

Energy, ICT). There were 346 students for whom the task was mandatory. 

The research design for studying students’ activation in terms of flow was a survey. 

We collected data through a digital questionnaire. Participation in the survey was 

voluntary, but encouraged with prizes of NOK 500 (approx $50) for three randomly 

drawn participants. After removing seven participants (four had constantly chosen a 3 

as answer, three were 2nd-year students for whom the task wasn’t mandatory), we had 

n=239 students. This response rate of 69% is very high (Bryman, 2015). 

Based on instruments from earlier research (Armstrong, 2008; Egbert, 2004), we 

developed 15 items in alignment with the task. Each item consisted of a statement, 

asking students for their (dis-)agreement on a 5-point Likert scale, from 1 (strongly 

disagree) to 5 (strongly agree), see the Appendix.  Five items were designed to 

measure students’ perception of flow. For this, they could indicate, for example, 

whether they forgot about the time, and whether they even would do the task if it 

wasn’t obligatory. By having several items related to flow, a participant’s score is 

indicator of the extent to which he/she had experienced flow. Five other items were 

designed to measure students’ self-perceived skills (e.g. ‘the Tracker technology was 

easy to use’ or (inverted) ‘It was complicated to find the right formula of the model’). 

And a further five items were designed to measure students’ perception of the task’s 

challenge (e.g. ‘during this task I started thinking about other movements (what if..?)’ 

and (inverted) ‘this task was more for secondary schools’). 

We make a difference between flow as a concept (written in italics), and the scale of 

Flow (with a capital letter). The concept of flow is a psychological state of a person, 

and therefore it cannot be measured. However, we assume that it can be approximated 

by a score on the scale of Flow. A student’s score on this scale results from his/her 
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answers to the five questions in our questionnaire. The score on the Flow scale is 

calculated by adding the scores on the five questions. As the score on one question 

ranges from 1–5, the score on the Flow scale ranges from 5–25. Likewise for 

respectively, challenge and the Challenge scale, and skills and the Skills scale. To 

increase reliability, within each scale one or two questions were inversely posed, and 

the scoring was inverted, too. As measure of reliability (internal consistency), we 

calculated Cronbach’s Alpha: the Skill scale yielded 0.55, the Challenge scale yielded 

0.73, and the Flow scale yielded 0.63. A scale is considered unreliable if Cronbach’s 

Alpha is less than 0.5 (Bryman, 2015). Thus, the three scales can be considered as 

being reliable. 

RESULTS 

We observed students everywhere on campus, flying paper helicopters, riding 

skateboards, or throwing apples, cats or balls. We received more than 100 posters in 

our Virtual Learning System. As explained before, in this study we didn’t want to 

focus on students’ performance (the precision of their measurements, their 

understanding of modelling, the depth of their analysis, etc.). Instead, we focused on 

the feasibility of an activating tasks for massive students groups, which would show 

in their activation in terms of flow as measured through the questionnaire. Second, we 

aimed at seeing whether the measurement reproduced one of the two flow diagrams. 

The Appendix shows mean scores on all items. 

The mean score on four items in the Flow scale is higher than 3.5, being well on the 

positive side. This indicates that a majority of the students experienced a state of flow 

to quite an extent, in particular with respect to losing track of time, and not being 

easily distracted. Only item 14 was answered below the middle range. This item 

focuses on doing the task even if at some costs (Csíkszentmihályi, 1990), which 

translates in our study to: one out of four would even do the task voluntarily.  

Figure 2: Scores to Skills, Challenge, and Flow scales (n=239) 

When adding the students’ scores on the five questions, we obtain their score on the 

scale Flow. See Figure 2 (right) for a bar graph. This graph shows the frequencies of 

scores (number of students with certain scores). The green bars of the Flow scale 

show a skewed distribution. On this Flow scale, 31 students (13%) scored 13 points 

or lower, 67 students (28%) scored in the middle range of 14–16 points, and 141 

Scale mean (std dev) 

Flow (5 items) 17.0 (3.1) 

Challenge (5 items) 15.5 (3.3) 

Skills (5 items) 18.8 (2.7) 
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students (59%) scored 17 points or higher. When we take 17 points as a threshold, 

then three out of five students experienced flow to quite an extent. The table in Figure 

2 presents mean scores on the scales for Skills, Challenge and Flow (minimal score = 

5, middle score range = 14–16, maximal score = 25). The scores on Skills are highest: 

generally, students perceived themselves as highly skilled; the low standard deviation 

indicates a high agreement among students. The scores on Challenge are around the 

middle range; these scores are most “normal” (making a Gauss curve). 

To validate the Csíkszentmihályi diagrams (Figure 1), we created a scatter diagram. 

Each student was represented by a dot defined by his/her Skills score on the x-axis 

and his/her Challenge score on the y-axis, see Figure 2. The resulting diagram shows 

a scattered distribution, which means that there is no correlation at all between the 

scales Challenge and Skills (r = 0.097). In this diagram, we added the third scale, the 

one for Flow, by colouring the dots depending on the student’s Flow scores. These 

scores range from red to orange (13 or lower), via yellow (middle range, 14–16) to 

green (17 or higher). Roughly, one can discern overlapping red, yellow and green 

areas. The red area is more visible at the bottom showing the students who 

experienced little flow (13% of the students). These students indicated that the task 

posed little challenge, independently of their perceived skills. The yellow area runs 

from bottom right to the centre showing the students who experienced medium flow 

(28% of the students). These students either indicated low challenge and high skills, 

or medium challenge and medium skills. The green area is the largest with the 

majority of students (59%). It is in the top-right, fading towards the centre, showing 

the students who experienced flow to quite an extent. These students indicated that 

they perceived the task as challenging, and they perceived themselves skilled.  

 

Figure 3: Flow score indicated by color, as depending on Skills and Challenge  

This colour distribution of Flow does not confirm the earlier Csíkszentmihályi 

diagram (Fig 1, left), as the green dots do not centre on the diagonal. Instead, the 
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green dots are more to be found in the area where the later Csíkszentmihályi diagram 

(Fig 1, right) situates flow: the task must be perceived as quite challenging, and this 

challenge must match one’s skills. A majority of the students in our study indicate 

that they perceived the Tracker Project Task as such. 

In light of the different regions in the later Csíkszentmihályi diagram, we also see 

many students who may fit into the affective states of ‘control’, ‘arousal’ and 

‘relaxation’. Only few students may fit the more negative affective states of ‘apathy’, 

‘boredom’, ‘anxiety’ and ‘worry’. 

CONCLUSION, DISCUSSION, RECOMMENDATIONS 

We studied whether a project-based task was feasible with a class of more than 300 

students, that is: whether the task activated individual students. The first research 

question asked: to what extent does the Tracker Project Task make students 

experience flow? The results from the survey showed that a majority of the students 

(59%) experienced flow to quite an extent, forgot about time and wanted more of 

such activities. This result was confirmed by anecdotal evidence of their boasting 

stories in the tutorials of them throwing objects, and the high response rate to the 

survey. This means that the Tracker Project Task activated a majority of the students 

and that they had positive attitudes towards it. Thus, an activating mathematics task 

can be feasible with a large class of engineering students, even if they are known to 

have a negative stance towards mathematics (Harris et al., 2015). 

The Tracker Project Task was designed to be challenging with characteristics such as: 

expecting students to process multiple pieces of information, that they make 

connections between those pieces, choose their own strategies, and explain their 

strategies to others (Blomhøj & Kjeldsen, 2006; Sullivan et al., 2001). We observed 

other characteristics in the Tracker Project Task that activated the students. First, the 

task had a clear goal, which was understandable to all students. We observed this 

through the few questions that we got from the students on how to carry out the task. 

Thus, the task was easily accessible, also known as having a low floor. Second, the 

better students were able to challenge themselves further, allowing for a high ceiling. 

Third, the use of readily-available technology (cameras in smart phones, tracker 

software) may have captivated the engineering students, who are known to be 

technology minded. Fourth, the task was a mathematical modelling task embedded in 

engineering practices, whereby mathematics served non-mathematical purposes; this 

showed students the relevance of mathematics to their studies, and contrasted with 

bare mathematics tasks that alienate and demotivate students. 

Our second research question pertained to the theory of flow and how it can be 

conceptualized in a diagram (Nakamura & Csíkszentmihályi, 2009). Our data reject 

the earlier theory that flow depends on the alignment of skills and challenge. Instead, 

our data support the later theory that flow occurs when the participants perceive the 

task more than average challenging, and that their skills should match this challenge. 
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Furthermore, we take from our study that the concept of flow proved useful for 

activity-based research on affect in mathematics education.  
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APPENDIX 

Mean scores on all items (1=lowest, 3=middle, 5=highest). 

Flow questions mean (std dev) 

(Inv) This Tracker task took too much of my time 

Time was flying when we worked in this task. 

(Inv) I was easily distracted when we worked on this task.  

I would do this task even if it wasn’t obligatory. 

I would like to have more of such practical tasks. 

3.67 (0.88) 

3.40 (0.92) 

3.55 (0.91) 

2.60 (1.13) 

3.70 (1.02) 

 

Skills questions mean (std dev) 

The Tracker technology was easy to use. 

(Inv) It was complicated to find the right formula of the model. 

The aims of the task were clear to me.  

During this task I had full control over what we did. 

Filming the movement of an object was easy. 

3.89 (0.88) 

3.38 (0.92) 

3.96 (0.91) 

3.77 (1.13) 

3.76 (1.02) 

 

Challenge questions mean (std dev) 

This “Modelling med Tracker” task made me curious. 

Making a poster made me feel like a “real scientist”. 

(Inv) This task is more suitable for secondary schools.  

This task helped me to better understand the theory. 

During this task I started thinking about modelling other 

movements (what if..?). 

3.61 (0.75) 

2.52 (1.03) 

2.58 (0.95) 

3.39 (0.88) 

3.31 (1.12) 
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Using schematic representation of resource systems to examine how 

first year engineering students use resources in their studies of 

mathematics 

Eivind Hillesund 

University of Agder, Norway, Eivind.hillesund@uia.no 

Very little research has been done on how students use resources when studying 

mathematics. My project aims to examine this both quantitatively and qualitatively. 

The qualitative data collection includes hierarchical focus interviews, with 

schematic representation of resource systems as a supplement. The intent is to 

reduce the degree of co-producing answers and imposing terminology on the 

students. 

Keywords: Students’ practices at university level, the role of digital and other 

resources in mathematics education, mathematics for engineers, documentational 

approach, hierarchical focus interviews, schematic representation of resource 

systems. 

INTRODUCTION 

The focus of my PhD-project is engineering students’ use of resources for learning 

mathematics. Data collection takes place at three Norwegian universities. I focus on 

which resources they use, to what extent and in what situations, as well as their 

rationale for how they use resources. 

THEORETICAL FRAMEWORK 

I use the documentational approach (Gueudet & Trouche, 2009) to examine those 

questions. Relevant to the approach is the term ‘document’ which is the joint entity 

of a set of resources and schemes for utilizing them in certain situations to achieve 

certain goals. Also relevant is the term ‘resource system’ for the set of all resources 

an individual is using, structurally organized. For instance, what resources to use in 

what situation can be part of the structure. The framework is designed to examine 

teachers’ practices and professional development, but can be adapted to examine 

students’ use of resources as well. One of the focuses of the framework is how 

students’ documents develop (called ‘documentational genesis’). I look at students’ 

practices during their first year of university, when I expected a lot of development 

to occur. 

METHODOLOGY 

I use both qualitative and quantitative means for data collection. I do so because I 

want to study resource with some depth, while also getting an indication of the 

variety of uses. Here, I will focus on qualitative data collection. I used hierarchical 

focus interviews (Tomlinson, 1989). These contain strategies to reduce the degree to 
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which the interviewer co-produces the answers. Prior to the first interview (of three), 

I asked each student to draw a ‘mind map’ about their use of resources in 

mathematics. I used their mind maps to create schematic representations of their 

resource systems (SRRS), inspired by Pepin, Xu, Trouche and Wang (2016). From a 

pilot interview in spring 2017, I theorized that the construction of a mind map helped 

students structure their thoughts about using resources prior to the interview. 

RESULTS 

Qualitative data collection spanned the fall semester of 2017, with nine students from 

three different universities. All students created a mind map during the first 

interview. In the other 18 interviews, they made changes to their mind maps a total of 

eight times. The students seemed comfortable talking about their use of resources 

after constructing a mind map. Their descriptions of their mind maps also yielded 

interesting insight into how they perceived their use of resources. 

The students structured their mind map in several ways. They all contained 

resources, but five students also had categories in their mind maps, three had 

situations, five had what purpose they used certain resources for and one had features 

they appreciated about certain resources. The resources that the most students put in 

their mind maps were the textbook (nine), fellow students (seven), lectures (six), 

exercises (six), lecturer (five), pencil and paper (five), Wolfram Alpha (four), 

calculator (three) and google (three). 

CONCLUSION 

It is difficult to discern whether differences in students’ mind map structure only 

represent stylistic choices, or meaningful differences in how they perceive their use 

of resources. While a student’s mind map can say much about their documents, 

analysing the mind map in a vacuum is insufficient. However, when mind map 

construction is combined with an interview, the two forms of data may shed some 

light on one another. The interviews may also benefit from the construction of the 

mind map, as it gives students some time to consider their use of resources prior to 

the interview. 
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The research presented in this poster addresses the poor performance of many 

economics students in their first mathematics course at university level. Two different 

universities are involved in the research, trying to answer the question of “how to 

structure teaching in mathematics to economics students at university level to 

strengthen their mathematical competences?”  

Keywords: Teaching and learning of mathematics in other fields, curricular and 

institutional issues concerning the teaching of mathematics at university level. 

How to structure teaching to improve economics students’ mathematical 

competences? Research papers within economics are often heavily mathematical.

Mathematics is an indispensable tool in studying economics and in the economist’s 

working day. The Norwegian Association of Higher Education Institutions (2011) 

therefore stipulates that mathematics should be a useful tool for students in the 

learning of other subject areas within economics.  

Research has proved that mathematical knowledge in algebra and arithmetic is a good 

indicator for performance in introductory economics courses (e.g. Ballard & Johnson, 

2004). However, many universities are struggling to find satisfactory formats for 

teaching mathematics as a service discipline, particularly in their economics 

undergraduate degree courses.  

At the University of Agder there is a first year, first semester course in mathematics 

for economics students. The proportion of students failing this course, has for several 

years been about 40%. This is an alarming issue and I have experienced similar

problems at Åbo Akademi University in Finland, the university where I studied for 

my master’s degree. Currently these two universities have taken opposite directions 

regarding the teaching of mathematics to economics students.  

Both universities face the issue of students’ diverse mathematical backgrounds. At 

the Åbo Akademi University the course in mathematics for economics students has 

been moved to the first semester, to more naturally be a continuation of school 

mathematics. At the University of Agder, a diagnostic test, compulsory for all 

economics students, is being implemented. The test is followed by a preparatory 

mathematics module; although not compulsory it is recommended that students with 

weak mathematical background take it, prior to the main course in mathematics. The 

preparatory module will consist of online, self-study material with a clear structure,

implemented in the Canvas digital learning environment with 3-4 workshops.  

The overall goal of the research is to improve the teaching of mathematics for 

economics students and to optimize their learning. This poster is about the first stage 
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in the research process and considers productive opportunities for research on the 

diagnostic test and the online preparatory mathematics module. Students studying and 

participating in activities online produce a huge amount of data which gives the 

opportunity to use Learning Analytics (LA) as a research method to better understand 

the mathematical needs of economics students and their use of mathematical 

resources.  e a-Ayala (2017, p. 6) writes: “LA in the context of higher education is 

an appropriate tool for reflecting the learning behaviour of students and provide 

suitable assistance from teachers or tutors.” I thus want to find out what factors in the 

preparatory mathematics module contribute or do not contribute to the students’ 

progress in learning mathematics. Because of the preparatory module being optional 

there is also the possibility to find out amongst students recommended to make use of 

the preparatory mathematics module, did those who took part in the module perform 

better in the main mathematics course examination than those who did not take part?  

At this stage, there are no concrete results to report. Data will be collected and 

analysed in autumn 2018. The theoretical framework to be used is under 

consideration. The theoretical framework will underpin the formulation of research 

questions. Clow (2013) argues for Learning Analytics being atheoretical. There are 

limited studies linking learning theory to learning analytics, but for example  

Macfadyen and Dawson (2010) acknowledge the importance of effective student 

centred learning and mention, as an example of the social aspect for learning, the 

possibility of learner-to-learner communication within digital learning environments,  

and thus they look into the socio-constructivist paradigm.  

At the time of the conference I hope to be more knowledgeable about what 

theoretical framework could guide the proposed research. It will be a valuable 

opportunity to discuss the theoretical framework with more experienced scholars in 

the field during the conference.  

As  e a-Ayala (2017, p. 68) writes: “LA aims at developing models, methods, and 

tools that can be widely used, whose deliverables are reliable and valid at a scale 

beyond a course or cohort to provide benefits for learners and educators without 

distracting or misleading them” I hope the proposed research will provide new 

knowledge about teaching of mathematics to economics students.  
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We report first results from a teaching intervention in an ordinary differential 

equations (ODEs) course for engineering students. Our aim is to challenge traditional 

approaches to teaching of Existence and Uniqueness Theorems (EUTs) through the 

design of problems that students cannot solve by applying well-rehearsed techniques 

or familiar methods.  We analyse how the use of non-standard problems contributes to 

the development of students’ conceptual understanding of EUTs and ODEs.  

Keywords: existence and uniqueness theorems, design research, non-standard 

problems, commognitive theory, mathematical discourse. 

INTRODUCTION AND BACKGROUND TO THE STUDY 

Although ODEs are an important topic in the engineering curriculum, students 

experience difficulties with mastering ODEs and with the very concept of a differential 

equation (Arslan, 2010). In our study, the lecturer, a mathematician, devised a set of 

non-standard problems (see below, Problem 1 of 6) to challenge students’ conceptual 

understanding of the EUTs. These problems formed an assessed piece of coursework.  

 

Figure 1. One of the problems in the study 

We analysed how solutions changed and developed as students worked on the 

problems. Students' discussions in small groups were audio-recorded, transcribed, and 

then analysed using constructs from commognitive theory (Sfard, 2008). We are 

currently in the initial phase of the data analysis aimed at answering the following 

question: How do non-standard problems contribute to the development of students’ 

mathematical discourse and further their conceptual understanding of fundamental 

notions and results in an ODE course?  

RESULTS 

For Problem 1a (P1a), students could use one of two solution methods: M1 

(substitution) and M2 (integration). Working on the problems, several students 

changed their approach. In the final script, only one student produced a correct and 
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complete solution (M2) while 14 (of 19) students used M1 verifying that a given 

function is a solution (which is sufficient for the particular solution), but failed to 

explain why this solution is the general one (hence incomplete M1). We conducted 

similar analyses for Problem 1b (P1b). 

We present one extract (for P1b) as an example of our analyses of students' group 

discussions using commognitive constructs - narrative, routine, ritual, substantiation.  

S12. The first idea was just to try to solve for C and I got the same constant, so that’s  

        OK. And I checked for asymptotes and I got one on x=0, so I noted that the equation 

        is split to get two curves, at least, according to calculator we got it split about zero.  

S11. So it’s undefined at zero.  

S12. Undefined at zero, so we get two different curves and both solutions work. We do  

        not have a continuous curve which happens to intersect at these two points […] 

S14. It’s not continuous for 𝑥 = 0? 

S12. No. So if we take an interval from -3 to 1, it’s discontinuous in this interval, so it’s  

        not a curve that happens to just hit these two points, it is two individual curves that  

        have the same solution. So it’s correct in just a tiny area. 

S11. That was my argument as well. As the theorem states, there is a continuous 

        interval but here it is split into two which contain two different t0’s. 

S13. The theorem says, that there is a unique solution for every interval where the  

        function is continuous. Since there are two intervals and there are two solutions, it 

        does not conflict with the theorem. […] 

 

Note that S12 is using two different visual realizations of solutions, first the algebraic 

representation and then the graph plotted by calculator. He shows that the realizations 

are not equivalent, they do not produce the same result. We see how the student 

demonstrates the ability to solve the problem by developing the realization tree and 

employing the mathematical object of “continuous solution” (discursive object). S11 

is not so sure at the beginning, he is guided by S12 (considered “more experienced” 

interlocutor) and adopts the narrative offered by S12. S13 concludes by reformulating 

the expression “does not violate the theorem” as “does not conflict with the theorem”.  

We see how students worked to substantiate the narrative. This routine can be 

characterized as the exploration. Students gradually improved their abilities in 

developing and endorsing the EUTs narratives while working on all six tasks during 

the group discussions.  
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INTRODUCTION 

Development in Biology over the last three decades have greatly increased the 

need for using mathematics in this field. This has influenced biology students 

which need to develop mathematical knowledge to be able to work with 

contemporary biology models, including frameworks that are applicable in 

analyzing the overwhelming flow of biological data (i.e. Labov, Reid & 

Yamamoto, 2010). Although a quantitative approach is often used in university 

biology courses, yet they remain largely qualitative and descriptive (Nelson, et. al., 

2009).  In Norwegian context, where this study will be conducted, there is an 

increased awareness towards mathematics from the Departments of Biology.

However, there is a lack of information on students’ understanding and usage of 

mathematics within this context. This poster addresses this issue with a particular 

focus on the use of mathematical models (MM) as dynamic tools that allows us to 

observe various aspects of students’ understanding.  

UNDERSTANDING OF MATHEMATICAL MODELS 

Mathematical understanding has been the scope of many researchers. Sfard (1994) 

distinguish between operational and structural way of understanding. While the 

operational understanding includes highly manipulative skills and use them as 

principal means in their quest after meaning, the structuralist is more capable of 

direct-grasp understanding. She defines as reification the transition from an 

operational to a structural way of thinking, and states that this transition is a basic 

phenomenon in the formation of a mathematical object.  

According to Niss (2012), a mathematical model can be defined as mapping 

(translation), f, from a mathematical domain, D, to a mathematical realm, M. In this 

context, D and M, represent not only sets of objects but also collections of 

relationships, phenomena or questions, while f operates on objects and the 

relationships, phenomena or questions. It is important to point out the distinction 
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between mathematical model and mathematical modeling. While mathematical 

model is a tool for facilitating quantification, analyses, predictions and gaining 

insight for a real-world situation, mathematical modeling is the process of the 

creation of such tool (GAIMME, 2016). In this study, I focus only on the use of 

mathematical models as a tool that allows one to observe different shades of 

students’ mathematical understanding, and not on the process of mathematical 

modeling. Observing biology students while engaging in biology problems that use 

mathematical models as their representation, I aim to describe their way of 

thinking and reasoning – as operational or structural thinking.  

METHODOLOGY 

This study is a descriptive case-study in a naturalistic paradigm. For the pilot phase 

of this study, have been selected three different biology courses from a Norwegian 

university (two courses of bachelor level and one in master level). These courses 

have been selected considering their use of mathematical models. In these courses, 

mathematics is implicitly presented using mathematical models (i.e., population 

dynamic models). All students taking these courses have taken previously at least 

one mathematical course (mostly, Calculus course or Statistic course).  

For collection of the data, I plan to video-record sessions in these courses when 

students are engaged in group-work. I will use semi-structured interviews with 

some of the students after some sessions, and personal written notes.  
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This paper is part of a thesis about discrete mathematics and its teaching in higher 
education. The literature on the didactics of discrete mathematics questions this 
branch at different levels: its integration in teaching, the particularity of its affective 
dimension, and its epistemological specificities especially in the fields of proof and 
modeling. We seek to epistemologically define this field and to characterize its 
corresponding mathematical activity by studying the processes of knowledge 
construction, the types of problems, the specificity of concepts and proofs, and also 
the existing links between discrete mathematics and other disciplines. This 
epistemological study has a didactic purpose of defining and analyzing the teaching 
of discrete mathematics in higher education. 
Keywords: teaching and learning of number theory and discrete mathematics, 
teaching and learning of logic and proof, higher education, functional definition, 
epistemology. 
INTRODUCTION AND CONTEXT 
Research on discrete mathematics has rapidly developed in its methodologies, in the 
way it is viewed by mathematicians, and in its range of applications. Discrete 
mathematics has been described by TSG-17 Teaching and Learning of Discrete 
Mathematics at the ICME-13 (2016) as a comparatively young branch of 
mathematics with no agreed-on definition but having old roots and emblematic 
problems. Moreover, it is a robust field with applications to a variety of real world 
situations, and of on growing importance to contemporary society (Hart & Sandefur, 
in press). Over the past several decades, discrete mathematics has proved to be an 
important part of the recommended program for students of computer science 
(Maurer, 1997; DeBellis & Rosenstein, 2004; Grenier & Payan, 1998; Borwein, 
2009; Epp, 2016; Rosenstein, 2016). Epp (2016) points out the strong necessity for 
engaging students in abstract thinking for the course of discrete mathematics and its 
applications in computer science. Discrete mathematics also seems to be a very 
important tool for research in biology and chemistry. On the other hand, discrete 
mathematics has been influenced by a variety of mathematical results, methods, and 
representations (group theory, number theory, geometry, algebraic combinatorics, 
graph theory, and cryptography). Their integration and combination in a profound 
theory is essential for research in discrete mathematics (Heinze, Anderson, & Reiss, 
2004). A recent publication that looks into the future of mathematics, The 
Mathematical Sciences in 2025 (Committee on the Mathematical Sciences in 2025, 
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2013) identifies two new drivers of mathematics: computation and big data. For both, 
it describes how discrete mathematics plays an important role like discrete 
mathematics algorithms for mathematical processing, dynamical systems in ecology, 
networks in industry and the humanities, and discrete optimization (p.77).  
The growing importance of discrete mathematics leads us to define this field for an 
educational purpose. We seek to develop a “functional definition” [1] of discrete 
mathematics, in order to use it to analyze and design didactical situations. 
Specifically, we are concerned with the university level. We first present the state of 
art in the teaching and the learning of discrete mathematics mainly at secondary level 
pointing out some of its epistemological aspects. We then state our research questions 
and describe the methodology aimed at developing a “functional definition” of 
discrete mathematics. Our research is inscribed in a “contemporary epistemology” [2] 
that draws on interviews with mathematicians. Our working hypothesis is that such 
interviews can update and enrich our functional definition. Finally, we discuss some 
preliminary results of the interviews with mathematicians and close with some 
concluding remarks. 
TEACHING AND LEARNING OF DISCRETE MATHEMATICS-  
SUMMARY OF A STATE OF ART 
This young field of mathematics with numerous interconnections has no agreed-on 
definition shared by mathematicians (Maurer, 1997; Hart & Martin, 2016) and has 
blossomed in several directions. There exist different attempts to define discrete 
mathematics, by mathematicians (like in the United States) and by mathematics 
educators (like in France). These attempts depend on the epistemological posture of 
the authors and on the intended function of the definition (e.g. to enable 
mathematicians to define a field, mathematics educators to characterize a domain, 
and teachers to present a topic of mathematics…etc.). For example, in an attempt to 
define discrete mathematics, a mathematician proposed two standard approaches 
toward this definition (Maurer, 1997): by specifying properties or by lists of topics. 
The defining lists are too many (courses aiming for computer science majors, 
algorithm-oriented course, finite mathematics course for social science and business 
majors, high school course) (Maurer, 1997). Mathematics educators have also 
proposed a definition of discrete mathematics such as the following:  

“The main idea is that discrete mathematics is the study of mathematical structures that 
are “discrete” in contrast with “continuous” ones. Discrete structures are configurations 
that can be characterized with a finite or countable set of relations” (Ouvrier-Buffet, 
2014, p. 181).  

Moreover, discrete mathematics acquires particular objects and methods (Grenier & 
Payan, 1998). However, these attempts to define discrete mathematics are not all-
inclusive as they overlook many characteristics of the concepts and proofs involved 
in this field. In our opinion, what is also important for the didactics of mathematics is 
to uncover the specificities of this field of mathematics in comparison to others.  
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Recent research in discrete mathematics, computer science, and mathematics 
education has led to a serious discussion of the principles of proof, the teaching and 
learning of proof, the validity of computer-based proofs or of visual proofs etc. The 
distinction between the terms reasoning, proving, augmenting, demonstrating, and the 
complex relationship between argumentation and demonstration (argumentation 
considered as an epistemological obstacle for the learning of proof), calls for a debate 
and an in-depth analysis (Balacheff, 1987; 1999; Reid & Knipping, 2010). In their 
book, Proofs in Mathematics Education, Reid and Knipping included several 
examples in their discussions, and there might be a reason that a large number of 
these examples come from discrete mathematics (Reid & Knipping, 2010). In the 
special issue of ZDM (2004) and in the ICME 13 monograph (2016), discrete 
mathematics continues to be promoted as the essential mathematics in a 21st century 
school curriculum. Its power lies in the opportunity it provides for supporting 
reasoning, problem solving, modeling, and systematic thinking in the school 
curriculum. Besides, recursion and recursive thinking seem to be powerful modeling 
and problem solving strategies throughout mathematics in general and in the teaching 
and learning of discrete mathematics in particular. The latter has been highlighted in 
the studies of part III of ICME 13 monograph entitled recursion and recursive 
thinking. They describe the integration of recursive thinking with iterative as well as 
algebraic thinking, and they present the benefits of this integration as means to 
deepen the students understanding of each of the geometry of transformations and 
covariation of variables. 
Some epistemological aspects of discrete mathematics pointed out in didactics 
Researchers in didactics of discrete mathematics have proposed several 
characteristics, of epistemological nature, of discrete mathematics. These 
characteristics are the result of their research aiming at investigating the place and 
role of discrete mathematics in education, analyzing the teaching and learning 
situations, integrating new content into the curricula, studying the place and role of 
proof in the curricula, and examining the mathematical expression (symbolic and 
visual) and the use of language. Accordingly, several aspects have revealed such as: 
problems in discrete mathematics encourage the development of heuristic and 
affective processes (Goldin, 2016), there exists a specific relationship between 
discrete mathematics and proof-existence of different situations that provide different 
views on proof (Grenier & Payan, 1998), there exist different models in discrete 
mathematics which necessitates the work on modeling (Grenier & Payan, 1998), 
discrete objects and situations are easily accessible (Grenier & Payan, 1998; Maurer, 
1997; DeBellis & Rosenstein, 2004), there exist different definitions of different 
natures for discrete objects (Grenier & Payan, 1998; Maurer, 1997; Ouvrier-Buffet, 
2011; 2006; Balacheff, 1987), and the fact that examples from discrete mathematics 
enhance the semantic development of mathematical concepts and proving skills 
(Alcock, 2009). Discrete mathematics provide the opportunity to develop students 
reasoning ability, communication skills, problem solving ability, and modeling skills, 

196 sciencesconf.org:indrum2018:174690



  
as well as mathematical habits of the mind that are specifically cultivated by studying 
discrete mathematics such as algorithmic problem solving, combinatorial reasoning, 
and recursive thinking. In short, as Hart & Martin (2016) say, discrete mathematics is 
empirically powerful as a tool to enhance modeling and solving fundamental 
contemporary problems, and it is pedagogically powerful in that it can be used in the 
curriculum to simultaneously address content, process, and affect goals of 
mathematics education.   
RESEARCH AIM AND RESEARCH QUESTIONS 
The importance of discrete mathematics in both research and in education has been 
highly marked and extensively studied in the literature. However, the inclusion of 
discrete mathematics in school curricula faces challenges worldwide. There are 
countries like Hungary and Germany in which discrete mathematics has been taught 
since a long time and as early as primary years of school. In France, the recent 
introduction of graph theory for grade 12 classes of specialty “ES” (economy and 
social) represents an official entry of discrete mathematics into the classrooms, yet 
this integration is still far from that of other European countries. In the United States, 
since 2000 discrete mathematics had been integrated into the curricula such as 
“combinatorics, iteration, and recursion, and vertex-edge graphs…” as mathematical 
topics at school level (K-12) (NCTM, 2000, p. 31). Yet, the new Common Core State 
Standards for mathematics that were developed in 2009 and adopted soon afterwards 
by most of the states in the United States excluded discrete mathematics (Rosenstein, 
2016). Rosenstein explains in his paper that the reasons for this exclusion are: (1) the 
shift in focus from college-readiness to calculus-readiness, (2) the desire to expand 
the STEM pipeline by ensuring that students take more calculus at secondary level, 
and (3) the concerns for international assessments. He calls out the international 
mathematical education community to have an active role in introducing discrete 
mathematics into the curricula of their countries’ schools by developing their own 
curriculum material to promote a broader curriculum. However, although discrete 
mathematics is taught in a shy manner in some countries, this does not mark the 
existence of didactics of discrete mathematics, as a well-structured branch of 
mathematics in the same way there exists the didactics of algebra, calculus or 
geometry. Discrete mathematics exists at the frontiers with other fields like computer 
science. Hence, the teaching of discrete mathematics constitutes a challenge (a 
complex choice of topics with a high demand for instruction). We believe that proof 
processes of discrete mathematics are abundant, diverse, and particular, and we aim 
at exploring this aspect and its connection with other mathematical domains.   
The literature led to the following research questions: how can we define 
“functionally” discrete mathematics (that is how can we describe its epistemological 
aspects, the links between discrete mathematics and other domains, and what are the 
most recurrent types of problems that arise), and how can we describe the teaching of 
discrete mathematics at university level. Their treatment, based on the “contemporary 
epistemology”, will contribute to the delimitation of the field of discrete mathematics, 
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hence an objective of our study. In particular, this treatment will update and enrich 
the conceptions [3] of mathematics educators about discrete mathematics and lead to 
the development of teaching and learning situations.   
Towards a Functional Framework 
Therefore, our research aims at further investigating the above questions and 
exploring the reality of the teaching and learning of discrete mathematics. Our 
objective is to develop a “functional framework” for discrete mathematics in order to 
conduct didactical studies of discrete mathematics. In this way, a “functional 
definition” of discrete mathematics will have two main functions: (1) to delimit the 
mathematical domain of discrete mathematics (epistemological level) and (2) to open 
new horizons for the integration of this field in teaching (didactic level).  
The epistemological aspects of this framework are a very important asset and often 
not taken into consideration explicitly by university teachers. Indeed, Artigue (2016) 
claims the existence of a disconnection between the mathematician’s experience as 
researchers and their experience as teachers. This might be caused by the absence of 
the epistemological dimension in their work as educators. The importance of 
developing these epistemological aspects is linked to the following characteristics as 
stated by Radford (2016), quoting Artigue (2016): (1) epistemology allows the 
reflection on the manner in which objects of knowledge appear in the school practice, 
(2) epistemology offers means through which we understand the formation of 
knowledge (historical production and social production), and (3) epistemology allows 
the reflection on the notion of epistemological obstacle. Accordingly, this first 
function of our “functional framework” concerns the delimitation of the field of 
discrete mathematics, by its contents, its types of problems, and to highlight the 
specificity of the work on proof in relation to other mathematical domains. The place 
and role of modeling in discrete mathematics will also be investigated. As discrete 
mathematics interacts with other mathematical fields, we will also need to 
characterize the links between discrete mathematics and arithmetic, number theory, 
algebra among others. Moreover, since the epistemological definition of discrete 
mathematics is linked to that of computer science (via the problems of counting and 
combinatorics among others), we will be specifying the links and interactions 
between these two scientific domains, explicitly relying on the “contemporary 
epistemology”, i.e. the current problems and interactions between discrete 
mathematics and computer science. Finally, we will integrate into our definition a 
strong didactical perspective by studying the place and the role of discrete 
mathematics in the articulation between secondary and university education 
(particularly between university education and teacher training). We are also 
interested in investigating the process of evaluation conducted at the university level 
of the concepts and procedures proper to discrete mathematics. Ultimately, our 
purpose is to be able to make coherent epistemological propositions for the teaching 
of discrete mathematics at a given level.  
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RESEARCH METHODOLOGY 
Our research methodology to address our first research question, which is “how to 
characterize discrete mathematics at the epistemological level?” is based on a 
contemporary epistemology relying on the experiences of researchers in the field of 
discrete mathematics who are also instructors of discrete mathematics at the 
university level. Our approach is inspired by several previous work relying on 
interviews with mathematicians and mathematics educators such as Nardi (2008). We 
will also base our work on the notion of praxeology of Chevallard, particularly 
sequences of praxeologies, for the elaboration of our framework in order to describe, 
analyze and structure specific contents at the heart of the teaching and learning 
process. The work of Hausberger (2017) on structuralist praxeology in Abstract 
Algebra could be an inspiring example. He uses a historical and epistemological 
study of structuralist thinking and practices combined with a study of few textbooks 
to develop his notion (Hausberger, 2017). In our study, we will be considering the 
choice of particular emblematical textbooks of discrete mathematics at university 
level along with the interviews to study the teaching practices. 
Our study is an exploratory one in which we will conduct interviews with the 
researchers aiming at reinterpreting the literature findings, investigating the 
coherence between the literature and teacher practices, and identifying other 
epistemological aspects. We have conducted interviews with instructors of discrete 
mathematics at each of the Lebanese University and the Mathematical Society in 
France. In accordance with the literature findings, we have developed a questionnaire 
that included open-ended questions concerning the definition of discrete 
mathematics, types of problems, particularly proofs, in discrete mathematics, and the 
utility of discrete mathematics at university level (teaching and learning). We have 
noted important aspects of discrete mathematics, which will enrich our “functional 
definition”, and they will be presented as soon as we complete the rest of the 
interviews.  At the methodological level, Table 1 represents our first approach to 
analysis. However, to better frame the conceptions of the researchers, we will be 
developing in parallel other analyses methods. This will be done using two 
complementary approaches: the first based on the praxeologies of Chevallard and the 
second relying on a theoretical model regarding “conceptions” (Balacheff, 2013).  

Axis Criteria for analysis 
Conception on the definition of discrete 
mathematics 
(in teaching and in research) 

Identify different points of view for 
researchers (since the definition is not 
agreed-on) 

Topics from discrete mathematics Identify and categorize topics 
Conception on proofs in discrete 
mathematics (in teaching and in research) 

Identify types of problems, types of 
reasoning, characteristics of concepts, 
place and role of modeling 
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Links between discrete mathematics and 
other disciplines (in teaching and research) 

Categorize links; are they being 
worked in class? 

Learning of discrete mathematics Identify objectives, learning outcomes, 
learning difficulties, student behavior 

Table 1-Criteria for analyzing the interviews with the researchers in discrete 
mathematics 

To test our questionnaire, we have conducted two pilot interviews with two graph 
theorists, one in Lebanon and the other in France. The interviews were recorded and 
transcribed. We have selected some instances from the pilot study, and they will be 
presented in this paper in the following section. 
PRELIMINARY RESULTS 
Researchers’ conceptions about the definition of discrete mathematics  
In order to analyze the conception of the interviewees about the definition of discrete 
mathematics, we tried to elicit some epistemological aspects of discrete mathematics. 
The pilot interviews showed that for the two interviewees Michel (researcher and 
instructor of graph theory in Lebanon) and Bertrand (researcher and instructor on 
graph theory in France) discrete mathematics is difficult to define, and sometimes it 
is easier to define what is not discrete. Both interviewees used the term “separable” to 
describe discrete objects: 

Bertrand: […] so basically one could say that discrete mathematics concerns objects 
that can be separated […] (our translation)  

Michel: […] the elements can be manipulated separately […] (our translation) 

Interesting examples illustrating this important aspect of the definition discrete 
mathematics (“separable”) will be presented for discussion during the conference. 
However, the interviewees had different opinions regarding the teaching strategies 
and the origin of student difficulties. Michel focuses on the teaching of concepts 
whereas Bertrand puts more emphasis on the methods and strategies (through games 
and experimentations). 

Michel: […] in the courses, I try to convey the basic ideas like in graph theory: 
definition of graphs, adjacency matrices, standard objects such as […] (our 
translation) 

Bertrand: […] in fact, it is to train for reasoning skills ... and by the extrapolation to 
critical thinking [...] that is by working on the problems I have proposed 
like […] (our translation)   

It is this discrepancy between teachers' perceptions of discrete mathematics and their 
corresponding teaching practices at university level that we intend to further explore 
in our study.  
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Researchers’ conceptions on proofs in discrete mathematics  
In order to characterize proofs in discrete mathematics in general, we made an 
attempt at identifying the types of proofs used in discrete mathematics. We find that 
the proofs by contradiction, by induction, and by recurrence are the most used. The 
exhaustive proofs are also used frequently, and according to the interviewees, this is 
due to the fact that oftentimes problems require very complex strategies, which 
compels the students to perform case-by-case analysis. Apparently, this exploratory 
phase of problems is a remarkable requisite of topics in discrete mathematics more 
than in other branches of mathematics.  
Moreover, heuristic processes show in the students’ development of methods, to find 
approximate solutions instead of exact solutions to problems. According to Bertrand, 
it is widely used in the experimentations for proof and in the mathematical 
investigation processes. For Bertrand, in discrete mathematics, heuristics consist of 
taking particular cases (like combinatorial optimization problems), extirpating to 
arrive at a clear solution (questions of tiling and stacking), and modeling illustrations 
especially in difficult problems.  
We have also noticed that the “proof” activity in mathematics has a different status 
than the “demonstration” activity. It is affirmed by the interviewees that there is a 
difficulty for students in writing proofs: 

Michel: […] they feel at ease, they understand everything that is explained but they 
feel unable to reproduce […] (our translation)  

Bertrand: […] we think it’s clear and that we are convinced; however when asked to 
write, to formalize, we do stupid things …] (our translation) 

Therefore, we notice that the place of proof in discrete mathematics is not well 
defined and needs more investigation especially when it comes to its characteristics 
and the distinctions between the terms proof, demonstration writing, argumentation, 
etc. 
CONCLUDING REMARKS  
Currently, we limit our work to researchers of discrete mathematics particularly 
graph theory. For the rest of our work, we plan to complete the analyses of interviews 
with the researchers to further develop the state of the art (to further explore proof, 
modeling and their particularities in relation to discrete mathematics). At the 
conference, we will present some more refined results of these interviews along with 
to the questionnaire used. This mapping along with the review of literature will allow 
us to better develop the criteria that would ultimately lead to a functional definition of 
discrete mathematics. We are also interested in exploring the teaching practices of 
researchers in order to make informed suggestion on the training of instructors at the 
university. An extension to this work might possibly be in interviewing researchers in 
contiguous disciplines like computer science, algebra, or number theory.     
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[1] We aim at constructing a representation of discrete mathematics that presents the concepts, 
types of problems, proof processes and strategies, reasoning skills and other particularities of the 
field of discrete mathematics. 
[2] The adjective “contemporary” indicates that our research focuses on the researchers’ practices in 
statu nascendi. We have conducted interviews with mathematicians to this end. 
[3] In this paper, we use the word “conception” in the common sense, not yet in any specific 
theoretical sense. 
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1. INTRODUCTION

The method of analysis has proved to be extremely stimulating in various fields, and 

has played a crucial role in the emergence of the modern world-view. The combination 

of the two branches of analysis and synthesis has been applied to several fields of 

artificial intelligence, theoretical computer science, and in programming methodology 

(Peckhaus, 2000; Grosholz, Breger, 2000). For many engineering students and 

mathematics undergraduate students, learning the method of analysis in tertiary 

education mathematics is a critical issue. They have the challenge of incorporating it 

in different disciplines related to the design and production of products and services, 

such as, Project Management, Systems Engineering and Design Science. They have no 

theoretical and methodical basis (Koskela and Kagioglou, 2006). A conscious 

integration of regressive reasoning in mathematics university learning raises the need 

for articulation between epistemological and cognitive aspects. Regressive reasoning 

is not completely logically determined, but has elements of contingency, creativity and 

intuition. The purpose of this text is to highlight the potential of Finer Logic of Inquiry 

Model (Arzarello 2014) as a tool for the didactical analysis of the regressive 

reasoning. This model has been used at secondary level education, not being used at 

tertiary level so far. 

Here we will report the results of a study carried out on 32 undergraduate students 

studying a Mathematics Degree at a Spanish University, using strategy games in order 

to promote the regressive reasoning. The choice of strategy games is justified by 

antecedents to this study in which they have been shown to be a key tool for teaching 

problem solving and regressive reasoning (Gómez-Chacón, 1992). 

The present research is primarily exploratory for two reasons: 1) Regressive reasoning 

has been scantly analysed in mathematics and educational psychology; 2) the use of 
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the Finer Logic of Inquiry Model methodology to analyse data from mathematical 

thought at tertiary education is a new development. The theoretical background and 

empirical studies related to regressive reasoning needs to be developed. 

2. REGRESSIVE REASONING 

In mathematics, progressive reasoning alone is not exhaustive to fulfil the tasks of 

solving problems. Great mathematicians like Pappus, Descartes, Leibniz, in their 

discussions about analysis and synthesis, emphasize this fact (Peckhaus, 2000).  

Regressive reasoning is known by different denominations: regressive analysis, 

backward solution, method of analysis, etc. This process includes different ways of 

proceeding in problem solving: backward strategy, strategy of assuming the problem 

solved, Reductio ad Absurdum, beginning at the end of the problem, etc. 

Pappus was the mathematician who has contributed substantially to the clarification 

and exemplification of the method. In the seventh book of his Collection he deals with 

the topic of Heuristics (methods to solve the problems).Where he exemplifies the 

method of analysis as the method of synthesis, therefore making the development of 

this reasoning clearer. Pappus defines the method of analysis as follows: “In analysis, 

we start from what is required, we take it for granted; and we draw correspondence 

(ακολουθον) from it and correspondence from the correspondence, till we reach a 

point that we can use as a starting point in synthesis. That is to say, in analysis we 

assume what is sought as already found (what we have to prove as true).” (elaboration 

by Polya, 1965 and by Hintikka and Remes, 1974). Subsequently he points out: “This 

procedure we call analysis, or solution backward, or regressive reasoning.” (Hintikka 

and Remes, 1974) And on the Method of Synthesis: “In synthesis, on the other hand, 

we suppose that which was reached last in analysis to be already done, and arranging 

in their natural order as consequents the former antecedents and linking them one with 

another, we in the end arrive at the construction of the thing sought. This procedure we 

call synthesis, or constructive solution, or progressive reasoning.”(Hintikka and 

Remes, 1974) 

In summary, the following was considered backward reasoning: the practice that 

involves the making of a number of arguments from the bottom of the problem and 

proceeds through logical correspondences which allow to obtain something known or 

to be reached through other paths. The analytical method consists of a procedure that 

starts with the formulation of the problem and ends with the determination of the 

conditions for its solution. 

3. FINER LOGIC OF INQUIRY MODEL (FLIM)  

Trying to overcome the static approach of habitual logical mathematical reasoning, 

Hintikka (1996, 1999) developed what he calls Logic of Inquiry. The idea, already 

elaborated by ancient Greek philosophers, is building knowledge through a 

questioning process, implicit or explicit. The knowledge is the result of research 
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generated by a specific question. The philosopher introduces it as the “logic of 

question and answer”.  

In his approach he considers Game Theory and game semantics to support formal 

epistemic logic. Hintikka overcomes the limitations and excessive abstractions of 

Tarski's Definitions of Truth (Sher, 1999), which leave the process used to reach the 

truth unexplained. He introduces a top-down definition of truth (Hintikka, 1995) 

unlike the classical and tarskian bottom-up view, highlighting the regressive way of 

proceeding in problem solving from an epistemological point of view. Hintikka (1995) 

retakes the idea of Wittgenstein's language games and some aspects of Game Theory, 

elaborating on a theory where the centre is “a path towards the formulation of a truth 

that, instead of proceeding recursively from atomic to complex formulas, reverses the 

approach and proceeds from the more complex ones to their simplest constituents”. In 

this research, the study of games will try to explain this interlacing between game 

theory and strategic rules that allows the student to win. 

The FLIM elaborated on by Arzarello (2014) sought to propose a concretion of 

Hintikka`s proposal to be used in the Didactics of Mathematics. More specifically, he 

explained the elements needed to analyse the interactions between strategic and 

deductive components of students’ resolution protocols. This model allows for the 

structuring of the resolution in two components: Inquiry Component (IC) and 

Deductive Component (DC). 

In the Inquiry Component the subject alternates a series of questions, answers and 

explorations, according to Hintikka's Logic of Inquiry. Its purpose is to meet the aim of 

the problem, solving conjectures that gradually rise from results of two explorations: 

• Exploration: in order to analyse and understand the situation in which the 

subject is involved 

• Control: in order to verify the ideas or conjectures that came out during the 

development of the activity. 

In the above Component, the cognitive dimension of reasoning is necessary. From a 

cognitive point of view, the progressive-regressive reasoning movement has been 

highlighted by studies such as those of Saada-Robert (1989). The psychological model 

for solving mathematical problems focuses on the distinction between two phases of 

the resolution: investigate why things are like this (backwards, until reach a plausible 

hypothesis -abduction- or a known fact) and verify this investigation (forward, 

codified by the classical logic). Based on Saada-Robert's model, Arzarello (2014) and 

Soldano (2017) characterized this cognitive dimension through the sequence of 

actions in three different modalities: ascending, neutral and descending. 

Ascending modality (A) refers to the path towards the formation of ideas and 

conjectures after a phase of exploration. Descending modality (D) characterizes the 

transition from a conjecture to an investigation. The purpose of descending modality is 
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to find an equivalence between the object of thought (the conjecture, the idea) and the 

object of work (the problem and its resolution). Neutral modality (N) marks the change 

between the ascendant and the descendent; it is the moment in which a conjecture is 

formulated. Observable actions in the subjects are: formulations (of questions, of 

resolutions plan, of conjectures), affirmations, explorations and controls. 

In the Deductive Component the subject is not directly involved in the investigation 

and verification of conjectures and uses a language with a logical nature to formally 

formulate the truth. Three specific modalities are added: detached modality, logical 

control and deductive modality (Arzarello, 2014; Soldano, 2017). Detached modality 

is the moment in which a conjecture, which has not arisen immediately after an 

exploration, is formulated. Logical control is the time when an exploration-control is 

done without using instruments. It is characterised by the use of formal language. 

Deductive modality characterises control phases where instruments are involved. 

Deductive Steps and Logical Chains are added to the Inquiry Component actions. 

Inquiry and Deductive components are not often well differentiated during problem 

resolution where the subject passes from one component to another, even more than 

once. We can say that the typical components structure is nested in this way: (IC ~ (DC 

~ (IC ...))) with “~” that expresses the passage from one component to the other. 

Observable actions 
Modalities 

General Specific 

Verbal 

Handwritten 

Gestures 

Others (gaze, …) 

Silent 

Question 

Affirmation 

Conjecture 

Exploration 

Control 

Plan formulation 

Deductive step 

Logical chain 

Ascendant 

Neutral 

Descendant 

Detached 

Logical Control 

Deductive 

Table 1 

Table 1 summarizes some observable actions and their modalities according to the 

definitions given and that will be considered in the analysis. 

4. AIM AND METHODOLOGY  

Aim 

The aim of this paper is to show an evaluation tool for examining how regressive 

reasoning develops in university students. In particular, how the FLIM can be a valid 
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tool to analyse the interplay between cognitive and epistemic in the regressive 

reasoning.  

Participants and instrument 

Data were collected in 2014 from 32 (19 women and 13 men, aged between 21 and 23) 

Caucasian undergraduates working toward a BSc. in mathematics. All of the 

participants were in their last year of academic studies. They were following advanced 

courses in several areas of geometry, algebra, probability and analysis. With regard to 

solving problems, the students had been introduced to the problem solving heuristics. 

They had not received any special training about backtracking heuristics. 

The work dynamic started with individuals being given paper and pencil with which 

they need to resolve two games, each lasting one and a half hours. Figure 1 shows the 

problem which we will analyse in the results section. Strategy games allow for the 

natural development of regressive reasoning. These games are disconnected from the 

mathematical content which forces the student to use their mathematical knowledge 

acquired in their university degree. 

The Triangular Solitaire (Gómez-Chacón, 1992) is a game for a single person that 

requires a board with 15 boxes as the figure shows. 

 

 

 

These are the rules: 

1. Place the pegs in all boxes, except in the one marked in black. 

2. The player can move as many pegs as they like as long as they are 

able to jump over an adjacent peg and onto an empty space (along the 

line). At the same time, he "eats" the peg that was jumped over and that 

peg gets taken out of the game. All pegs move in the same way. Pegs 

can move around the table in any direction. 

Objective: The player wins when there is only one peg on the table. 

Figure 1 

Students were given the game and asked to describe their approaches to solving the 

problem on protocols including: thought processes in the resolution, explanations of 

the difficulties they might face, and strategies they would use in order to solve with 

paper and pencil. A qualitative analysis was chosen to examine the resolution 

protocols of the students through the “Finer Logic of Inquiry Model” (Arzarello 2014). 

A general analysis of 32 students took place before a case study was carried out. In this 

paper we describe an individual student case in order to show a deep understanding of 

the tendencies of the behaviour related to the sequences of actions and movement 

between modalities of reasoning. The protocols analysis, at a macroscopic level of this 

case, provides the identification of reasoning difficulties and way of using backward 

reasoning that determined success or failure in the resolution. It’s worth noting that 

Student M (see section 5) is a key informant of the group because he belongs to 60% of 
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students that use the backward strategy and incorporates graphical representations to 

achieve the transition between modalities. 

5. REGRESSIVE REASONING USE (CASE STUDY) 

Regressive reasoning use varies among the group of students. Let us examine a case 

study. A student (Student-M) has combined regressive reasoning with different 

strategies and auxiliary constructions: drawings, graphical representations. Student-M 

indicates difficulties in creating the solution because of the actions which are needed 

for discovering the solution and because of the recognition of representational 

equivalences. The visualisation and representations which are used help during the 

resolution process; Student-M performs continuous control over its own resolution 

process. She is able to slightly modify the strategy or even change it completely to 

reach the solution. For analysis purposes, Student-M’s protocol has been divided into 

the following phases: familiarisation, exploring and carrying out the strategy, results 

verification. According to the Finer Logic of Inquiry Model, this student’s protocol is 

mainly characterised by the inquiry component. This begins with the first part of the 

protocol, corresponding to the familiarization phase. The entire protocol has been 

translated highlighting the parts where student M uses backward reasoning (in Italics).  

Student M protocol 

1 To accomplish the exercise, I’m going to number the 
holes on the board in order to leave a trace of the 
movements I'm doing. At the beginning, all the holes are 
filled except number 5. 

 

Figure 3 

2 I observe that you can only start with two movements 14-9-5 or 12-8-5. 

3 Since this is an equilateral triangle, I think it does not matter what the starting 
movement is because they should lead to "symmetrical" solutions. 

4 I’ll start to do it roughly. 

5 The steps I’ll take are: 14-9-5; 7-8-9; 12-13-14; 2-4-7; 11-7-4; 10-9-8; 3-6-10. 

6 At this point, I note that the only way to eliminate 1 would be to move 8-5-3. 

 

7 Here I notice that [with these 
movements] the game cannot be 
solved because the 4 cannot be 
eliminated and the remaining pegs 
cannot eliminate each other. 

 

Figure 4 

8 I realise that I can try to go backwards, that is, starting with just one peg in one 
position and undo the jumps trying to fill the table with the exception of a hole. 
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9 Looking at the board, I think that maybe the fact that the last piece stays on the board 
(the peg from which I start to move backwards), in a position that you can come up 
with many jumps, facilitates the strategy. These places are positions 4, 6 and 13 
because you can get to them with 4 jumps. 

 

10 To fill up the game table I will have to do 13 moves, because there are 15 holes, an 
initial peg and an empty final hole. 

11 Let's start only with peg 13. 

 

Figure 5 

12 Here I already notice that I do not reach the solution because I will never fill the top 
corner due to the absence of a peg in the 3rd row; I should do 11-7-4 leaving corner 
11 without a peg [so that the top corner will be filled]. 

13 Let's start with the reason for the various steps: 

 13-14-15: I want to start filling the corners as soon as possible because these holes 
are the hardest to fill up (the peg is in hole 15 and I will not move it anymore). 

 14-13-12: Random movement. 

 12-8-5: I want to leave hole 12 free to get to the next step at corner 11. 

 8-9-10: I want to leave hole 8 free to retrieve peg 12 (to fill 13 and 14) in the next step, 
so I can complete it  later [the row]. 

 12-13-14: I want to complete the row below. 

 5-8-12: I want to complete the row below. 

14 I think trying to fill the centre was not a good strategy... 

15 … so now I'm going to try to fill the outside of the triangle, that is, [I'll try to] undo the 
jumps to the corners and sides. (Playing normally would involve jumping to the centre 
avoiding corners and sides if possible.). 

16 I also get stuck [on the fact] that by eating pegs or 
undoing the jumps, the movements that are made are 
triangular. So I will try to fill the smaller triangles 
contained in the big triangle. 

          

       Figure 6 

17 First, I will fill the lower right triangle.  

18 Now I’m going to fill the upper triangle; to do so (Since i do not want to remove the 
peg I  placed in position 1), I have to get some pegs in the 4th row that, undoing the 
jump fills the 2nd and 3rd row. I undo the jump with the 9. 

19 Now you have to fill the lower left triangle. 

  

Figure 7 
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20 Now I just have to write the jumps in the correct order 

 

Figure 8 

The following table shows actions and cognitive modalities associated with each 

protocol line and figure; a check ( ) indicates the lines where the regressive reasoning 

is used. The last column of the table shows different strategies involved.  

Familiarization phase 

Protocol parts Action Modality R.R Strategy 

Lines 1-4 y Fig. 3 Exploration Descendant   

Line 5 Affirmation Neutral   

L. 6-7 and Fig. 4 Exploration Ascendant   

Explore and carry out the strategy 

Line 8 Plan Neutral  Backward 

Line 9 Exploration Ascendant  Begin from the end 

Line 10 Affirmation Descendant   

Line 11 y Fig. 5 Exploration Descendant   

Line 12 Affirmation Ascendant   

Line 13 Exploration Ascend/Descen   

Line 14 Affirmation Ascendant   

L. 15-16 and Fig. 6 Plan  Neutral  Auxiliary construction 

Lines 17 y Fig. 7 Exploration Descendant   

Line 18 Exploration Ascendant   

Line 19 y Fig. 7 Exploration Ascendant  
 

Results verification 

Line 20 y Fig. 8 Control Detached   

Table 2 
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This cognitive analysis shows that the first two resolution phases are characterised by 

a continuous alternation of explorations and plan formulations together with an 

alternation of descending and ascending modalities. The second resolution phase 

involves the continuous use of the going backward strategy. Subdivision of the board 

into rows and then into triangles is fundamental to reach the solution. Student-M 

modifies the strategy slightly by adding new elements in the resolution (board 

subdivision into rows and triangles) typical of problem solving using regressive 

reasoning. Crucial points of backward reasoning are reached in the ascending 

modality (see  in Table 2) where ideations occur. A routine that can be established 

regarding the use of modalities is A~N~D~(A~N~D~(A~…)). The neutral modality 

marks the transition between A and D and it is characterised by the incorporation of 

auxiliary constructions as generating tools of new knowledge (epistemic transaction).  

In the third phase of the resolution, by writing and graphically representing the steps 

taken to reach the solution, Student-M (in detached modality) checks the result 

obtained by going backwards.  

6. CONCLUSION 

Analysis with the FLIM model allows to model student’s cognitive movement in a 

logical concatenated way. The strategic aspects are more dominant in the ascending 

and descending modality, while the epistemic ones are prevailing in the neutral 

modality. Our study confirms results obtained by Soldano (2017) (with upper 

secondary school students in geometry): the ascending modality characterises the 

backward way of thinking, while descending is the cognitive modality that 

characterises the progressive way of reasoning. However, most likely, abductive 

reasoning has been used in the formulation of conjectures in ascending modality, but 

we cannot be sure of it by only analysing the protocol, we need to complete this 

information by interview. This is an open question for further research.  

At a phenomenological level, this method allows us to analyse the development of 

strategic aspects within the cognitive modality movement to reach the solution. But it 

mainly focuses on cognitive modalities while it doesn’t distinguish between the 

strategic principles that are used. Through this tool it’s possible to emphasise that 

regressive reasoning involves auxiliary intuition elements that are necessary to 

achieve the solution; these aspects are developed by looking at the consequence and 

looking for the premises. A larger sample size with two different tasks, find the 

winning strategy and mathematically solving the game, would allow us to advance in 

the development of the tools for evaluating regressive reasoning. 
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A Study of Students’ Reasoning About “There exists no …” 
Stacy Brown  

California State Polytechnic University Pomona, brown@cpp.edu 
In this paper, we report findings from two studies of students’ engagement in 
metatheoretical tasks drawn from a model of the reasoning requirements of a proof 
by contradiction. The studies aimed to explore students’ engagement in the tasks, the 
extent to which they were successful, and the similarities and/or differences between 
students’ and mathematicians’ approaches. Findings indicate students tend towards 
syntactic, logical theory approaches while mathematicians gravitate towards 
semantic, mathematical theory approaches. Drawing on interview data, it is shown 
that students may use symbols to avoid employing fragile content knowledge, yet 
encounter further difficulties by viewing quantifiers as appended symbols.  
Keywords: metatheoretical reasoning, proof by contradiction. 

METATHEORETICAL DIFFICULTIES: AN OVERVIEW 
Mariotti, Bartolini Bussi, Boero, Ferri & Garuti (1997) argue, “what characterises a 
mathematical theorem is the system of statement, proof and theory” (p. 183). By this 
they mean a statement and its proof are situated within a theory from which one 
draws not only axioms, definitions, and theorems (i.e., a mathematical theory) but 
also rules of inference (i.e., a logical theory). The fact that proofs are contingent on 
both a mathematical and a logical theory is best illustrated by the fact that there are 
statements that are valid in some mathematical theories (e.g., Euclidean geometry) 
that are not valid in others (e.g., Hyperbolic geometry). Thus, their validity depends 
on the mathematical theory referenced. Moreover, if one does not employ standard 
logic, further shifts in the status of theorems may occur; a point illustrated by 
Brouwer’s rejection of his Fixed-Point Theorem, after adopting intuitionistic logic.  

Building on this model of mathematical theorems and the theory of Cognitive Unity, 
Antonini and Mariotti (2008) demonstrated that students’ difficulties with indirect 
proofs may occur within the mathematical theory or the logical theory. To 
demonstrate the latter, a compelling example is given where a university student, 
Fabio, describes difficulties accepting a proof by contraposition because of the 
movement back and forth between the statement-to-prove and the contrapositive. 

Fabio: Yes, there are two gaps, an initial gap and a final gap. Neither does the initial gap 
is comfortable: why do I have to start from something that is not? [...] However, the final 
gap is the worst, [...] it is a logical gap, an act of faith that I must do, a sacrifice (Antonini 
and Mariotti, 2008, p. 407, sic).  

Indeed, Fabio speaks both of his acceptance of the proof of the contrapositive and his 
difficulties accepting the contrapositive proof as a proof of the statement-to-prove. 
Antonini and Mariotti refer to these difficulties as metatheoretical, for they are at the 
level of the logical theory that is applied to the mathematical theory. Their work is of 
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interest, for it raises many questions: To what extent are novices successful when 
engaging in metatheoretical tasks? What approaches do they employ? Do their 
approaches differ from mathematicians’? The purpose of this paper is to take a 
preliminary step towards answering these questions. Specifically, we report on two 
studies of participants’ responses to metatheoretical tasks drawn from a model of the 
reasoning requirements of a proof by contradiction, which is described below. 

PROOF BY CONTRADICTION AND ITS REASONING REQUIREMENTS  
In this section, our aim is to model the reasoning requirements of a proof by 
contradiction of a universally quantified conditional statement. To aid our discussion, 
we consider a specific example: Theorem 5. For all positive integers n, if n mod(3) º 
2 then n is not a perfect square. To prove the theorem by contradiction, one must 
correctly negate the universally quantified conditional statement and take the 
resulting statement as one’s primary assumption. Such actions require one accept (at 
least at an intuitive level) that for a conditional statement to be true universally, it 
must not be the case that there is some element in the universe of discourse for which 
the premise is true (has a truth-value of true) and the conclusion is false (has a truth-
value of false). In the case of our example, we assume “There exists a positive integer 
n, such that n mod(3) º 2 and n is a perfect square.” As shown by Wu Yu, Lee, & 
Lin (2003), this task is far from trivia for students 17-20 years of age. Moreover, as 
Antonini and Mariotti (2008) note, the validity of the work is determined by theorems 
that reside within the logical theory (i.e., the metatheory).  

Having assumed the negation of the statement-to-prove, one must now explore the 
consequences of this assumption and identify a contradiction. Three aspects of this 
work are important. First, to carry out this work one must move back to the 
mathematical theory, for it is here that the contradiction will reside. Second, one’s 
goal is open-ended, for one does not know in advance where one will find the 
contradiction. In fact, there may be many. Third, one must know one’s commitments 
with regard to the mathematical theory. Otherwise, one will not have the means to 
recognize a contradiction. This point was made by Sierpinska (2007) who argued, 
“sensitivity to contradictions in mathematics requires theoretical thinking … 
(thinking) concerned with internal coherence of conceptual systems” (p. 1-54). Once 
the contradiction is identified, one’s work is not done. One must make sense of it.  

In our example, we claimed that an integer existed but having produced a 
contradiction we now know that such a number cannot exist. Hence, one must 
conclude,i there exists no integer n, such that n mod(3) º 2 and n is a perfect square. 
And it is at this point that one is faced with the very requirement that Antonini and 
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Mariotti’s (2008) Fabio rejected; namely, seeing the proof of this statement as a proof 
of the statement-to-prove. In other words, having shown S*: There exists no integer 
n, such that n mod(3) º 2 and n is a perfect square, one must recognize (from a 
logical standpoint) that one has proven S: For all positive integers n, if n mod(3) º 2 
then n is not a perfect square; that is, we must recognize S* implies S since S* is a 
non-identical but logically equivalent form of S. As Antonini and Mariotti (2008) 
note, this work relies on theorems in the logical theory rather than the mathematical 
theory; that is, it is metatheoretical. Thus, a proof by contradiction imposes two 
unique metatheoretical requirements. First, at the beginning, when one must produce 
the negation of a statement. Second, at the conclusion, when one must recognize that 
S* implies S. And, it is the latter requirement that is the focus of the reported studies. 

AN OVERVIEW OF THE STUDIES 
The reported studies examined students’ engagement and extent of success in the 
metatheoretical reasoning requirements that arise at the conclusion of a proof by 
contradiction. All studies were conducted at a minority-serving university, where the 
majority of students qualify for need-based financial assistance and are first-
generation university students. Study 1 explored the extent to which novices (i.e., 
students without prior logical training or who have limited training) are successful 
evaluating claims of the form S*implies S. Study 2 explored students’ and 
mathematicians’ approaches to and success with metatheoretical tasks. The aim of the 
combined studies was to explore the reasoning practices that may inhibit or support 
students’ metatheoretical work and consequently, play a role in the extent to which 
students reach or fail to achieve cognitive unity in relation to indirect proofs. 

Study 1 Methods and Findings 
To explore novices’ success with metatheoretical reasoning tasks prior to instruction, 
46 university students were surveyed. The surveys were administered on the first day 
of a “Basic Set Theory and Logic” course that served as the universities’ first logic 
course and their “Introduction to Proof” course. Prior to the course, students would 
have been enrolled in computation-focused courses on calculus and differential 
equations. Included on the survey were two tasks that asked students to compare a 
pair of statements and determine, “Can you prove Statement A by proving Statement 
B?” (Figure 1.) Task 1 involved a universally quantified statement and an incorrect 
alternative. Task 2 involved the same Statement A and a correct alternative.  

Task 1. 
Statement A. For every integer n, if n is a perfect square, then n has an even number of factors.  
Statement B. There exists no integer n such that n has an even number of factors and n is not a perfect square.  
☐ Yes, you can prove Statement A by proving Statement B.  
☐ No, you cannot prove Statement A by proving Statement B.  
Task 2. 
Statement A. For every integer n, if n is a perfect square, then n has an even number of factors.  
Statement B. There exists no integer n such that n is a perfect square and n has an odd number of factors.  
☐ Yes, you can prove Statement A by proving Statement B.  
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☐ No, you cannot prove Statement A by proving Statement B.  

Figure 1. Study 1’s Task 1 and Task 2 
Survey results indicated that of the 46 students surveyed, 50% were successful at 
Task 1, 47.8% were successful at Task 2, and 24% were successful at both tasks. 

Study 1 Discussion 
The findings of Study 1 demonstrate that most of the students did not enter the Basic 
Set Theory and Logic course reasoning in ways aligned with the metatheoretical 
requirements of indirect proofs, as the rates were at or below guessing and less than a 
quarter successfully answered both questions. While the findings are not startling, 
they provide a warrant for further research. Indeed, prior to Study 1 there were no 
studies of novices’ responses to such tasks prior to instruction. Thus, the findings 
warrant the following questions: Do novices’ difficulties persist after instruction? Do 
students’ and mathematicians’ approaches differ? 

Study 2 Methods 
Study 2 aimed to explore university students’ and mathematicians’ extent of success 
and approaches to the metatheoretical task in Figure 2. Participants were 21 students 
drawn from the same student population as Study 1 and 6 mathematicians. However, 
the Study 2 students had completed the Basic Set Theory and Logic course. As the 
course focused on set theory and logic in the service of proof writing, the instruction 
on set theory and logic was limited to basic properties, terms, and definitions, as well 
as symbolizing practices, and then on specific proof techniques and/or strategies. All 
participants took part in video-recorded interviews during which the task was 
presented on a large piece of paper. The participants were given as much time as 
requested and then asked to explain their answer to the stated question. 

Question: Can you prove Theorem 5 by proving Statement A? 
Theorem 5. For all positive integers n, if n mod(3) º 2 then n is not a perfect square. 
Statement A. There exists no positive integer n such that n mod(3) º 2 and n is a perfect square. 

Figure 2. Study 2, Interview Task 
To identify approaches the analysis focused on which theory (mathematical or 
logical) the participant worked in and how they engaged in that theory. Responses 
were considered mathematical theory approaches (MTA) if the participant was 
observed: (1) explicitly exploring mathematical statements, definitions and/or terms; 
and/or (2) constructing a proof of either statement. Responses were considered 
logical theory approaches (LTA) if the participant was observed: (1) posing explicit 
questions of equivalence; (2) constructing truth-tables and/or working with symbolic 
logic; and/or (3) citing logical theorems or practices. In addition to the approach, 
participants’ responses were analysed for the form of engagement. Specifically, 
coding noted participants’ use of syntactic and/or semantic reasoning, with semantic 
referring to reasoning that employs meanings and multiple representational systems 
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and syntactic referring to rule-based reasoning within a representational system.ii  

Study 2 Findings 
In Table 2, we report the percentage of correct responses. The reader will notice that 
among the 21 students five types of responses were observed: yes, yes-no-yes, no-yes-
no, no, and don’t know. Yes refers to students who, after a period of exploration, 
decided without hesitation that one can prove Theorem 5 by proving Statement A. 
Yes-no-yes refers to students who repeatedly switched answers, expressed hesitation 
and doubt, but ultimately choose “yes.” No-yes-no were similar to yes-no-yes but 
were students who repeatedly switched answers and ultimately choose no. No refers 
to students who reached, with evident certainty, the decision you cannot prove 
Theorem 5 by proving Statement A. Uncertain refers to students who, after 
deliberation, responded to the prompt by remarking they “didn’t know.” 

Prompt: Can you prove Theorem 5 by proving Statement A? 
Student Responses N % 
Yes 6 28.6% 
Yes-no-yes 5 23.8% 
No-yes-no 4 19.0 % 
No 5 23.8% 
Uncertain (Don’t Know) 1 4.8% 
Mathematician Responses 
Yes 6 100% 

Table 2: Student and Faculty Response by Category 
As seen in Table 2, less than one-third of the students (28.6%) who had completed 
the Basic Set Theory and Logic course stated with certainty, yes one could prove 
Theorem 5 by proving Statement A. And, nearly as many (23.8%) reached this 
conclusion with significant hesitation (Yes-no-yes).  Furthermore, 42.8% argued 
either with certainty (No) or with hesitation (No-yes-no) that you cannot prove 
Theorem 5 by proving Statement A. These findings indicate instruction had little 
impact on the students’ success with the metatheoretical requirements of a proof by 
contradiction. In contrast, (without surprise) all of the mathematicians replied yes.  
Since findings that indicate the prevalence of difficulties are of little use without 
information on the nature of students’ engagement, we turn to the analysis of 
participants’ approaches.  This analysis focused on the question of which theories the 
participant engaged with and their form of engagement (see Table 3).  

 Student Response By Type and Form 
(n = 21) Mathematical Theory Approach (MTA) Logical Theory Approach (LTA) NE* 
Response Type Semantic Syntactic Semantic Syntactic  
Yes  1  3 1 
Yes-no-yes   3 3  
No-yes-no    4  
No 1  1 3  
Don’t know   1   

Table 3: Student and Faculty Response by Type and Form *(NE is no evidence) 
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Looking at Table 3, the reader will notice that the majority of the students (18 of 21; 
85.7%) engaged in a logical theory approach (LTA). For many this work occurred 
symbolically, with 15 of the 18 (LTA) students replacing the open sentences with the 
symbols (e.g., P, Q, ~P or ~Q or P(n), Q(n), etc.) and the phrases for all and there 
exists no with " and ∄, respectively.iii Indeed, except for one LTA-semantic (Don’t 
know) and two LTA-syntactic (No-yes-no), the students worked symbolically. When 
asked about the use of symbols many students noted their discomfort with the 
content, “mod is really rough in my memory right now”, and that “it’s easier to work 
with symbols.” Thus, the symbolic approaches enabled the students to avoid content 
for which they lacked confidence in their mathematical understandings.  
For 3 of the LTA students their symbolic approach led to a quick and definitive yes, 
as shown Figure 3. The reader will notice the student initially focuses on the 
relationship between the quantifiers and then on how translating from ∄ to " 
requires one to act on the open sentences by negating a sentence of the form (PÙ ~Q).  

 
Student A: Yes, you can prove Theorem 5 by proving Statement A … because when 

you say there exists no that implies ... well that’s a for all statement and 
then you have to negate the umm … the umm … (writes PÙ ~Q). 

Figure 3: Student A’s (Correct) Syntactic-LTA Response  
In contrast to those who readily replied yes, nearly half of the LTA students 
experienced a significant amount of hesitancy and doubt (Yes-no-yes; No-yes-no). 
Many of these students articulated difficulties with the phrase “there exists no” while, 
at the same time expressing certainty regarding the logical relationship between for 
all and there exists (i.e., they asserted the negation of one quantifier produced the 
other). Among these students, it was not uncommon for them to argue that there 
exists no means nothing and that, “nothing is the opposite of everything,” a point 
which left many confused having already noted for all and there exist were 
“opposites” in logic. For nearly a third of the students (6 total) recognizing there 
exists no as the opposite of for all and the open sentence “n mod(3) º 2 and n is a 
perfect square” as the negation of “if n mod(3) º 2 then n is not a perfect square” led 
to the conclusion Statement A is the negation of Theorem 5, as illustrated in Figure 4. 
Two aspects of this approach are important to note. First, the student compares the 
quantifiers (for all and none) and then compares the open sentences. Hence, the 
quantifiers are not seen as variable-binding operators that act on open sentences but 
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rather as appended symbols. Such reasoning enables the student to translate ∄  into 
its “opposite” " independently of translating PÙ ~Q into its “opposite” PÞQ. 
Second, such reasoning relies on the student incorrectly viewing ∄  (PÙ ~Q) as being 
of the form (~$) (PÙ~Q) rather than as of the form ~[($) (PÙ~Q)]. 

 
Student B: they’re opposites […] this (Statement A) is the negation of Theorem 5 

…it’s saying for all of them, it’s saying none of them [...] Yeah, (writes 
"(PÞQ)) and (writes ~ symbol before "(PÞQ))) is (writes ∄  (PÙ ~Q)). 

Figure 4: Student B’s (Incorrect) Syntactic-LTA Response 
In addition to the LTA responses, two MTA responses were observed. In the MTA-
semantic response, the student spent his time considering numbers that satisfy n(mod 
3)º2 and trying to understand the structure of a number that would disprove Theorem 
5 or Statement A. Eventually, this student decided Statement A was false and, 
therefore, could not be used to prove Theorem 5. In the MTA-syntactic response, the 
student immediately remarked, “it’s by contradiction.” The student then proceeded to 
determine if Statement A provided the needed claims for such a proof:  

Student C: by contradiction […] he’s claiming that there is no positive integer n, … 
such that (points to Statement A’s open sentences) […] so, he’s saying there 
is no positive integer n here so you can use that argument (points to open 
sentences again) and … so, yeah, you can put those together and prove it. 

As seen in Table 4, the mathematicians’ responses were quite different, with all but 
one engaging in an MTA. Though not shown, it is important to note that in three of 
the five MTA-semantic responses, the mathematician spent the majority of the time 
proving (or considering how they would prove) Theorem 5. 

 Faculty Response Category  
(n = 6) Mathematical Theory Approach (MTA) Logical Theory Approach (LTA) 
Response Type Semantic Syntactic Semantic Syntactic 
Yes 5  1  

Table 5: Faculty Response by Type and Form  
This work lead all three to realized they would use a proof by contradiction and in so 
doing, prove Statement A to prove Theorem 5. In the other two MTA-semantic 
responses, the mathematicians repeatedly rephrased the statements, while explicitly 
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noting the everyday meanings of the words, until they had convinced themselves that 
the statements were “essentially the same.’ This work was often well-situated in the 
mathematical theory, as seen in the transcript below where the mathematician speaks 
of “turning around” Statement A and “running through” sets of numbers. 

Mathematician a:  I tend to take statements like that [Statement A] and try to rephrase 
them, so … for me, I would say, what does that actually say? It says that, 
umm, whenever, umm, a positive integer n is congruent to, umm, is 
congruent to 2 mod 3 then n cannot be a perfect square … like I … I try to 
turn it around … I’m sitting here almost hesitant about whether or not I’ve 
even done it correctly. But let me think … so, umm, let’s see, so there exists 
no positive integer n such that these two things are true … so that’s … what 
is that the same thing as saying, it’s saying that, umm, if you ran over the 
positive integers n which were congruent to 2 modulo 3 you are never going 
to hit a perfect square but then that’s what this is saying (point to Theorem 
5), umm, if I think of for all positive integers n and this part is true, that n is 
congruent to two modulo three, then I am never going to hit a perfect 
square. So, … umm, actually, I think, umm, I would almost rephrase these 
things as being equivalent but I am feeling a little bit hesitant about that. 

Here, it is important to note that in addition to Mathematician a, three other 
mathematicians expressed hesitancy with regard to their own reasoning; e.g., Dr. b 
remarked “just doubting myself for some reason.” In each case, the mathematician 
was asked “Do you have some doubts about your answer?” and all responded “No.” 
Thus, the participants appeared to be applying inferences with a high degree of 
(perhaps intuitive) certainty, while also doubting their own judgements of those 
inferences. Finally, two other observations are of note. First, like the students, one 
mathematician translated the statements into symbols. However, they immediately 
pushed the paper away saying, “I am not going to do that.” Second, in the case of the 
LTA-semantic approach, the mathematician translated both statements into Venn 
diagrams (Figure 5) and then, by comparing the diagrams, reasoned through the task. 

 
Dr. b: I’m going to draw some sets. … Statement A says to me the sets of n 

mod(3) … congruent to 2 and perfect squares … (long pause)… are 
disjoint. Right. There exists no positive integer … so this says for all 
positive integers if n mod(3) is 2 expressed then … this will be expressed as 
a containment and ….it’s not a perfect square … perfect square is on the 
outside …….. and, umm, let’s see, if-then means that ….(long pause) that 
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that set is inside that set or is it the other way … that implies that …(long 
pause). Yeah, it looks like it (laughs quietly). 

Figure 4: A Mathematician’s (Correct) Semantic-LTA Response 
Study 2 Discussion 
Study 2 aimed to explore students’ and mathematicians’ success with and approaches 
to a metatheoretical task. The data demonstrate that post-instruction, novices 
continued to struggle with the metatheoretical requirements of proof by contradiction 
and gravitated towards syntactic-LTA approaches, while the mathematicians tended 
towards semantic-MTA approaches. Furthermore, students’ remarks indicated their 
use of syntactic-LTA approaches enabled them to avoid perceived content knowledge 
weaknesses, whereas the mathematicians drew heavily on this knowledge to produce 
proofs and explore concepts. The study also revealed a tendency among students who 
struggled with the tasks; namely, a tendency to view quantifiers as appended symbols 
rather than as variable-binding operators that act on open-sentences. Though far from 
providing definitive evidence, the study contributes to the literature by highlighting 
the logical complexities novices may encounter when producing or comprehending 
proofs by contradiction, given the approaches they gravitate towards. 

CONCLUDING REMARKS 
One question raised by the studies is, why didn’t the students’ reasoning progress, 
even after completing the Basic Set Theory and Logic course? Certainly, the lack of 
progress may be due to poor instruction, an insufficient curricular treatment, or the 
cognitive demand of the tasks. Turning to the curricular materials used, Chartrand, 
Polimeni, and Zhang’s (2008) Mathematical Proofs: A Transition to Advanced 
Mathematics, one finds little in the ways of support for the metatheoretical tasks 
studied. This text includes an introductory chapter on logic with two subsections on 
quantifiers. In these subsections, the quantifiers for all and there exists are defined 
and discussed with regard to the variations of these phrases used in mathematics (e.g., 
for some; at least one, etc.). Neither are quantifiers discussed as variable-binding 
operators nor is the phrase “there exists no” or the symbol ∄ mentioned. The same is 
true in a latter chapter focused on proof by contradiction, where emphasis is placed 
on moving from “for all” to “there exists” when proving by contradiction without 
mention of what one must do once one determines something “does not exist.” Thus, 
the lack of progress may be tied to an insufficient curricular treatment of the topic. 
Turning to the mathematicians’ responses an alternative rationale for students’ 
persistent difficulties becomes evident. As discussed, most of the mathematicians in 
Study 2 expressed a lack of confidence in their own reasoning, while none wished to 
change their answer due to an intuition (i.e., “gut feeling”). Hence, it seems 
reasonable to conclude that the task was cognitively demanding. Consequently, even 
with instruction, we might expect low success rates among undergraduates, who are 
at the early stages of the education and lack the content knowledge experts employed. 
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Lastly, in an interesting study of effective proof comprehension strategies, Weber 
(2015) found mathematicians preferred students, “rephrase theorems in their own 
words” and that students not use the strategy, “rewrite the theorem in first-order 
logic.” These views reflect the practices of the mathematicians in Study 2, for none 
used the latter strategy, while nearly all used the former. However, their rephrasing of 
the statements relied on their extensive content knowledge; namely, as a tool for 
inferring meanings. Hence, the findings raise questions regarding whether or not the 
mathematicians would use these approaches if they were working with unfamiliar (or 
difficult) content. Indeed, it seems that we must be careful inferring instructional 
recommendations from the mathematicians’ practices. Many appeared to generate 
inferences automatically – a practice that seemed to inhibit them from rationalizing 
their judgements; as illustrated by the mathematicians’ repeated expressions of 
hesitancy. 
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The goal of the study presented in this paper is the investigation of students’ 

problems with exercises concerning central topics of linear algebra courses at 

university level. We present the results of our analysis of students’ work on an 

exercise about subspaces of   . We evaluated the written solutions of the task 

as well as transcripts based on videos taken of student groups working on the 

problem. We identified and classified descriptions of vector spaces and sub-

spaces that varied widely and demonstrated highly different skills in working 

with geometric or formal algebraic objects. We analyzed how far students could 

progress in a complex reasoning process, and identified those steps in the rea-

soning process on which students needed support to continue.  

Keywords: Linear algebra, vector space, subspace, proof, tutorial groups.  

PURPOSE AND BACKGROUND 

Problems in teaching and learning of linear algebra have a long history in many 

countries (Dorier & Sierpinska, 2001). Frequently, the abstract character and the 

formalism of mathematics that students have not been exposed to in school be-

fore  is named as a central obstacle (a variety of studies are outlined and evalu-

ated in Dorier, Robert, Robinet & Rogalsiu, 2000). Since vector spaces are a 

central part and moreover of special importance for almost all disciplines related 

to mathematics at university, special attention has been paid to them (Dorier, 

2000, Stewart, 2017). Generally, students do not develop a clear concept of vec-

tors at school level (Mai, Feudel & Biehler, 2017), and the more abstract ap-

proach to this subject taught at universities is described as being “out of reach” 

by some students (Stewart, 2017). Wawro, Sweeney and Rabin (2011) investi-

gated concept images of subspaces in interviews with students and identified 

recurring concept images, distinguishing between a subspace as a part of a 

whole, a geometric object, and an algebraic object. The introduction of first 

concepts in tutorial meetings in linear algebra, with a special focus on the behav-

ior and influence by the tutor, has been studied by Grenier-Boley (2014).  

CONTEXT AND DESIGN OF THE STUDY 

In this study, we investigated the problems of students shortly after their first 

encounter with vector spaces and subspaces at university level. The participants 

of our study were students with major mathematics or computer science, en-

rolled for bachelor of science or bachelor of education (for secondary school, 

“Gymnasium”), most of them in their first semester. In our study, we collected 

data from students working on tasks in groups during their tutorial group meet-
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ings (1.5 hours), where the tutors were advised to answer questions but to only 

intervene when the students had substantial problems to continue. The students 

worked on exercises about the content of a recent lecture under the supervision 

of a tutor. In this context, we assigned special tasks that we developed ourselves 

together with the lecturer and his assistant, but we did not influence the course 

design otherwise. We will report only on one of them in this paper. The course 

can be considered to be typical for a beginners’ lecture in linear algebra, which 

normally is rather abstract, and was given by an experienced lecturer. During 

their tutor meetings, the students worked on our exercises on separate sheets that 

we collected, scanned for later analysis and gave back to the students in the next 

meeting without any grading or corrections. We gathered between 78 and 130 

written works on each exercise. Moreover, we also took video recordings of 

groups of 2–4 volunteering students working on these exercises. They worked 

on the exercise under the supervision of a student tutor who was part of the re-

search team and familiar with our a priori analysis of the task. The experienced 

tutor was advised to help the students if they struggle with the exercise in the 

same way as she would do in an ordinary tutor group meeting. We were inter-

ested in identifying important didactic variables. The results obtained by analyz-

ing the first implementation of the exercise about vector spaces are currently be-

ing used for designing a second implementation in the course Linear Algebra I.  

The task for students in our study and preliminary research questions 

In this paper, we concentrate on an exercise about subspaces and vector spaces 

(see figure 1) that was part of the exercise sheet during week 7 of the course, 

immediately after the notion of subspaces had been introduced. Students are 

taught analytical geometry and linear algebra at school level, where vectors are 

introduced as tuples (or classes of arrows), but they do not as a rule have a clear 

concept of a vector (cf. Mai, Feudel & Biehler, 2017). Students know equations 

of planes and lines in    and   , without considering them as subspaces, be-

cause this notion is not taught at school level.  

The following exercise was designed in order to provide two different kinds of 

learning potentials (as described in Gravesen, Grønbæk and Winsløw, 2016):  

1. Linkage potential: In part a) to e), our intension was to motivate the students 

to activate their school knowledge concerning the description of geometric 

objects using equations; we hoped that they would recognize the sets as de-

scriptions of lines, points, parabolas etc., and connect this knowledge with 

the new concepts of vector spaces and subspaces.  

2. Research potential: Part f) of the exercise was created in order to engage the 

students in a research-like activity. Even if achieving a complete solution 

seemed unrealistic for most of them, we were interested in how the students 

would approach this open question. They had to formulate a hypothesis and 

use abstraction to identify and construct subspaces. The exercise can be seen 
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as a “mini research project” that differs in type from standard exercises. 

 

Figure 1: Exercise on subspaces (translated from German) 

The parts a) to e) can be solved by a formal check whether the properties of sub-

spaces are satisfied by the provided sets. As this was learned in the previous lec-

ture, this is a standard task. Geometric ideas are not necessary, but we hoped 

that students may do geometric interpretations of the sets to develop a geometric 

meaning of subspaces and non-subspaces of     Task f) is different, because this 

is the first time that this type of question is asked. Students may use the results 

from a) to e), that have provided examples and counterexamples of subspaces, to 

find the zero space, all lines through the origin, and the whole    as subspaces 

and give reasons why they are subspaces on some level. The challenging ques-

tion is whether or why these are all subspaces of   . Research questions con-

cerning f) are: How many students identify the zero space and the entire    as 

subspaces? Are all lines through the origin identified as subspaces? Which ar-

guments do students provide for considering a line through the origin as a sub-

space of   ? How do they reason, when exploring, whether there are more sub-

spaces in    or whether they have already found all?  

We were also interested in the sources of knowledge students used, such as their 

results on a) to e), parts of the lecture, or geometric interpretations related to 

their school knowledge, and concerning the videographed tutorial sessions, 

which kind of support by the tutor they can use in their reasoning process.  

METHODOLOGY AND DATA COLLECTION 

For the analysis of the written work of the students, we followed the method of 

Biehler, Kortemeyer and Schaper (2015), by comparing each solution with the 

so-called student expert solution (SES), which is a sample solution based on the 

idealized actual knowledge of the students at this point of the lecture. Moreover, 

the student expert solution contains additional meta-information about the solu-

tion, for example, several alternative opportunities for solutions and explicitly 

written-out learning objectives. In relation to Brousseau’s theory of didactic sit-

uations, this method can be seen as a special approach to the development of an 

a priori analysis. We evaluated the written work in a two-step procedure: In a 
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first step, we categorized the solutions by correctness and collected peculiarities 

and mistakes. Based on this and the SES, we developed a detailed coding system 

for deeper analysis. The recorded videos have been transcribed in order to allow 

a detailed qualitative analysis.  

A PRIORI ANALYSIS OF THE TASK 

In the lecture, the definition of vector spaces was given in a typical traditional, 

abstract way. The zero space and the vector spaces   (trivial vector space over 

 ) and ℂ  (the latter together with component-wise addition and multiplication) 

had been presented by the lecturer as first examples. Apart from this introduc-

tion, the students had only seen the following (relatively abstract) non-trivial 

examples for vector spaces in the lecture: (VS1):   , the “standard vector 

space”, where   is any field, with n   , including the definition of addition and 

the scalar multiplication (component-wise), (VS2):   , the vector space of se-

quences over the field  , with the component-wise operations. Subsequently, 

subspaces of vector spaces had been defined to be subsets of vectors spaces that 

are vector spaces themselves with respect to the same operations. Following 

this, they had learned that a sufficient criterion for proving that a nonempty sub-

set   of a vector space   over the field   is a subspace is to prove that 

ly                   and secondly                  . 

As examples of subspaces, the trivial subspaces     and   were nominated 

without proof. Moreover, for both vector spaces (VS1) and (VS2), there was an 

abstract example for a subspace given, and we state the first one of them here 

since it will be of use for our later analysis: 

(S1) The set                                          
    is 

the solution space 
 
of a homogeneous linear equation system       

 
     . It 

was shown that this set is indeed closed with respect to addition and scalar mul-

tiplication and is a subspace. Note that this example can be applied to   , if we 

choose    . The subspaces in   are the lines through the origin expressed by 

linear equations. This interpretation could be done by students on the basis of 

school knowledge. The lecturer did not provide this specialization himself. 

For our later analysis, the following distinction is central. All provided examples 

have in common that sets are characterized by equations (subspaces defined by 

relations). In contrast, 1-dimensional subspaces could also be defined by explicit 

construction: for instance for any    :                   . The lat-

ter way of defining subspaces was not yet a topic of the lecture, which will turn 

out to be an obstacle for some students. Moreover, the students had not seen any 

geometric interpretation or visualizations of vector spaces or subspaces, in par-

ticular no (concrete) examples of subspaces in     In the following, we will give 

an overview about possible approaches and steps to part f). 

Step 1: Find some subspaces. With the knowledge from the lecture, the trivial 

subspaces (the zero space and     can be named. To find nontrivial subspaces, 
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one can identify again the set    of the previous part a) of the exercise as a sub-

space. Starting with this set, one could generalize from numbers (like 2 and 1, as 

chosen in part a)) to a general form with coefficients, and give the set      

                        with       not both being zero. Instead, if 

one abstracts from the mathematical language used in the exercise before, these 

sets could also be expressed constructively as                 
    Supported by Dorier, Robert, Robinet and Rogalsiu (2000), we expected dif-

ficulties to translate the relational representation into the constructive represen-

tation and vice versa. Alternatively, with the knowledge from the lecture, one 

could apply the example (S1) given in the lecture to the space   , and describe 

the subspaces in terms of the solutions of homogeneous linear equation systems. 

This reasoning can be done just algebraically. It could also happen that students 

use geometrical terminology concerning lines through the origin.  

Step 2: Verification of the subspace properties. In order to reason why the sub-

sets given in step 1 are subspaces, one could either refer to the solution of part a) 

of the exercise or (for the trivial subspaces and in case of the use of the solution 

spaces of homogeneous linear equation systems) to the lecture. In case of a ge-

ometric description (“lines through the origin”), either geometric or algebraic 

arguments have to be provided to verify the subspace properties.  

Step 3: Why are these all subspaces? The final challenge is to reason if and why 

all subspaces of    have been found. This can be done algebraically, but we did 

not expect our students to complete this reasoning process in the given time, 

since it requires a development of several successive algebraic arguments. Based 

on their school knowledge, the students could recognize the descriptions of ge-

ometric objects by equations in part a) to e) and abstract from the previous re-

sults, leading to the conclusion that lines through the origin are subspaces, but 

no other lines, single points or other collections of points. At this point, a suc-

cessful reasoning based on school knowledge could be done constructively, 

based on geometric arguments. Trying to construct “bigger” subspaces than just 

the lines through the origin, a student could build the union of two different lines 

and check whether this set is a subspace. Alternatively, he or she could try to 

find the minimal subspace that includes one line    through the origin and an 

additional point    not lying on this line. He or she could come to the conclusion 

that this has to be the whole   . A formal argumentation here is that every point 

can be represented as a linear combination of a point          from the line 

   and   , but even if the student does not come to this conclusion at this point, 

he or she could have the idea to consider the line through the new point    to-

gether with the original line, and therefore check this new set for the subspace 

conditions. He or she could check the closure of addition or come to the idea 

that further points have to be added to the union in order to get a subspace. Since 

this type of reasoning seemed to us more likely to be achieved with the previous 

(including school) knowledge of the students, the tutors in the normal tutor 

group meetings as well as the tutor in the video study were advised to guide the 
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students along this reasoning process if they struggled in approaching the prob-

lem. Based on this sample solution process description, we tried to answer the 

following research questions in our analysis: 

1. How far in this three-step process would the students come when they work 

on this exercise? Would they even be aware of the need to do step 2 and 3?  

2. Would they favor one of the described approaches to the problem (geomet-

ric, algebraic), and would they use the constructive or the relational way to 

describe the 1-dimensional subspaces? Would they approach step 3 in a con-

structive way, building up subspaces starting with just one point, as de-

scribed above, or would they find other ways (purely algebraic?)?  

3. Finally: Would they recognize that parts of exercise f) could be solved by an 

application of the example (S1) given in the lecture?  

Since we posed the question in part f) in a relatively weak phrasing, we could 

not expect the majority of students to give a fully structured, formal reasoning in 

this exercise, in particular for the steps 2 and 3. But we were interested if the 

exercise itself would stimulate the students to give reasons for their answers and, 

in particular, how they would argue in this case.  

RESULTS 

To find answers to our questions, we analyzed the written works as well as the 

video recordings of the students working on part f). 

Work on part f): Written exercises 

From the written works of 116 students on this exercise, just 48 handed in solu-

tions for part f). This is most likely due to the fact that the time was very limited, 

so many students just did not come to part f). We analyzed their work with re-

spect to the three steps of the solution as described in the a priori analysis.  

Table 1: Frequency of the nominations and descriptions of the subspaces 

Step 1: Which subspaces do they find? How do they describe them? Do they use 

previous parts of the exercise or name the set considered in part a)? 

The results in table 1 were collected by counting how often the three types of 

subspaces were mentioned in the solutions. Hereby, each notion of a subspace 

Trivial 

subspaces 

   33 

Zero Space 32 

1-

dimensional 

subspaces 

Solution with any description of the 1-dimensional subspaces (some students 

used more than one description) 

33 

- Relational description:                             24 

- Constructive description:                     4 

- Geometric descriptions: “line containing zero”, “line through origin” 12 

229 sciencesconf.org:indrum2018:174624



counted, as long as it was clear enough to denote the required set. How did the 

students describe the 1-dimensional subspaces? We distinguished between “ge-

ometric” descriptions, using expressions like “line containing zero”, “line 

through the origin”, relational descriptions using a set like               

              or something mathematically equivalent (see a priori analy-

sis for a definition of this category) or constructive descriptions like    
               . Some students used more than one description in their 

solution. Apart from this, it was interesting to see that only 8 students did men-

tion any part (mostly a)) of the previous exercise in part f). It is not clear if those 

who could not give any (nontrivial) subspace actually never recognized that the 

set M1 from part a) is a subspace (since the word “subspace” was not used in part 

a)), or if they just forgot about it before they started with part f). Moreover, it is 

interesting that the trivial subspaces, which we expected the easiest to find, were 

not nominated more often than the 1-dimensional subspaces. We were also sur-

prised to see that only 2 of the students did refer to example (S1) (see a priori 

analysis) from the lecture, concerning the solution spaces of homogenous sys-

tems of linear equations.  

 No rea-

soning  

Incorrect reasoning/ 

unclear approach 

Partial rea-

soning   

Complete reasoning  

Step 2 34 5 7 2 

Step 3 35 6 6 1 

Table 2: Frequency of reasoning in part f)  

Step 2: Do they show that the given sets are subspaces? How do they argue? 

Most students did not give reasons (see table 2 for results), but within those who 

did, we distinguished between approaches that did not go in the right direction 

(for instance students just answered by listing all properties of a subspace with-

out proving them or claimed that it was “clear” that the spaces are subspaces), 

students who did give a correct approach or a partial proof (they mentioned that 

closure must be proved, but did not, or just checked the addition or the scalar 

multiplication, or just checked an example etc.) and complete solutions with full 

reasoning (using example (S1) from the lecture in both cases). 

Step 3: How do they reason that they found all subspaces of   ?  

Within the 13 solutions that had some kind of reasoning (see table 2 for results), 

we distinguished again between unclear or vague approaches to reason the com-

pleteness of the given list of subspaces (for instance the statement “there are no 

other possible, because one cannot multiply vectors”), promising but incomplete 

approaches (some students gave reasons why lines not going through the origin 

cannot be subspaces, but did not consider other subsets, or just discussed the 

closure of one of the operations) and complete reasoning (just one case, again 

applying example (S1) from the lecture). 
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Work on part f): Video recordings 

We give a summary about three groups of students that we recorded during their 

solution process on part f) under the perspective of our research questions. Due 

to limitations of space, we cannot document the method used to analyze the 

transcripts and the students’ interaction in more detail. 

Group 1: The first group tried to find subspaces by systematically going through 

the list of properties, and found the zero space to fulfill them. Then, they re-

membered the set proven to be a vector space in part a) and generalized it to a 

set of the form                              after a discussion 

whether the coefficients are arbitrarily exchangeable without harming the sub-

space conditions. They discussed the closure of the vector space operations in 

this set, but referring to the proof they had given in part a), they convinced 

themselves quickly that there was nothing else to prove. After this, they also 

identified the full space    since there is no claim for a subspace to be a proper 

subset. At this point, they were asked by the tutor if and why they found all sub-

spaces now. They had the idea to consider the set    and, referring to their 

knowledge about groups, discussed the closure of operations on this set before 

they could finally rule it out to be a subspace by the fact that the scalar multipli-

cation with elements from   is not closed on  . The tutor then asked them to 

consider the set      geometrically. They start to consider the tuples of coeffi-

cients       in the plane instead of the equation          . With another 

hint from the tutor, they found out that the set      whose elements are de-

scribed by the equation           denotes lines in the plane, and discussed 

the closure of the operations for these lines. The students did not develop an idea 

themselves to give arguments why they had found all subspaces. However, the 

students were able to follow the geometric constructive reasoning of the tutor 

(see a priori analysis). 

Group 2: The second group came up with the idea to apply example (S1) from 

the lecture. After some discussion and a bit help from the tutor, they found that 

the subspaces defined there are the solutions of one or more linear equations, 

each having two coefficients. The central difficulty for them was to see that the 

number of coefficients is fixed to 2, but there could be an arbitrary number   of 

equations in a system of linear equations that is still defined in     It was a real 

discovery later that     provided descriptions as are provided in     . Up to 

this point, they did not consider the trivial subspaces at all. They struggled a bit 

to write down the concrete subspaces they could find this way in terms of alge-

braic expressions, but managed it with some help from the tutor. Asked whether 

they found all subspaces, they did not develop the idea to consider the spaces as 

lines in the plane on their own, but after the tutor came up with this idea, they 

were able to work with this concept after a short phase of orientation in which 

they convinced themselves that the geometric objects stand for the same sub-

spaces they worked with before. Just at this point, they identified the trivial sub-
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spaces too. Step 3 (to reason that all subspaces were found) was only solved 

with tutorial support (similar to group 1). 

Group 3: The third group used the previous parts a) to e) in their reasoning and 

started with the subspace found in a), but immediately identified this set to de-

scribe a “line through the origin”, which gave birth to a generalization to all 

lines through the origin. They continued to orally communicate in geometric 

terms, but decided to write down the set using the relational algebraic expression 

                            . They named the trivial subspaces 

without further comments. The proof given in part a) sufficed for them for a rea-

soning of step 2, and they started to discuss step 3 quickly. They used references 

to part b) to e) to rule out other types of possible subspaces. The group thought 

they had finished at this point. It was the tutor who pointed out that step 3 was 

not yet satisfactorily answered. Different from the other groups, they took up the 

tutors input to construct other subspaces geometrically and in order to find out 

that such subspaces have to be equal to   . With some minor help from the tu-

tor, they finished this step quickly, needing much less time for the full task than 

all other groups. 

CONCLUSION AND DISCUSSION 

As a result, we can state that students at this point in their studies were able to 

find and describe (using varying descriptions) subspaces of   , but the question 

to find all subspaces was a serious obstacle for the students. Moreover, the step 

to translate the algebraic description of the subspaces into a geometric view, 

where reasoning could be done with less formality, was a further obstacle for 

them, since they seemed not to connect or apply their geometric knowledge 

from school to the new problem. 

It seems like a geometric approach to this kind of problems is not a natural, au-

tomatic behavior of students at this point of their education. This result resonates 

with the observations from Wawro et al. (2011), who stated that intuitive geo-

metric notions can be the preferred approach of first year students to the con-

cepts of subspaces, but also cause problems if they their geometric intuitions are 

inconsistent with the formal definition. It is worth pointing out that our students 

did not, in opposition to the results of Wawro et al., automatically identify (often 

mistakenly, if there was no respect to a necessary embedding) the    as a sub-

space of the   . A possible explanation for this result is the fact that our results 

were obtained shortly after the introduction of subspaces in the lecture, where 

Wawro et al. interviewed their students when they already have had more time 

to develop a concept image of subspaces, including some misconceptions. 

Most students did not connect the different parts of the exercise, appearing in 

different “languages” (like the sets in the parts a) to e) and the open question in 

part f)) to solve the problem in f). With some help, especially with the request to 

consider the sets geometrically, they were able at least to understand reasoning 

on this basis, and some students actually could even give proofs or approaches 
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to proofs on their own. We came to the result that the students needed more 

guidance and preparation to solve this problem, and in particular support that 

helps them to deal with each step and even sub-step of the solution of the prob-

lem in part f). In our subsequent study in winter term 2017/2018, we are investi-

gating if explicit indications in a) to e) to consider the sets geometrically and a 

rephrasing of part f), splitting it up into more explicitly described steps, have a 

decisive influence on the students’ ability to solve task f). 
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Our  research  focuses  on  the  teaching  of  linear  transformations  in  “Classes
Préparatoires aux Grandes Écoles”. The theory of didactical situations, jointly with
Peirce's semiotics, constitute the main theoretical framework of our works and allow
us to analyse student's reasoning in situations of oral evaluation. We illustrate the
use and utility of this framework with the study of student’s mathematical activity
when  they  are  faced  to  situations  involving  complex  concepts  such  as  linear
transformations in polynomial spaces.

Keywords:  linear  algebra,  semiotics,  theory  of  didactical  situations,  transition,
tertiary level

INTRODUCTION

Our work deals with a double object: linear transformations as a structuring concept
of  the teaching of  linear  algebra  and a  particular  institution  at  the undergraduate
level,  the  Classes  Préparatoires  aux  Grandes  Écoles.  Grounded  on  didactical
motivations, our epistemological analysis allows us to exemplify the crucial role of
linear  transformations  for  the  emergence  of  linear  algebra  concepts.  This
epistemological  part  of  our  research,  mainly  based  on  the  works  of  Dorier  and
Moore, leads us to the use of Peirce’s semiotic and to enrich the analytical model of
Bloch  and  Gibel  (2011)  which  is  rooted  in  the  Theory  of  Didactical  Situations
(TDS). The purpose of this paper is twofold:

 give  some responses  to  the  following question:  which reasoning  forms are
actually produced by a student during the different stages of a situation of oral
evaluation?

 show  the  utility  of  our  framework  to  analyse  the  signs  and  arguments
produced and thus take part to the development and enrichment of this model.

Within the French didactic tradition, we remind briefly the theoretical tools used in
the elaboration of the framework. Then, we expose our model, using the terminology
of Bloch and Gibel.  Equipped with these tools,  we use the model  to analyse the
arguments produced by students. But, at first, we succinctly introduce the institution
of  Classes Préparatoires aux Grandes Écoles by highlighting the differences with the
University, especially regarding the transition phenomenon with secondary level.
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I. THE CLASSES PRÉPARATOIRES AUX GRANDES ÉCOLES: A FRENCH
POST-SECONDARY LEVEL INSTITUTION 

The Classes  Préparatoires aux Grandes  Écoles,  which we can translate  as  Higher
School Preparatory Classes, are part of the French tertiary education system for over
two centuries. They consist in two really intensive years which act as a preparatory
course  to  train  undergraduate  students  for  their  further  enrolment  in  one  of  the
French graduate schools called Grandes Écoles, such as École Polytechnique, École
Normale Supérieure, École des Hautes Études Commerciales, also known as HEC
School of Management … The enrolment in one of these Grandes Écoles depends on
the rating obtained in national competitive and demanding examinations.

We  summarize  the  main  differences  between  the  Classes  Préparatoires  and  the
University in the following table. Thus, we highlight some facts that Winslow (2007)
showed to think about the study of the transition phenomena from the secondary to
the post-secondary level.

Classes Préparatoires University

Full-time teacher Part-time teacher, part-time researcher

One teacher by class

One class per teacher

Several teachers for one class

Several classes for one teacher

Non adoption of semesters Adoption of semesters

Common national curriculum Local curriculum

Non degree course Degree course

In High School At University

Class councils

Report cards

No class council

No report card

Selection of students No selection of students

Table 1: Comparison of CPGE and University

As Winslow (2007),  Castela  (2011)  and more recently  Farah (2015)  wrote,  these
differences have deep didactic implications, relative to the theoretical knowledge and
praxeologies,  to  the  problem  solving  approaches,  to  the  evaluations  and  to  the
personal homework just to name a few. In our experimental work, we studied some
arguments produced by second year students from one of these Classes Préparatoires
during an oral evaluation on linear algebra.

As noted by Bloch and Gibel (2016) for calculus, in order to recognize and analyse
the reasoning forms actually produced by a student,

it is necessary to classify the objects, signs and reasoning processes they have to cope
with during resolution of calculus problems. (Bloch & Gibel, 2016, p. 44)
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II. A MODEL TO ANALYSE STUDENTS’ REASONING

We  then  need  a  tool  to  modelize  the  students’  productions,  more  precisely  to
identify,  while  in  a mathematical  situation,  which is  the  knowledge they rely  on
during their  activity;  we want to identify the structure and functions  of  students’
reasoning processes in this situation. Briefly, this model should allow us to seize the
complexity  of  the  reasoning  processes  a  student  has  to  cope  with  during  the
resolution  of  mathematical  problems.  By  reasoning  process,  we  mean  valid  or
erroneous ones according to the work of Gibel (2015) about reasoning.

This model takes its origins in the Theory of Didactical Situations (Gonzalez-Martin,
Bloch, Durand-Guerrier, and Maschietto 2014) and in the semiotics of Peirce. We
briefly  recall  the  main  theoretical  elements  of  TDS  and  semiotic  used  in  the
elaboration of the model.

The TDS theory

TDS relies on a two basic premises concerning the mathematical activity and the
learning of mathematical knowledge. For TDS, the mathematical activity consists of
distinct stages: a situation of action, followed by a situation of formulation and then
a situation of validation  phase. To take the learning activity into account, TDS adds
two more stages: the phase of devolution and the phase of institutionalization. TDS
defines three fields to construct  and analyse  such situations.  The theoretical  field
which the domain of elaboration of fundamental situations relative to a knowledge.
The a priori  experimental  field which envisages  a situation  at  a specific  level  of
teaching,  taking  into  account  the  didactic  repertory  as  defined  by  Gibel  (Gibel,
2004).  The  a  priori  analysis  of  the  situation,  which  checks  if  the  conditions  of
devolvement are fullfilled, takes place at this second level. The third field is the field
of  eventuality  where  the  situation  is  actually  implemented.  In  short,  TDS  is  a
didactical framework which tries to implement situations with adidactical parts and
offers tools to analyse the teaching and learning activities. These adidactical stages
allow students to face a heuristic phase of research and then, through a confrontation
to the elements of an adequate milieu, to test, validate or invalidate their conjectures.
The notion of milieu appears to have a central role. TDS organizes situations with up
to seven logically successive phases, but in our work we will mainly work with three
of them: a heuristic one, grounded in a problem, and a formulation and validation
one,  composing  the  adidactical  moments  of  the  situation,  and  then  the
institutionalization  by  the  teacher  or  with  his/her  help,  which  is  the  didactical
moment. The dynamic of the nesting of the situations with the paired levels of milieu
illustrates  the  dynamic  of  the  learning  processes  involved.  The  following  chart
(Bloch  2006,  Bloch  and  Gibel  2016)  sums up the  levels  of  milieu  paired  to  the
different phases of situations corresponding to the experimental situation

M1 Didactical milieu E1: reflexive subject P1: P. planner S1: situation of 
project

M0 Learning milieu :
institutionalization

E0: generic student P0:  professor
teaching

S0:  Didactical
situation 
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M-1 Reference milieu:
Formulation and validation

E-1:  The  subject  as
learner

P-1:  Professor
Regulator 

S-1:Learning
situation 

M-2  Heuristic  milieu:
action, research

E-2:  The  subject  as
an actor

P-2: P devolves
and observes

S-2:  Situation  of
reference

M-3 
Material milieu 

E-3: epistemological
subject

S-3:  Objective
situation 

Table 2: Structuration of the didactical milieu

The levels M-2 and M-1 are the ones that will  allow us to identify, describe and
analyze  the  elements  (signs,  processes  …)  associated  to  the  emergence  of  an
argumentation within the proof process. More precisely, as Bloch and Gibel (2016)
write

The place where we hope to see the expected reasoning processes appear and develop is
located at the articulation between the heuristic milieu and the reference milieu. ( ibidem,
p.46)

Thus, the TDS theoretical framework allows us to consider not only the reasoning
processes  produced,  but  their  functions  within  the  situation  and  the  levels  of
argumentation they rely on: it already gives us a glimpse of the multidimensionality
of our model.

The semiotic tools

To take  into  account  the  semantic  dimension,  i.e. the  meaning  of  the  signs  and
arguments  produced,  with  certain  accuracy,  we need  semiotic  tools.  The signs  a
student produce during an adidactical situation, whether formal or informal, are the
only observable phenomena that can sustain our semiotic analysis: roughly speaking,
the signs produced (syntactic aspect) are in relation to an object (semantic aspect)
creating a instantiated sign (pragmatic aspect) relative to the milieu, the didactical
repertoire  and  the  repertoire  of  representations  as  defined  by  Gibel  (2015).  This
triadic relation, linking the sign, the object and the student’s instantiated sign, led us
to use Peirce’s semiotics. In this paper, we only analyse the relation between a sign
and its object, its content. But in his thesis, one the authors (Lalaude-Labayle 2016)
conducted a  semiotic study, relying on the full Peirce’s triadic classification of signs
as ‘put in algebra’ by Marty (1990). Applying the universal categories to the relation
between  a  sign  and  its  object  refers  to  the  notions  of  icon,  index  and  symbol,
describing the abstraction level of this relation. An icon is a sign which stands for an
object  because  of  its  physical  resemblance:  a  drawing,  a  triangular  matrix
represented with triangles … An index is a sign physically connected to its object:
the columns of the pivots in a reduced echelon form of a matrix M is an index that
points to the basis of Im(f), where M is canonically associated to f … A symbol is a
sign that refers to its object by virtue of a law: ker is a symbol whose object is the
concept of kernel of a linear transformation.
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The logical inferences

In our work we understand the term ‘reasoning’ in it broadest sense. More precisely,
by  reasoning  we mean  a  sequence  of  representations,  following  some intern  and
potentially explainable rules that lead to reach some explicit goal. Postulating, as it is
the case within the TDS theory, some rationality of the students, we need to define
these  rules  or  inferences.  Peirce  saw  mathematics  as  the  science  of  drawing
necessary conclusions, studying what is and what is not logically possible. But, since
one  does  not  think  about  logical  propositions  but  about  and  with  signs,  Peirce
broadened  the  notion  of  inference.  He then  distinguishes  three  kinds  of  rational
inferences: abduction, induction and deduction. Deduction, or necessary reasoning,
deduces  a  proposition  B  from  a  proposition  A,  where  B  is  a  formal  logical
consequence  of  A.  Induction  goes  from  the  particular  to  the  general;  it  allows
inferring B from A. Abduction allows inferring A as a probable explanation of B. So,
deduction  proves  that  something  must  be,  induction  shows  how  something
effectively operates and abduction suggests that something could be.

The framework to analyse students’ productions

To analyse  students’  processes  of  reasoning,  Bloch  and  Gibel  (2011)  develop  a
multidimensional  model.  They focus their  didactical  analysis  on three main axes.
The first axis is related to the level of milieu and so to the phase of the situation in
which the student produces his/her reasoning (cf.  Table 2). The second axis of the
model is linked to the notions of didactical repertoire, of organizational system and
of a repertoire of representations. It studies the functions of the reasoning produced
and is in close relation to the first axis. As Bloch and Gibel (2016) state it, they aim
at

linking these two axes, showing how the reasoning functions are linked specifically to the
levels of milieu and how these functions also  manifest these levels of milieu. (ibidem,
p.47)

Semiotic analysis of observable signs constitutes the third axis of the model. Marc
Lalaude-Labayle  enriched  the  model  by  adding  a  fourth  axis  about  the  forms of
inference applied. This logical axis links the second and third axis by setting out and
clarifying the organization of the reasoning signs and their  functions.  This fourth
axis helps to ‘make visible’ the organization within the system of representations and
its actualization. We sum up this model in the following table

Milieu M-2
Heuristic level

Milieu M-1
Formulation, validation

Milieu M0
Institutionalization

Nature  and
functions  of
reasoning 

R1.1  SEM
- Decision of a working 
frame (DOO)
- Decision of 
transformation (semiotic 
register)

R1.2  SYNT/SEM
- Generic calculations
- Formulation of 
underpinned 
conjectures (right or 
wrong)

R1.3  SYNT
- organization of the 
signs
- formalization and 
certification of 
validations
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- Decision of calculation
- Heuristic tools; errors
- Exhibition of an 
example /a counter ex.
- pattern 
research/identification

- Decision on a 
mathematical object 

- Formalization of 
proofs within the 
mathematics involved
theory

Level of use 
of symbols

R2.1  SEM 
Icons or indices 
depending on the context
(schemas, intuitions…)

R2.2  SYNT/SEM
Local or more generic 
arguments: indices, 
calculations

R2.3  SYNT
Formal and specific 
arguments related to 
the chosen frame

Actualisation 
of the 
repertoire

R3.1  SYNT/SEM
- Ancient knowledge 
- Enrichment at the 
heuristic level(patterns, 
praxeologies ...)

R3.2  SYNT/SEM
Enrichment at the 
argumental level: 
- statements
- organizational system

R3.3  SYNT
- Formalized proofs
- Signs within the 
relevant theory
- theoretical elements 

Forms of 
reasoning

R4.1
- deductive
- inductive
- abductive

R4.2
- deductive
- inductive

R4.3
- deductive

Table 3 – A model to analyse situations

SEM signifies that the formulations are made on a semantic mode whereas SYNT is
for syntactic mode. This model emphasizes the fact that the mathematical activity,
with its reasoning processes, appears in the heuristic and reference milieu (cf. Table
2). These two milieus, and the articulation between them, will thus be of particular
interest for our work, even if the situation is an ordinary one.

Let  us  insist  on  the  fact  that  the  use  of  this  model  relies  on  a  precise  a  priori
mathematical analysis of the situation and of its components, e.g. the problem to be
solved. Within the TDS this step appears to be necessary to clarify the didactical a
priori analysis. 

III. A PRACTICAL USE OF THE MODEL IN A LINEAR ALGEBRA ORAL
EXAMINATION

We analyse the productions of a second year student of Classes Préparatoires in the
context of an oral examination. The students of the Classes Préparatoires, by group
of three, pass such an oral  exam once every two weeks.  It lasts  one hour during
which  the  teacher  asks  to  the  three  students  to  solve  different  mathematical
problems. They work simultaneously and individually on a large blackboard on the
problem they just discovered, in front of the teacher. The teacher helps the students
by giving advices or clues. Taking into account the writings noted on the chalkboard,
she/he can ask for some explanation or clarification. This can give rise to an oral or
written answer and possibly to some discussion to deepen and enrich the repertoire
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of the representations of the student.  The oral  exam we analyse deals with linear
algebra, and more specifically linear transformations and matrices.

The student is confronted to the following problem:

Let n be a integer, greater than or equal to 2 and let φ defined on Rn[X] by: for all
polynomial P from Rn[X], φ(P)=P(X+1)-P(X).

1. Show that φ is an endomorphism of Rn[X].

2. Is φ injective? Surjective? Bijective?

In France, Rn[X] symbolises the vector space of real polynomials of degree at most
n.

As  briefly  explained  earlier,  our  model  provides  a  framework  for  investigating
mathematical and didactic activities in terms of milieu, focusing on the reasoning
processes,  signs  and  their  dynamics  and  on  the  conditions  that  enable  their
development during the situation, be it ordinary or not. As is done within TDS, our
didactic  analysis  is  divided  in  several  stages:  a  detailed  and  strucured  a  priori
mathematical and didactic analysis, enriched with a specific a priori analysis of the
reasoning involved; follow then an a posteriori analysis organized in our model.

A priori analysis

From the mathematical point of view, showing that φ is an endomorphism of Rn[X]
can be approached in different ways, engaging several frames: indeed the stability of
Rn[X] under φ can be done in a purely algebraic frame using the degree and the

composition rule, in a functional frame using the decomposition P=∑ ai X i

 or in an
algebraic frame using the linearity and showing that forall integer i between 0 and n,
φ(Xi)∈Rn[X]. To study the injectivity  and surjectivity  of  φ, the student  can again
choose  between  several  frames  and  several  registers  of  semiotic  representation
(Duval, 2017): she/he can use an algebraic frame with an example φ (1 )= 0⃗  and then
applying the theorem linking rank and kernel dimension; but she/he can also try to
find precisely  Ker φ, that is find a basis. To do this, she/he can use the functional
decomposition  of  polynomials,  she/he  can  solve  a  linear  system  or  she/he  can
determine the matrix of φ in the canonical basis of Rn[X].

From  a  didactic  point  of  view,  the  situation  studied  here  is  said  to  contain  an
adidactic dimension. Most of the actions, of the frames and of registers of semiotic
representation are devolved to the student. So, a first difficulty that occurs for the
student can be the control she/he has on the objects involved: a circular application
of the definition of linearity of φ to prove its linearity, the complexity of formulas to
write down φ(P) for a general P, the non operability of φ with wrong calculations of
φ(1), φ(X), φ(X²)  for example. For the injectivity of φ, the student can “forget” the
structure of the space Rn[X] he is working on and try to check whether  φ(P)=φ(Q)
implies that  P=Q. All the reasoning processes and objects involved are part of the
didactic repertoire of the class the student belongs to.
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A posteriori analysis: analysis of a student’s production

In the following, we extract some translated excerpts of the student’s  answer, the
whole solution can be found in Lalaude-Labayle (2016).

To solve the first part of the problem, which is an ordinary situation in undergraduate
level, the student is mainly confronted to the milieu of reference, articulating objects
and processes involved in his repertoire of representations. Here the heuristic milieu
is not really requested. He starts by showing the stability  Rn[X] under φ and that
writes  changing  X  with X+1  doesn’t  change the degree of P.  He then proves the
linearity in an algebraic frame. Doing so, he makes a formalization of proofs within
the required theory and thus  reaches the level R1.3.  The semiotic analysis shows
that he uses generic arguments (R2.2) and more formal one (R2.3). These arguments
and  signs  don’t  give  any  hint  to  how  φ  operates  on  Rn[X].  Its  argumentation
validates its use of the didactic repertoire, and reveals some implicit assumptions:
φ(P) is a polynomial is here implicit, as is its use linking degree and composition of
polynomials.  He  uses  mainly  hypothetical-deductive  inferences.  But,  as  an
introduction to his argumentation, the student asks himself whether deg(φ(P)≤n: he
formalizes here the start of an abductive reasoning.

To  study  the  injectivity  of  φ,  the  student  applies  a  transformation  of  register  of
semiotic representations to formalize the link with  ker  φ, starts within an algebraic
frame then uses  the  decomposition  of  P  to  study ker  φ,  but without  success:  he
cannot make φ operate on P and says not to have any clue to study the kernel. During
this phase, the student tried to use some deductive reasoning involving objects from
the reference milieu:  the lack of articulation between the heuristic milieu and the
reference  milieu  confirm  the  difficulties  encountered  in  R1.3  with  an  aimless
organisation of the signs.  The semiotic analysis  underlines the lack of quantifiers
which leads to a incomplete apprehension of the objects (R2.2) and reinforces the
feeling of lack of goal in the reasoning. The teacher asks then the student to consider
the tools he has got in his repertoire to “calculate” objects in linear algebra. With no
answer, he asks the student to consider the matrix of φ in the canonical basis. Doing
so, he tries to force the student to face the heuristic milieu and tries to maintain an
adidactic dimension in the situation. The calculations produced confirm the fact that
the student  doesn’t  know how to compute φ:  he obtains the identity matrix.  This
matrix doesn’t appear to be an index to control the reasoning (articulation R1.2 and
R1.3). With a new oral intervention of the teacher, the student writes the right matrix.
Some misinterpretations  are  following:  Rn  instead  of  Rn[X], surjectivity  is  meant
instead of injectivity (R3.1), φ(1)=0 is used as an symbol for ker φ=vect(1) instead
of a simple index of  it  (R2.1).  The student  uses  the theorem of the rank (R3.2),
relying then on a  deductive form of reasoning. But some of his deductions rely on
the preceding explicit calculations (articulation R4.2 R4.3).
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CONCLUSION

As stated in the introduction, the purpose of this paper is twofold: try to determine
the reasoning produced by a student in a specific mathematical situation and show
the utility  of our framework to analyse the signs  and arguments produced in this
situation.

Regarding the first question, our analysis allows us to say that this particular student
has difficulties to reach fully the institutionalization milieu (level R3): the reasoning
and  the  articulation  of  the  objects  involved  do  not  ease  his  control  over  his
arguments and eventually lead him to aimless computations. Moreover he seems to
get stuck in the reference milieu (level R2) and to hypothetical-deductive inferences.
The student does not rely on reasoning made in a heuristic milieu (level R1) that
would be appropriate to linear  transformations  and polynomials.  The problem we
analyze in this work contains an adidactic dimension but fails in asking the student
to make effectively operate φ on  Rn[X]. In semiotic terminology, we can postulate
that  the  at  least  incomplete  pragmatic  dimension  in  the  reasoning  leads  to  some
confusion  and  lack  of  pertinent  association  between  the  syntactic  and  semantic
dimensions (Bloch and Gibel, 2016).

Regarding  the  second  question,  our  work  seems  to  confirm that  the  model  used
within TDS constitutes an efficient framework, as stated in Bloch and Gibel (2011,
2016). It helps specifying the reasoning and signs on which it relies both for the a
priori and  a posteriori analysis  and highlights  the obstacles  contained within the
mathematical notions. Our future work should be working more specifically on the
abductive  reasoning  and  on  situations  encouraging  students  to  adopt  a  heuristic
approach.
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Leveraging Specific Contexts and Outcomes to Generalize in 

Combinatorial Settings 

Elise Lockwood and Zackery Reed  

Oregon State University, Elise.Lockwood@oregonstate.edu   

Generalization is a fundamental aspect of mathematics, and it is a practice with 

which undergraduate students should engage and gain fluency. It is important for 

students in combinatorial settings to be able to generalize, but combinatorics lends 

itself to engagement with specific examples, concrete outcomes, and particular 

contexts. In this paper, we seek to inform the nature of generalization in 

combinatorial settings by demonstrating ways in which students leverage specific, 

concrete settings to engage in generalizing activity in combinatorics. We provide 

two data examples that highlight ways in which concrete and specific ideas can be 

leveraged to help students develop generalizations in combinatorial settings.   

Keywords: Combinatorics, Generalization, Examples, Discrete Mathematics. 

INTRODUCTION AND MOTIVATION 

Generalization is a foundational mathematical activity, a mathematical practice that 

both researchers and policy-makers value (Amit & Neria, 2008; Ellis, 2007). At the 

undergraduate level, given the nature of abstract, advanced mathematics, it is 

important to learn how to facilitate generalizing activity for students. We have 

recently conducted a study designed to investigate undergraduate students’ 

generalizing activity, and we explored the students’ generalizing activity in the 

context of combinatorial problems. In this study, we aimed to examine ways in 

which to foster students’ engagement in generalizing activity. In combinatorics, 

however, it is often important and even necessary to focus on specific contexts or to 

consider particular, concrete outcomes. Indeed, in our prior work (e.g., Lockwood 

2013, 2014) and in this current study, we have found that concrete, specific 

instantiations of problems, outcomes, and examples are particularly important for 

students’ combinatorial thinking and activity. We believe that in the domain of 

combinatorics in particular, such specific instantiations are especially important for 

developing combinatorial thinking. Given that we want our mathematics students to 

be able to reason generally in combinatorial settings, we examine the interplay 

between the natural need for specific contexts and outcomes in combinatorics and 

the desire to have students engage in meaningful generalization. In this paper, we 

seek to answer the following research question: In what ways can specific examples, 

concrete outcomes, and particular contexts be leveraged to foster generalizing 

activity in a combinatorial setting?  
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LITERATURE REVIEW AND THEORETICAL PERSPECTIVE 

A Piagetian perspective on generalization and generalizing activity. As a broad 

theoretical perspective, we adhere to a constructivist view of learning, asserting that 

students construct their knowledge of a given situation based on their mathematical 

experiences. We fundamentally view generalization as being related to Piaget’s 

notions of reflective abstraction, and we emphasize the importance of having 

students engage with and reflect upon their prior activity as they engage in 

generalization. Many researchers have studied generalization in a variety of contexts 

involving both school-aged children (Amit & Neria, 2008; Ellis, 2007; Rivera, 2010) 

and undergraduate students in a variety of areas (e.g., Dubinsky, 1991; Harel & Tall, 

1991). This report contributes to the growing body of literature by examining the 

nature of generalization in an undergraduate combinatorial setting.  

We follow Ellis (2011) and take generalization to mean engaging in “at least one of 

three actions: (a) identifying commonality across cases, (b) extending one’s 

reasoning beyond the range in which it originated, or (c) deriving broader results 

from particular cases” (p. 311). To describe students’ activity as they generalize, we 

adopt Ellis’ (2007) taxonomy of generalizing activity, Ellis describes three main 

categories of generalizing actions: relating, searching and extending. In this paper, 

we focus especially on relating, which occurs when “a student creates a relation or 

makes a connection between two (or more) situations, problems, ideas, or objects” 

(p.235). In this paper, the term “generalization” need not involve a formal, final 

statement of a general rule or property, but rather it may refer to the results of a 

students’ generalizing activity, even if that activity is incomplete or not normatively 

correct. 

Combinatorial thinking and activity. 

Combinatorial enumeration problems, or “counting problems,” are easy to state, but 

they can be surprisingly challenging for students to solve. This is due in large part to 

the fact that counting problems are not reliably solved using prescribed, fool proof 

algorithms (e.g., Kapur, 1970). Solving counting problems thus provides 

opportunities for students at all levels to engage in rich mathematical thinking. There 

is ample evidence that students struggle with solving counting problems (e.g., 

Batanero, Navarro-Pelayo, & Godino, 1997). Although researchers have taken 

strides in identifying productive strategies and ways of thinking that might help 

address such difficulties, there remains much to learn about how we might 

effectively help students to count successfully. 

In this paper, we examine the role of generalizing in students’ counting, and we 

explore how to frame generalizing activity in terms of Lockwood’s (2013) model of 

students’ combinatorial thinking. Lockwood (2013) suggested that there are three 

key components to students’ combinatorial thinking (Figure 1) and that solidifying 

the relationships between these components is an important aspect of successful 
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counting. Formulas/expressions refer to numbers and/or variables that represent the 

answer to a counting problem. Counting processes refer to the enumeration process 

in which a counter engages as they solve a problem. Sets of outcomes are the 

collection of (encoded) objects that are being counted.  

 

Figure 1: Lockwood’s (2013) model of students’ combinatorial thinking  

To exemplify the model, we discuss the Horse Race Problem, which is a problem 

that we discuss in the Results Section. The problem states: There are 10 horses in a 

race. In how many different ways can the horses finish in first, second, and third 

place? Note that one counting process to solve this problem is to consider options 

for which horse could be first, second, or third place. We can argue that there are 10 

options for which horse is first, and for any choice of which horse is first there are 9 

options for which horse is second, and then for any of those there are 8 choices for 

which horse is third. This counting process yields an expression of 10*9*8, which is 

720. This process would organize the set of outcomes lexicographically, grouped 

according to which horse finished first, then second, then third.  

Lockwood has emphasized the importance of sets of outcomes in a number of 

studies. In particular, she has advocated for a set-oriented perspective toward 

counting (Lockwood, 2014), in which the act of counting is viewed as inherently 

involving structuring and enumerating the set of outcomes. In addition, she has made 

a case for the value of listing outcomes, demonstrating that listing outcomes was 

positively correlated with solving problems correctly for novice undergraduate 

students (Lockwood & Gibson, 2016). In this way, Lockwood has emphasized the 

importance of considering concrete outcomes as students solve counting problems. 

The point of the set-oriented perspective is that students should think carefully about 

what they should be solving in a given problem.  

On one hand, then, this prior research suggests that it is useful for students to 

consider the concrete, specific outcomes that they should count. Further, when a 

student solves a counting problem such outcomes are necessarily tied to that problem 

and context. We want students to be able to think about what constitutes an outcome 

in a particular combinatorial situation. On the other hand, though, we want to foster 

generalization for students and to encourage them to engaging in generalizing 

activity, even in combinatorial situations. We want students to be able to develop and 

apply general formulas, or to be able to make general arguments about their counting 

processes. In this paper, we describe specific ways in which students use concrete 

settings to leverage general thinking and activity in the domain of combinatorics.   
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METHODS 

We report on data from a study designed to study students’ generalizing activity in 

the context of combinatorics. We report on two data sources. First, we report on a 

design experiment (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) with four 

undergraduate calculus students, and we focus on one particular student Carson 

(student names in this paper are pseudonyms). The students were chosen based on a 

selection interview; they had not taken a discrete mathematics course in the 

university and were novice counters who could explain their thinking. The students 

were interviewed together as a group of four during nine 90-minute sessions. The 

interviews were audio and video recorded. During this time, the students worked 

both individually and together on combinatorial activities, and the interviewer often 

asked probing questions or asked the students to explain their work. These tasks 

included solving basic counting problems, coming up with general formulas for 

counting problems, and solving problems related to combinatorial proof.  

Second, we report on an individual interview with a calculus student, Tyler, who had 

similarly not taken a discrete mathematics course in the university. The interview 

was individual and 60 minutes long. We gave Tyler tasks involving determining the 

number of 3, 4, 5, and eventually n-length passwords using As and Bs, and then 

passwords consisting of the characters As, Bs, and the number 1. We had him write 

tables in which he recorded the number of passwords with a certain number of As, 

and ultimately the tasks could yield the binomial theorem (which we do not discuss 

in this paper). These tasks were broadly designed to target students’ generalizing 

activity in combinatorial tasks specifically, and we sought both to learn about 

students’ combinatorial reasoning and about their combinatorial generalization. 

The design experiment sessions and the interviews were transcribed, and we created 

enhanced transcripts in which we inserted relevant images and descriptions of 

activity into the transcripts. For the purposes of this paper, we identified two cases of 

Carson and Tyler as students who leveraged particular problems and situations in 

order to engage in generalizing activity. We focused on these students’ data and 

identified relevant episodes that shed light on this phenomenon. We reviewed the 

transcripts and the videos and discussed these cases with the research team. 

RESULTS AND DATA EXAMPLES 

In our results, we seek to demonstrate instances in which students leveraged and use 

specific, concrete examples in combinatorics in order to engage in generalizing 

activity. These are meant to shed light on the interplay between particular situations 

and contexts that are important in combinatorial settings and the broader practice of 

generalization. We argue that specific examples, concrete outcomes, and particular 

contexts remain a fundamental aspect of combinatorial reasoning that can help to 

facilitate generalization. We offer two specific examples of how this phenomenon 

occurs, shedding light on the nature of generalization in combinatorial settings. 
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Students leverage activity on particular problems to generalize counting 

formulas and principles. 

In this case, a student in the design experiment, Carson, repeatedly referred back to 

his prior work on a particular problem that stood out to him as being important. We 

view this as an example in which work on a particular problem can be leveraged to 

help students engage in generalizing activity. During initial problem solving in the 

first session, Carson had solved the Horse Race Problem, described previously. We 

will demonstrate that as he proceeded to solve other tasks and solve other problems, 

he repeatedly referred back to his prior activity on this problem, related it to other 

situations, and used it to generalize a counting formula. Carson solved the problem 

in a different way than we had described above, arriving at a correct expression of 

10!/7!. Note, this is equivalent to the expression 10*9*8, but, as he explained below, 

Carson used a different counting process. He had a particular way of reasoning about 

this solution, leveraging the notion of division and equivalence to explain why the 

division by 7! makes sense combinatorially.  

Carson: …So, there’s 10 factorial total outcomes, and then we know for any given 

first 3 there’s gonna be 7 factorial, because that’s saying we know the first 3 

horses have finished – how can the last 7 horses finish, so that’s gonna be 7 

factorial. But all we care about is how many given first 3s there are. So, if 

we divide the total number of outcomes by the number of potential of 

outcomes for the last 7 horses that will give us the potential number of 

outcomes for the first 3. If that makes sense? 

Carson argued that for any particular arrangement of all ten horses, since all that 

matters is how the first three horses finish, we can divide by the number of identical 

arrangements of the last seven horses. This is a valuable way to think about these 

problems, and understanding and articulating this counting process seemed to be an 

important moment for Carson. As we proceeded to consider more problems, Carson 

repeatedly returned to this Horse Race Problem. We will demonstrate ways in which 

Carson has engaged in the generalizing activity of relating (Ellis, 2007) by using this 

problem as he approached additional tasks. In this way, this problem served as a 

generic example (Mason & Pimm, 1984), a way in which he could make general 

arguments and connect his reasoning to other problems. We now describe several of 

the ways that Carson leveraged this particular problem. 

First, we see that Carson engaged in relating by connecting back to the Horse Race 

Problem as he solved other problems. For example, in solving a problem of arranging 

4 of 7 books in a row on a shelf, Carson arrived at the correct answer of 7!/3!. The 

interviewer asked him how he was thinking about the problem, and his response 

below shows the connection he made to the Horse Race Problem. 

Carson: Yes, kind of similar to the horse problem. You can say they’re all in a race, 

you wanna see how many ways the first 4 books could finish in the race. 
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We later had the four students categorize problems they had solved, and from that 

exercise we asked them to generalize formulas. One of these formulas was the 

number of ways of arranging some number of objects from a larger set of objects. 

Carson had indicated that he saw several problems as being the same, and in the 

excerpt below, he explained why he viewed the problems as being the same. Again, 

he referred to the podium and the division that he had articulated on the Horse Race 

Problem as being a distinguishing feature of all of these problems. 

Carson: So, essentially all of them are asking for a ranking of a given set of objects 

and asking how many arrangements there are for a given number of places, 

right? So, the cats are racing to get the collars you could say or the 

restaurants are racing to get the top five rankings in the town or the horses 

are racing in a race. Then each of the rankings or the collars are a ranking in 

the race. Yeah, then you can just divide by the duplicates for leftover ones, 

the ones that didn’t make the podium finish or whatever amount of finishes 

there are or whatever podium they’re asking for. 

His reference to the horses and to the podium suggest to us that this continued to be a 

salient aspect of his reasoning. We interpret that Carson was engaging in the 

generalizing activity of relating (Ellis, 2007), and, in terms of Lockwood’s (2013) 

model, he related the counting process of arranging all of the objects and then 

dividing by the ways to arrange the leftover objects. He also seemed to emphasize 

the nature of the set of outcomes (arrangements). He recognized that counting 

process as similar among the problems he grouped together, and he related each of 

those other problems to the ranking and podium language he used in the Horse Race 

Problem. 

Further, we also asked the students to come up with a general formula for the 

problems they had grouped together. They did this for several problems, but we 

highlight the formula for the permutation problems. In trying to articulate the kind of 

problem they were dealing with, again Carson referred to his activity on the Horse 

Race Problem. 

Carson: Right. I mean thinking about the method for solving this, it’s the factorial 

from above, right? So, we have ten horses in a race. How many ways can 

the horses finish, but then how many of those have a unique podium, right? 

So, how many times are the first, second, and third place different? 

The students then had a conversation about what the formula would be. They came 

up with the formula a!/(a-b)! for arranging b objects from a set of a distinct objects, 

which another student, Josh, articulated: 

Josh: No, I think that it would be something like if you have a objects, you would 

have a factorial – that’s the total number of things that you can select – over 

a minus b factorial, where b is the number of slots that you have. 
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After they agreed upon this formula, Carson explained how he was thinking about 

this general formula they had come up with. The excerpt below shows that he 

referred back to the imagery of the podium, using that context to make a general 

argument.   

Carson: … A is your total number of arrangements for the entire thing and then you 

want to divide by the number of ways that the places you’re not selecting 

can be arranged, right? So, if you’re selecting first, second, and third, then 

you have fourth through tenth and those can be arranged in ten minus three 

factorial ways, right? So, we can just divide by that number of arrangements 

[begins motioning slots with hands] for the back end to get just one for the 

front end because that’s what we’re asking for is how many ways can that 

podium be arranged? 

We contend that in relating back to the Horse Race Problem, Carson was relating 

back to different components of Lockwood’s (2013) model, including formulas, sets 

of outcomes, and counting process. This exchange suggests that Carson had a well-

developed understanding of the specific problem in terms of the components of the 

model, and he related different aspects of the problem in different situations. From 

our Piagetian perspective we view Carson and the students as constructing a formula 

that makes sense to them, and Carson reflected upon his prior activity in order to 

develop a statement of a more general formula. 

The Horse Race Problem came up in additional settings for Carson, including during 

reasoning about combinatorial proof in a later session. Ultimately, Carson 

acknowledged how important this problem was for him. In the final interview, when 

we were reflecting on the entire design experiment, Carson shared that he continued 

to think about subsequent problems in terms of the Horse Race Problem. We 

interpret that his language below means that he felt that he conceptually understood 

the ideas in the Horse Race Problem, perhaps in a deep way that he felt confident 

about.  

Carson: For whatever reason, the horse race problem is the one that’s in my head 

forever. And it must have just been where it clicked in the interview 

because that’s kind of what I refer to. If somebody says how many ways can 

a horse finish in the podium, how many ways can the podium be organized, 

things like that. And that’s kind of where I keep going back to. And I don’t 

know why that is. 

This case serves as an example of a student leveraging activity on a particular 

problem for a number of other activities, particularly generalizing activities of 

relating (Ellis, 2007). There have other examples of students drawing on prototypical 

problem types in combinatorics. Maher and colleagues have talked about students 

referring to Pizza Problems or Block Towers problem, demonstrating how students 

think about and use powerful particular problems in other (e.g., Maher, Powell, & 

Uptegrove, 2011). We build on such work by explicitly drawing attention to the 
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generalizing activity that a specific problem fostered for students, highlighting the 

affordances that can stem from a student deeply understanding and justifying his or 

her activity on a particular counting problem.  

Students compare and contrast specific examples to identify general structure. 

We briefly describe an additional example in which a calculus student Tyler was 

relating two different situations while working on the Passwords Activity. In the 

interview Tyler was counting two kinds of passwords – those involving either upper 

case As and/or Bs, and those involving As, Bs, and the number 1 (with repetition 

allowed). Tyler had initially engaged in systematic listing activity to count the 

number of possible 4-character AB passwords. In particular, he created the list of 4-

character AB passwords with exactly two As (Figure 2a), and the table of passwords 

according to number of As (Figure 2b). 

    

Figure 2a, b: Tyler’s arrangements of 4-character AB passwords with exactly 2 

As and his complete 4-character AB table 

Later in the interview, Tyler was in a situation of counting 4-character passwords 

consisting of uppercase As, Bs, and 1s. We had asked him to create a table based on 

the number of 1s in the password. To complete this table, one can first consider 

placing the 1(s) and then filling the remaining positions with either A or B. Notably, 

placing As and Bs then reduced to the prior problem Tyler had solved, namely 

counting 4-character AB passwords. Tyler realized that there were the same number 

of arrangements of two types of characters, and he made a general statement about 

this case, recognizing that he will always have six ways of arranging two kinds of 

characters. Tyler was able to speak generally about counting arrangements of two 

kinds of characters. That is, he recognized that the tables gave him totals for the 

number of ways of arranging two characters, not just that they had to be As and Bs or 

1s and xs. In the excerpt below he had been working on an extension problem, and 

he speaks about two different “things” that are changing, suggesting he had 

extrapolated a notion of arranging two characters independently of what the 

characters are specifically. 

Tyler: Um well these are all the number of combinations I can do, um, with 2 

different, 2 things that are changing, and this number of letters. 
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Here, we conjecture that reasoning about the particular situations and engaging with 

the actual outcomes allowed Tyler to make an important connection between 

arranging As and Bs and 1s and xs. The similar nature of the activity when listing in 

both cases allowed him to draw attention to the similar counting process in which he 

was engaging and the fact that the outcomes he was generating were fundamentally 

similar – arrangements of two kinds of characters. Ultimately this allowed him to 

make and use a useful generalization, and he understood the values in the rows in the 

AB tables as representing the number of arrangements of two kinds of characters.  

We infer that Tyler engaged in relating (Ellis, 2007), and that comparing both 

situations allowed him to draw out some general commonalities between the two 

specific settings. Here, we argue that reasoning carefully about the concrete 

examples and actually engaging in concrete listing activity may have helped to 

solidify a broader combinatorial process. 

CONCLUSION AND DISCUSSION 

Prior research (e.g., Lockwood, 2013; 2014; Lockwood & Gibson, 2016) has 

emphasized the importance of having students focus on sets of outcomes as they 

solve counting problems. Often this focus on outcomes necessarily means that 

students reason about very specific contexts and concrete objects, and we view this 

as a fundamental aspect of counting and combinatorial activity. However, we also 

acknowledge that part of mathematical engagement involves looking beyond 

particular situations and contexts, and we have tried to demonstrate certain ways in 

which the particular contexts and concrete outcomes can be leveraged to facilitate 

meaningful generalizing activity for students.  

Specifically, we offer two qualitatively different examples in which students 

leveraged the structure of specific combinatorial contexts to establish more general 

relationships. In our first example, Carson used his activity on and solution of the 

Horse Race Problem as a template for a specific combinatorial process, which he 

then used in similar contexts. Carson’s generalizing activity was manifest through 

using this template as a means to relate combinatorial processes that he viewed as 

similar in some way and to connect the structure of the Horse Race problem to other 

cases. This specific generalizing activity demonstrates a powerful manifestation of 

relating, wherein Carson leveraged the structure of a known specific example as a 

solution for novel and abstract counting processes.  

In our second example, Tyler used a connection between two situations to generalize 

a concrete arrangement structure. Tyler had initially recognized that his tables 

partitioning the 3-length passwords according to the number of As represented 

instead a partition of ways to arrange pairs of objects. Tyler then leveraged the 

specific process with which he was familiar by arranging 1s and xs, thus 

implementing the same specific counting process in a particular generalized setting.  
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Both of these examples involve the activity of using concrete situations to form a 

general relationship. These cases help to inform the nature of generalization in 

combinatorial contexts, offering examples of specific ways in which concrete 

outcomes and situations can be leveraged for use in more general settings.  
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by discrete mathematics at university level,  and present  DEMIPS network and its 
plans  to  tackle  them. Through two detailed  examples  we discuss  the  reasons  for 
teaching Discrete Mathematics at university level, and illustrate our conclusions.

Keywords:  teaching  and  learning  of  number  theory  and  discrete  mathematics, 
teaching and learning of mathematics in other fields, proof, algorithms. 

INTRODUCTION

This paper points out the current need for the construction of resources and debates 
regarding discrete mathematics at university level. We wish to emphasize the features 
of the French context, both from an educator’s and researcher’s point of view, at the 
intersection of didactics,  mathematics and computer science. Indeed, teaching and 
learning  discrete  mathematics  involves  mathematical  skills  and  heuristics  (e.g. 
different kinds of proofs and reasoning,  several ways of modelling etc.)1 and also 
develops  objects,  concepts,  methods  and  tools  that  are  necessary  for  computer 
science.  This  link  with  computer  science  brings  new  types  of  questions  to 
mathematics (for instance, regarding algorithmic complexity). Then, our aims are to 
design  original  situations  for  schools  and  at  university  level,  and  to  construct 
appropriate introductory situations for computer science and maths majors.

We propose an overview of discrete mathematics in mathematics education and make 
a focus on the interface between discrete mathematics and computer science. Then, 
after presenting our research group in France, we analyse two kinds of situations.

DISCRETE MATHEMATICS IN AND FOR MATHEMATICS EDUCATION

How to define discrete mathematics?

Several  mathematical  topics  are  often  gathered  under  the  blanket  term  discrete  
mathematics. A first step in contributing to a thorough didactical study of discrete 
mathematics is to provide a satisfactory definition, or at least delimitation, of what it  
refers to. Several definitions exist, which either attempt to provide a general common 
trait to the covered topics, such as “the mathematics of discrete sets”, or resort to an 
enumeration of objects, concepts or techniques most often associated with discrete 
mathematics. Most of these definitions include or are followed by a discussion on 
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some  typical  difficulties,  such  as  the  distinction  between  finite,  discrete  and 
continuous mathematics (e.g. Maurer, 1997). To clarify the distinction between finite 
and discrete  mathematics,  the  MAA (1992)  places  finite  mathematics  in  the  pre-
calculus category  and discrete mathematics in the same category as calculus.

We advocate that an interesting way to define discrete mathematics both for research 
and didactical perspectives (for the design of courses and of didactical engineering at 
university  level)  is  to  emphasize  the  features  of  the  modes  of  reasoning  that  are 
common  (or  specific)  to  the  various  topics  usually  recognized  as  discrete 
mathematics,  and  the  discrete  nature  of  the  structures  they involve.  Moreover,  a 
classification of problems is required in order to structure a didactical analysis of the 
field  of  discrete  mathematics.  Furthermore,  as  the  development  of  discrete 
mathematics has been strongly directed by the needs for computer science, the links 
with computer science must be explicitly explored.

In  1974,  Knuth,  a  pioneer  in  computer  science  and  its  teaching  made  a  similar  
analysis (Knuth, 1974, p. 329) : 

“The  most  surprising  thing  to  me,  in  my  own  experiences  with  applications  of 
mathematics to computer science, has been the fact so much of the mathematics has been 
of a particular discrete type [...]. Such mathematics was almost entirely absent from my 
own training, although I had a reasonably good undergraduate and graduate education in 
mathematics.  [...]  I  have  naturally  been  wondering  whether  or  not  the  traditional 
curriculum – the  calculus  courses,  etc.  –  should be revised to  include more of  these 
discrete mathematical manipulations, or whether computer science is exceptional in its 
frequent application of them.”

We  consider  that  these  questions  are  still  topical,  even  at  university  level,  and 
deserve a careful didactical analysis.

Where is discrete mathematics? What questions are relevant at university level?

It is often stated that discrete mathematics can be a tool for improving reasoning and 
problem-solving  skills  (see  for  instance  Rosenstein,  Franzblau  & Roberts  (1997) 
who advocated an introduction of discrete mathematics in curricula, asked didactical 
questions,  and made propositions that  were taken into account for  Principles and 
Standards for School Mathematics  NCTM, 2000 for instance). Moreover, discrete 
mathematics is an active modern branch of contemporary mathematics with a wide 
range  of  applications  in  society,  which  is  a  very legitimate  reason  to  teach  it  at  
school, high school and college. In fact, discrete mathematics courses are relevant to 
a wide variety of majors at university level, including mathematics, number theory, 
computer science, and engineering: from an epistemological point of view, discrete 
mathematics  has  an  interdisciplinary  nature  and  can  provide  a  mathematical 
foundation  (with  specific  ways  of  reasoning  and  proving,  and  mathematical 
concepts) for computer science and engineering courses. By 1989, an MAA report 
(Ralston,  1989)  from  an  ad-hoc committee  consisting  of  mathematicians  and 
computer scientists recommended that “discrete mathematics should be part of the 
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first  two  years  of  the  standard  mathematics  curriculum  at  all  colleges  and 
universities”. This report also emphasizes the notions of proof, recursion, induction, 
modelling,  and  algorithmic  thinking,  as  well  as  the  benefits  of  using  discrete 
mathematics  in  the  secondary  level  to  improve  problem-solving  skills  with  the 
transition to university level in mind (Ralston, 1989). Moreover, Epp (2016) points 
out the strong necessity of abstract  thinking for the course and its applications in 
computer  science.  She  underscores  that  it  is  done  in  the  frame  of  the  current 
curricular  recommendations,  prepared  by  The  Joint  Task  Force  on  Computing 
Curricula (2013) of the ACM and the IEEE Computer Society, which gives discrete 
mathematics as one of the two largest components in the “core body of knowledge” 
recommended for all computer science students. Besides, discrete mathematics is in 
close relationship with other mathematical areas: other fields of mathematics use its 
methods and results, and, are useful for solving some discrete mathematics problems.

What is currently the place of discrete mathematics and its links with other scientific  
fields  at  university  level?  In  several  countries  (Hungary,  USA,  Germany  for 
instance),  its  significance  in  university  programs  is  well-established  and 
acknowledged. That is  not  always the case in France where the status of discrete 
mathematics in the first  three university years is unclear,  at  least  in mathematical 
curricula.  However,  discrete  mathematics  appears  sporadically  in  few  parts  of 
mathematics curricula as probability theory (in particular combinatorics for discrete 
probability theory) or arithmetic. It sometimes appears in courses dedicated to the 
learning of proving, mathematical reasoning and problem solving, but we question 
whether  its  specificity  is  emphasized.  One  is  more  likely  to  find  courses  where 
discrete  mathematics  is  taught  for  itself  in  computer  science  or  mathematics  and 
computer  science  curricula,  where  there  exists  a  kind  of  common  basis  shared 
between teachers and including classical contents of discrete mathematics as can be 
seen abroad.  These reports and recommendations coming from academic societies 
and the above remarks underscore two key questions for mathematics education at 
university level, and more specifically in France:

 What are the place and role of discrete mathematics at university level? How 
to design curricula and didactical engineering for the first university years ? 

 What links are there between discrete mathematics and other areas (mainly of 
mathematics  and  computer  science) and  how  are  they  (or  should  they  be) 
practised / worked in the first university years?

These  questions  are  particularly crucial  for  countries  where  discrete  mathematics 
does not have a well-established status is the first university years.

What do we know from a didactical point of view? 

In mathematics education, various research regarding the teaching and learning of 
discrete mathematics exist, focusing mainly on the primary and the secondary levels 
(ZDM (2004), Hart & Sandefur (in press) propose overviews). This research meets 
general  approval,  and points  out  epistemological  features  of  discrete  mathematics 
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such as: discrete problems bring out different ways of proving (Grenier & Payan, 
1998); discrete structures enable work on the construction of mathematical models, 
optimization,  operational  research  and  experimental  mathematics  (e.g.  Grenier  & 
Payan, 1998; Maurer, 1997); discrete concepts are accessible and problems are easy 
to  understand  (Grenier  & Payan,  1998;  De  Bellis  & Rosenstein,  2004);  discrete 
concepts  have  different  kinds  of  definitions  and  representations  (Ouvrier-Buffet, 
2006, 2011); some discrete problems are real world problems developing and using 
techniques from mathematics and computer science (Schuster, 2004), etc. Discrete 
mathematics  problems  are  also  a  frame for  developing  and  teaching  algorithms; 
conversely,  the  study  of  algorithms  requires  a  lot  of  discrete  mathematics,  and 
studying algorithms and programming can be a good way to justify the introduction 
of discrete mathematics contents (e.g. Modeste, 2012 & 2016). In all this research, 
discrete mathematics seems to be a powerful source of problems for teaching and 
learning  mathematical  proofs  and  processes  and  engaging  students  in  developing 
new ways of thinking (such as recursive thinking), heuristics and problem-solving 
skills from primary school to university. Besides, some researchers point out that its 
teaching  provides  opportunities  to  bypass  some  of  the  sources  of  commonly-
occurring negative affect in students (e.g. Goldin, 2016).

It appears that the features of discrete mathematics clearly represent challenges for 
university mathematics, in particular in France.

THE  “DEMIPS”  NETWORK  –  A  WAY  TO  FEDERATE  DISCRETE 
MATHEMATICS EDUCATION

Presentation of the DEMIPS network

In  the  French  framework  of  mathematics  education,  there  is  a  need  to  federate 
(isolated) research in university mathematics. Following the INDRUM momentum, 
the national network DEMIPS2 supports the development of new research programs. 
DEMIPS’s  research  involves  around  40  researchers  in  mathematics,  mathematics 
education,  physics  education,  computer  science,  and epistemology and history  of 
mathematics  and  sciences,  and  is  concerned  with  five  main  topics:  three  topics 
dealing  with mathematical  contents  (analysis;  linear  algebra  and abstract  algebra; 
arithmetic, discrete mathematics and algorithmics) at the secondary – post secondary 
transition and at university level (the links with physics and computer science are 
questioned);  a  transversal  topic  (logic,  language,  reasoning,  proofs  -  from both  a 
mathematics and computer science point of view); and a specific topic dealing with 
the practices of teachers and teachers-researchers at university level (in mathematics, 
computer science and physics).

We (the authors of this paper) organize federative research in the fields of arithmetic,  
discrete mathematics and algorithms. The members of  our group are mathematics 
educators  (didacticians)  with specific  skills  in  teaching and learning at  university 
level, mathematicians, and researchers in computer science. We choose to study the 
parts  of  mathematics  which lie  at  the intersection  of  “classical”  mathematics  and 
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theoretical  computer  science  (for  instance  discrete  mathematics,  arithmetic,  and 
algorithms), which interact and complement each other.  As  theoretical background 
we will follow Brousseau’s theory of  didactical  situations (Brousseau, 1998) for its 
notion of didactical engineering, and the notion of scheme (Vergnaud, 1990) in order 
to structure our analysis of mathematical concepts. We organize our questions around 
key axes regarding the French university level:

 What are the epistemological features of concepts and reasoning in arithmetic, 
discrete mathematics and algorithms? How do they interact? (And then, how 
can these interactions be used to enrich the way these concepts are taught?) 

 What kind of situations can one design in these mathematical  areas for the 
university level and for pre-service and in-service teacher training? What for?

 What kind of  curricula  are there for  this  kind of  mathematics  at  university 
level? What can be said about the design of these curricula? 

Our research questions try to break down the barriers between scientific disciplines 
involving discrete mathematics. They also underline typical situations and questions 
common  to  mathematics  and  computer  science,  and  try  to  put  to  use  didactical 
analysis techniques to cast a new light on the way these questions are, or could be,  
tackled at university level. We develop below two examples to illustrate our work,  
and elaborateon the place and role of discrete mathematics at university level.

SITUATIONS  AND  IMPLEMENTATIONS  AT  UNIVERSITY  LEVEL  - 
EXAMPLES FROM DEMIPS’ WORKSHOPS

We develop here two examples to illustrate the potentialities of discrete mathematics 
to engage students in learning modelling, proving, and mathematical reasoning and 
also to underscore the validity and the interest of keeping in mind the algorithmic 
point of view and the connections with computer science. These examples emphasize 
new perspectives for the teaching and learning of mathematics. The first  example 
explore the links between mathematics and computer science in a problem-solving 
context and the second deals with a classical “divide and conquer”-type algorithm.

Example 1 – Discrete lines

The  mathematical  object  concerned  here  is  the  discrete  straight  line  (colouring 
squares, or “pixels”, on a regular rectangular grid, in order to give the best possible 
visual  impression of a straight  line). The (real) straight  line can act as a referent.  
Discrete straight  lines are accessible  through their representations (e.g. perceptive 
and analytical  aspects  of  geometry)  and their  definitions  and properties  are  non-
institutionalized (a concept is institutionalized if it has a place in a classically taught  
content).  Computer  programmers  are  familiar  with  this  concept.  Professional 
researchers in discrete geometry (both mathematicians and computer scientists) use 
several  definitions,  but  the  proof  of  the  equivalence  of  these  definitions  remains 
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worth  considering.  The  complexity  of  the  underlying  axiomatization  of  discrete 
geometrical concepts is actually an open and interesting problem. 

Ouvrier-Buffet  (2006)  has  analysed the evolution  potential  of  zero-definitions  (in 
Lakatos’ sense, zero-definitions act as working definitions) of the concept “discrete 
straight  line” in a defining situation implemented with freshmen. She underscores 
several approaches dealing with this concept, namely “real straight line” (What is the 
“nearest” pixel to a real line? What kind of modelling should be used?), “regularity” 
(What are the properties of the sequence of stages (called  chaincode string)?), and 
“axiomatization”  (What  about  the  existence  of  the  intersection  of  two  discrete 
straight lines? Is a discrete straight line unique?). Each point of view brings about  
several  zero-definitions.  To  engage  into  an  axiomatic  perspective  carries  great 
difficulty. This approach deals with both the perceptive aspect of a straight line and 
the  axiomatic  perspective.  We  are  here  confronted  with  two  markedly  different 
defining styles: a local one and a global-theoretical one, the latter mobilizing some 
implicit skills and knowledge in students (e.g. building a theory and choosing among 
competing definitions). The main results of this experiment underscore the ability of 
students  to  engage  in  a  defining  activity  with  a  “neutral”  but  complex  concept. 
Students do not assume an axiomatic perspective but mobilize reasoning involving 
approximate methods close to those used for real straight lines (and then arithmetic 
tools) and also the characterization of the sequence of stages of pixels (how can we 
modify a sequence to obtain a better regularity?) that involves recursive arguments. 

From a didactical  point  of  view, this research requires the development of a new 
theoretical background in order to model the defining process. From a mathematical 
point  of view,  the discrete  geometrical  objects,  and more specifically the discrete 
straight lines can be approached in several ways: differential discrete analysis, the 
Bresenham  algorithm,  algorithms  involving  combinatorial  analysis,  several 
discretizations  using  algorithms which  generate  and study errors  (Greene  & Yao, 
Freeman & Pham, Rosenfeld), and the introduction by Reveillès of the arithmetical 
definition  of  a  discrete  straight  line  (1991).  For  instance,  the  approach  to  the 
discretization  of  a  real  straight  line  by  checking  linearity  conditions  is  directly 
related to number theoretical issues in the approximation of real numbers by rational 
numbers.  These  linearity  conditions  can  be  checked  incrementally,  leading  to  a 
decomposition of arbitrary strings into straight substrings (Wu, 1982). The ongoing 
mathematical  problems in discrete geometry are intimately related to questions  in 
other  fields  of  mathematics  and  computer  science.  The  construction  and  the 
manipulation of algorithms are important for this purpose.

Example 2 – Exponentiation by squaring

A classic algorithmic problem is that of computing for some natural n the n-th power  
an of real number a. A naïve solution is, starting with value 1, to multiply n times this 
value by a. The final value one obtains is indeed the expected result, which is not  
very difficult to establish. The fact that this algorithm terminates is also trivially true 
since  it  contains  a  single  bounded  repetition.  Finally,  the  complexity  of  this 
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computation is clearly in Θ(n) (i.e. asymptotically bounded above and below by n), 
counting for instance the number of multiplications performed, and assuming that 
multiplication by a is an elementary operation. 

This  algorithm is  not  very efficient,  considering  that  its  running  time is  actually 
exponential  in the representation size of n (which is of the order of log(n)). A more 
efficient  technique  relies  on the observation  that  an=(a2)n/2 if  n  is  even,  otherwise 
an=a.(a2)(n-1)/2. Written as a recursive Python function, this algorithm reads as follows3:

def power(a, n):
   if n == 0:
       return 1
   elif n % 2 == 0:
       return power(a * a, n // 2)
   else:
       return a * power(a * a, n // 2)

We will  now study a few common questions  asked about  algorithms,  which will 
allow us to illustrate examples of mathematical techniques relevant to the analysis of, 
and discussion about, algorithms. In the following, typewriter face (as in n) will be 
used for formal parameters, and italic (as in n) to denote actual values.

Termination.  A first  question  when  it  comes  to  analysing  an  algorithm  is  to 
determine whether or not it terminates, i.e. whether its execution on any instance of 
the problem (i.e. any pair (a, n)) yields a result after a finite number of execution 
steps or elementary operations. A standard technique used to prove this kind of result 
in non-trivial cases is the following. Assume here that there exist a0 and n0 such that 
power(a0, n0) performs infinitely many recursive calls. Call n i the value of parameter 
n on the i-th recursive call.  The sequence of naturals  (n i)i≥0 is  strictly decreasing, 
because whenever ni>0, ni+1 is the quotient of ni by 2, rounded down. This contradicts 
the  fact  that  infinitely  many  calls  are  made,  which  means  that  the  value  of  n 
eventually has to reach 0 and the function must terminate for all values of a and n.

Correctness. It remains to prove that the result is indeed correct for any instance of 
the problem. This is often done using some form of induction due to the intrinsically  
discrete and recursive or iterative nature of algorithms. In our case, we will establish 
that the value returned by a call to power(a, n) is indeed an, via a simple recurrence 
on the call depth, which is the maximal number, say k, of generated nested calls. The 
base case (k=0) is obvious: since there is no recursive call it must mean that n=0 and 
the returned is indeed 1 = an. In the inductive case, assume the property holds for call 
depth k and consider a call of maximal depth k+1. Necessarily n must be greater than 
0.  If  n  is  even,  n//2  evaluates  to  n/2,  a  single  nested  call  power(a*a,  n//2)  is 
performed and the obtained value is returned directly. This call itself has call depth 
exactly k, therefore by induction hypothesis its return value is (a2)n/2=an. Similarly if 
n  is  odd,  n//2  evaluates  to  (n-1)/2,  the  value  returned by power(a*a,  n//2)  is,  by 
induction  hypothesis,  (a2)(n-1)/2=an-1,  and  the  value  returned  by  the  main  call  is 
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a*power(a*a, n//2), which evaluates to an. Therefore by the recurrence principle, the 
function returns the correct value whatever the initial value of its parameters.

Complexity. In the study of termination, we observed that in a call power(a, n), the 
value of n for the next call (if there is one) is divided by two (rounded down). One 
may observe  the  successive  values  of  n  more easily  when  it  is  written  down  in 
binary.  Indeed,  the  operation  of  dividing  a  number  by  two  and  rounding  down 
corresponds, in binary representation, to erasing its rightmost digit. The algorithm 
stops when n is 0, and performs one recursive call otherwise, modifying its value as 
we just saw. The number of nested calls for some initial value of n is therefore equal 
to the length, say k, of its binary representation, in other words its number of digits.  
Moreover, when n is even, exactly one multiplication is performed in the current call, 
two when it is odd. Therefore, denoting by m the number of digits equal to 1 in the 
binary  representation  of  n,  the  total  number  of  multiplications  performed by the 
power(a, n) is exactly k+m, which is asymptotically bounded above by log2(n).

Summary. We chose  this  example to  illustrate,  on a simple problem, the type of 
questions which can be asked about algorithms and the methods which are likely to 
be used to answer them. Note that in this simple case, all three properties could have 
been proven simultaneously using a complete recurrence on n. For our purpose, we 
chose a more basic and detailed approach. It would have been interesting to show 
how these proofs could be rephrased in the context  of an iterative function.  This 
example also tries to advocate the necessity for students in mathematics, computer 
science and related topics to have at least a basic understanding of various flavours 
of recursion and induction (including basic properties of orderings),  to be able to 
present  rigorous  proof  arguments  (at  least  informally),  and  to  possess  minimal 
fluency in arithmetic,  in order to be able to envision algorithms as objects  worth 
studying in their own right. It is moreover often the case that the study of algorithms 
provides insight on related mathematical objects (here, the relationship between the 
value of a number and the length of its binary representation). Finally, this example 
illustrates a typical preoccupation of algorithmics, which is to provide more efficient, 
sometimes even optimal, algorithmic solutions to problems.

DISCUSSION AND CONCLUSIONS

Discrete mathematics is now considered as an entire field of mathematics, with many 
links  to  computer  science.  While  it  has  entered  university  curricula  in  many 
countries, its status and contour are not always clear, and there are countries (such as  
France)  where  it  has  difficulties  finding  a  legitimate  place.  Through  the  two 
examples we have developed (the discrete line and exponentiation by squaring), we 
have illustrated that it is legitimate to question the place that discrete mathematics 
occupies in university mathematics, for different reasons:

 it  allows  to  develop  situations  for  mathematical  reasoning,  mathematical 
heuristics,  and  problem  solving  (by  its  nature,  but  also  by  contrast  with 
traditional continuous mathematics),
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 many objects and techniques of discrete mathematics are required knowledge 
for computer science curricula; these contents must be identified and analysed 
from a didactical point of view, to design appropriate activities and situations,

 discrete mathematics involves specific questions and types of problems (such 
as complexity questions, combinatorial problems, etc.) that must be studied in 
order to understand their place in university curricula.

The DEMIPS network, through the topic group arithmetic, discrete mathematics and  
algorithmics,  aims at  addressing these questions.  We pointed out  the necessity to 
develop a didactical research on the topic of discrete mathematics at university level 
and  its  articulation  with  other  fields  of  mathematics  and  other  disciplines.  This 
didactical  research  must  rely  on  an  institutional  analysis  of  the  situation  in 
universities, and most importantly on a thorough epistemological study of discrete 
mathematics  and  its  specific  branches.  It  also  requires  to  select  and  develop 
appropriate theoretical frameworks. Such work, started in the DEMIPS topic group, 
requires  a  plurality  of  viewpoints  and  interactions  between  (discrete) 
mathematicians, computer scientists, and didacticians of mathematics.

NOTES

1. Problems that can be identified as belonging to discrete mathematics can be found in many books 
aiming at developing “mathematical thinking”, such as (Mason, Burton & Kaye, 1985).

2.  Didactique  et  Epistémologie  des  Mathématiques,  et  liens  Informatique  et  Physique  dans  le 
Supérieur:  Didactics  and  Epistemology of  Mathematics,  and  links  with  Computer  Science  and 
Physics in University Mathematics - with the support of CNRS.

3. Here a is assumed to range over floats, and n over positive integers. Note that in Python 3, n//2  
computes the quotient of n by 2, whose value is n/2 if n is even and (n-1)/2 otherwise.
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The concept of linear span is one of the first abstract notions that students encounter 

in a course on Linear Algebra. Using the theoretical construct of concept image and 

concept definition (Tall & Vinner, 1981) along with observations about teaching and 

learning Linear Algebra, we present two tasks designed to enrich students’ concept 

image regarding linear span. These tasks could be included in a problem workshop 

of an introductory university course on Linear Algebra. Each task is carefully

created and/or selected so as to foster the ground for potential conflict factors to 

arise and be confronted. A preliminary evaluation shows that the tasks are well 

received by students and succeed in addressing certain conflicting factors.  

Keywords: Teaching and learning of linear and abstract algebra; Teachers’ and 

students’ practices at university level; Linear span; Task-design. 

INTRODUCTION 

Linear Algebra is a subject with many applications in Mathematics and other

sciences, but its teaching and learning proves to be demanding both for lecturers and 

students. The difficulties encountered are partly attributed to the way the subject is

usually taught, as well as to students’ lack of familiarity with proofs and limited 

knowledge of Logic and Set Theory. (Dorier et al., 2000; Hillel, 2000). Sierpinska

(2000) attributes students’ difficulties in Linear Algebra to their practical rather than 

theoretical way of thinking.  

The concept of linear span seems to be quite difficult for students. Carlson (1993)

states that difficulties in the notions of subspace, linear span and linear dependence / 

independence, if they are not addressed in time, create barriers for students. The

analysis of Stewart and Thomas (2009) showed that students who were taught these

concepts through formal definitions faced significant difficulties in understanding 

the concept of span compared to a group who were taught with emphasis on 

embodiment (Tall, 2004) and geometry. Moreover, they report that students have

experienced several difficulties in linking the concept of span to the concept of a 

base. Finally, Wawro et al. (2012) propose teaching the concept through the solution 

of systems of linear equations and present a teaching approach through a series of

realistic mathematical activities. 

The main purpose of this paper is to investigate students’ understanding of the

concept of linear span and to use tasks to help resolve conflict factors in the students’ 

concept image (Tall & Vinner, 1981). Based on a study of first year Mathematics 

undergraduates in a Greek university, we identify the misconception many students 

have that in a linearly dependent set each vector is in the span of the others. We use a
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set of design principles based on Sierpinska’s (2000) remarks about theoretical 

thinking and Harel’s (2000) principles of teaching and learning Linear Algebra, to 

create a set of tasks, and we present results of a preliminary evaluation of the tasks 

which indicate their potential to address the above misconception.  

The work presented in this paper is part of the first writer’s Master’s thesis.  

THE SETTING 

The course “Geometry and Linear Algebra” is a first year mandatory course for 

students following the degrees in Mathematics or in Applied Mathematics at a Greek 

University. The course is typically taught through 4 hours of lectures and a two-hour 

problem workshop per week. Problem workshops are an important part in the 

teaching of the mandatory courses in the department. In the workshops the students 

are encouraged to work in groups of 5 or 6 students, on selected problems on the 

topics taught that week with guidance from the lecturer and a number of 

postgraduate or senior undergraduate students. The role of the latter is to discuss 

with students about the problems and the key mathematical ideas that may come up 

in the process. Promoting mathematical discussion among the students is a 

promindent element of the workshops of this course. During the semester of the 

study, the second writer was the lecturer of the course and the first one of the 

postgraduate students involved in the workshops. 

During the first part of the course, students experiment with the idea of linear span in 

Euclidean 2- and 3-space, as an intuitive introduction to the concept. Later on, 

students are given a slightly modified version of the formal definition, limited to the 

spaces Rn
. The notion of linear span is usually described as the “subspace generated 

by the set S of vectors in Rn
”. In relation to the general goals of the course, students 

are expected to familiarize with the concept of linear span in subspaces of Rn
, to be 

able to identify its geometrical representation in the case of R2
 and R3

 and to 

determine if a vector is in the span of a fixed set of vectors. We note the most 

important aspects of the concept. Firstly, linear span is a subspace, hence it is closed 

under the operations of a vector space. Secondly, every element in this subspace is a 

linear combination of some of the vectors in S. The final aspect is also very 

important but sometimes overlooked. In contrast to the concept of basis, there is no 

limitation in the choice of the set of generators S. 

A starting point for this work was a study of the written answers given by students in 

response to a question in the final examination for the “Geometry and Linear 

Algebra” course, asking them to determine whether a vector belongs to the subspace 

spanned by two other vectors. The findings suggested that some students may have 

the misconception that in a linearly dependent set of vectors, every vector can be 

expressed as a linear combination of the others (see Papadaki, 2017). This 

misconception was found to affect students’ understanding of linear span and to be a 

potential conflict factor (Tall & Vinner, 1981). We believe that examining the notion 
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of linear span through tasks may offer the opportunity to confront such difficulties in 

a meaningful way.  

THEORETICAL FRAMEWORK & DESIGN PRINCIPLES 

Tall & Vinner’s (1981) cognitive model of concept image and concept definition is 

used in the development of the task and to account for students’ responses. 

According to them concept image is “the total cognitive structure that is associated 

with the concept” (p. 152). For each individual a concept image includes all the 

mental pictures (graphs, symbols, formulas etc) generated about the concept, 

associated properties and processes. The concept image is unique for each student 

and is changing over time when the student meets new stimuli. The term evoked 

concept image (Tall & Vinner, 1981) is used to describe the part of a concept image 

which is evoked at a specific time. Different parts of the concept image which 

contain conflicting aspects are called potential conflict factors (Tall & Vinner, 1981) 

and they are not evident to the individual until a stimulus causes the conflicting 

images to be evoked simultaneously and create confusion, in which case they are 

referred to as conflict factors.  

The term concept definition is referring to “the form of words used to specify that 

concept” (Tall & Vinner, 1981: 152). The concept definition might be a reflection of 

an evoked concept image associated with the definition or a rote memorization of a 

given definition with little or no meaning to the student. We adopt Tall & Vinner’s 

(1981) differentiation between the personal concept definition, constructed by the 

individual, and the formal definition of a concept, the definition accepted by the 

mathematical community as a whole. The personal concept definition might contain 

aspects not included in the formal definition and/or ignore others. Finally, the 

(personal) concept definition creates its own concept image, which is part of the 

concept image as a whole, called concept definition image. Tall & Vinner (1981) 

argue that potential conflict factors can be an obstacle in understanding the formal 

theory, especially the ones that are in contrast with the formal concept definition. 

Warwo et al. (2011) investigated students’ concept images of subspace and the links 

students create with the formal definition of a linear subspace.  

Bingolbali & Monaghan (2008) demonstrated how the construct of concept image – 

concept definition can be used in socio-cultural research. They argued that although 

concept image is unique to the individual there are aspects that are shared among 

students. They link these aspects to teaching and shared experiences in the 

department they are studying.  

In this paper we adopt the original concept image – concept definition framework 

(Tall & Vinner, 1981) along with its more recent developments (Bingolbali & 

Monaghan, 2008) to design tasks that can enrich the understanding of linear span of 

undergraduate Mathematics students when used in situations which encourage 

interaction among students and tutors. We believe that this framework can be easily 
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understood and used by mathematicians. Nardi (2006) presents evidence from 

discussions with mathematicians which support this idea. Therefore, we find this 

framework useful as a means to communicate our design and findings both to 

Mathematics lecturers and researchers in Mathematics Education. 

In designing the tasks, we take into account Sierpinska’s (2000) remarks about 

theoretical thinking. To be more specific, the task should have characteristics that 

correspond to theoretical thinking, such as opportunities for conscious reflection, 

connections between related concepts or different representations and attention to 

contradictory thoughts. Harel (2000) emphasizes the need for curricula tailored to 

students’ needs which aid the understanding of abstract concepts in Linear Algebra. 

He proposes three principles that we take into account in designing the tasks. That is, 

the tasks should include familiar concepts that allow connection with prior 

knowledge and language (concreteness principle), they should justify the need of 

linear span (necessity principle) and allow generalization of the key ideas 

(generalizability principle).  

We identify the following principles based on the theoretical framework, the concept 

of linear span as thought in the course “Geometry and Linear Algebra” as well as the 

needs of our students. 

1. Include key aspects of linear span: Closure under the operations of a vector 

space; Every vector is a linear combination of the set of generators; No 

limitation in the choice of the set of generators 

2. Tackle potential conflict factors: The difference between linear combination 

and linear dependence; Modes of representation (Hillel, 2000) 

3. Promote theoretical thinking (Sierpinska, 2000): Reflection; Connections 

between different representations; Attention to contradictory thoughts 

4. The three principles of teaching and learning Linear Algebra (Harel, 2000): 

Concreteness principle; Necessity principle; Generalizability principle 

5. Promote discussion: among the students; between the students and the tutor 

METHODOLOGY 

The aim of this work is to investigate the conflict factor identified earlier through 

tasks that are designed to foster the ground for this conflict to emerge and to be 

discussed with the students. We present data collected during a preliminary 

evaluation of the tasks through semi-structured interviews with seven students who 

had attended the course “Geometry and Linear Algebra” the previous semester. The 

analysis of this preliminary evaluation is expected to answer the following questions: 

Can the tasks tackle this potential conflict factor? What are the roots of this conflict 

factor? Does the discussion around the task help students resolve their 

misconceptions? Do students find the tasks interesting and/or useful? 
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The following table summarizes the information about the seven participants. 

 Mathematics Applied Mathematics 
 1

st
 Year 2

nd
 Year 3

rd
 Year 1

st
 Year 2

nd
 Year 

Male 0 1 0 1 0 

Female 3 0 1 0 1 

 

Prior to the interviews each student was given a folder including the task and other 

necessary information. The students had one week to attempt and review the tasks 

before the interviews. All interviews were videotaped. To ensure confidentiality each 

student was assigned and referred to with an alias. 

ANALYSIS 

The first task is based on an exercise from the book “Linear Algebra: Concepts and 

Methods” by Antony and Harvey (2012). Its structure was slightly altered to fit that 

of the course notes (Kourouniotis, 2014). It aims to create connections with prior 

knowledge, known processes and language under the new context and introduce to 

students basic ideas linked with the concept through algebraic and geometric 

representations of the notion. The task is divided into three interconnected sub-tasks 

as a scaffolding strategy to support students.  

Task 1: Consider the vectors: 

v1= ( –1, 0, 1), v2 = (1, 2, 3), w1 = (–1, 2, 5), w2 = (1, 2, 5) 

i) Show that w1 can be expressed as a linear combination of v1 and v2, but w2 cannot be 

expressed as a linear combination of v1 and v2. 

ii) Explain what subspace of R
3
 is spanned by v1, v2 and w1. Explain what subspace of 

R
3
 is spanned by v1, v2 and w2. What do you observe? 

iii) Show that the vectors v1, v2, w1 and w2 span R
3
, that is for every u = (x, y, z) there are 

a, b, c, d such that: 

u = av1 + bv2 + cw1 + dw2 

Show also that every vector u ∊ ℝ3
 can be expressed as a linear combination of v1, v2, 

w1 and w2 in infinitely many ways. 

The first, introductory, sub-task aims to support students’ theoretical thinking in the 

following sub-task by limiting its focus on calculations. This task was completed by 

all the participants without difficulty prior to the interview. The second sub-task is 

expected to enrich students’ image of linear span by making connections between the 

algebraic and geometrical representations of the concept in R3
. It may also motivate 

students to seek a deeper connection between Analytic Geometry and Linear 

Algebra. This sub-task was completed by 5 students. Finally, the third sub-task aims 

to create a link between the relation of the given vectors and the number of ways 

arbitrary vectors can be expressed as a linear combination of the elements in the set. 
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Sub-task (iii) proved to be the most difficult for the participants, being completed by 

only 2 students before the interviews.  

In more detail, the students who did not complete (ii) appeared to have trouble with 

methodology. The students are expected to know from the first part of the course 

what the geometric representation of a 1-, 2- or 3-dimensional subspace of R
3
 is, 

therefore one has to connect this idea with the notion of linear span and check if the 

given vectors are linearly dependent. In both cases the students did not make this 

connection beforehand but the problem was quickly resolved through discussion. 

Apart from that, six out of the seven students found the question “what do you 

observe?” useful. This question was added to the task as an encouragement for 

reflection on the effect that different choices of vectors have on the outcome and to 

promote discussion. In particular, three of the students indicated that they might not 

have given a second thought to their result if it wasn’t for this question. One of the 

students found the question stressful, although she had successfully answered it. Her 

reaction is significant to us at this point. Clute (1984) found that students with higher 

anxiety levels can benefit more from instrumental approaches. Open questions, such 

as the above, are not frequent in Greek secondary education. It is therefore 

reasonable to assume that some students would have difficulty (and in some cases 

anxiety) answering this question in a problem workshop.  

While discussing sub-task (ii) an unexpected observation was made by two of the 

students. These students interestingly replied that the span of the vectors v1, v2 and 

w1 is the vector space R2
. This conflict factor is called by Wawro et al. (2011: p. 13) 

the “nested subspaces”. Based on their evidence they hypothesized that this 

confusion has roots in students identifying any 2-dimensional subspace of R
n
 with 

R
2
 and suggested that lecturers must be aware of this as a potential conflict factor. 

Their hypothesis was confirmed in these cases too.  

In trying to answer sub-task (iii) the biggest pitfall was following the same reasoning 

used in subtask (ii). This approach will not help answering the second part which 

requires from students to solve a system of linear equations. Despite the instructions 

included in the Task, four out of the five students who didn’t complete (iii), tried to 

use the same approach as in (ii). Additionally, three of them faced a difficulty 

making use of the proposition “for every u = (x, y, z) there are a, b, c, d such that u = 

av1 + bv2 + cw1 + dw2” and did not manage to recognize the random vector u = (x, y, 

z) as a parameter of the problem. Instead they identified it as another variable.  In 

each case the task was completed with the help of the interviewer but we find that 

subtask (iii) required more guidance from the part of the interviewer compared to 

subtask (ii). The fifth student managed to solve the required linear system but she 

could not make a connection between the infinite number of solutions and the fact 

that the four vectors are more than enough to describe any vector in R3
. 

The second task was created to address potential conflict factors in relation to the 

notions of linear combination and linear dependence in the context of linear span. 
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The idea for this task was based on our goal to promote theoretical thinking and 

discussion. The conflict is given to the student as a statement - challenge and the 

goal is to find an example to support the given proposition. It is expected that 

students will first use a trial and error approach by reaching for appropriate vectors 

in their example space (Mason & Watson, 2008). This approach will probably fail if 

students are not able to identify what are the key relations between v1, v2 and w in 

the prοposition. If one’s concept image includes conflicting ideas about the status of 

vectors in a set of generators, it might be difficult to find an example without careful 

prompting and discussion. Because of the nature of the problem, we believe that 

students would want to cross-examine their findings or get some guidance. 

Task 2: Let v1, v2 and w be linearly dependent vectors in R3
. It is possible for w not to be 

in the space spanned by v1 and v2 although v1, v2 and w are linearly dependent. Give an 

example. Why do you think this can happen? 

Moving on to the interviews, only one student had found an example of three vectors 

fulfilling the requirements of the task before the interview. In four of the seven cases 

clear signs of conflicting images emerged. This reinforces our preliminary hypothesis 

that students struggle with identifying the difference between the notions of linear 

combination and linear dependence. Furthermore, it might be an indication that Task 

2 can help potential conflict factors to emerge and be resolved in a controlled 

environment. The following quotations capture these observations. 

Minos: So, what I thought was that I can have two vectors... which will be linearly 

independent that will span a plane in R3
. I can of course... I am sure that I can find 

another third vector that will not belong in the plane but the relationship to be true... these 

three vectors to be linearly dependent. 

Minos’ evoked concept image of the linear span is geometric. He thinks of the span 

of the two vectors as a plane and he tries to find an example by checking vectors that 

are not on that plane. Of course, if the two vectors are linearly independent, adding a 

third vector that does not belong in their span will result in a linearly independent 

set. It seems that either this fact is not part of his concept image or his evoked 

concept image does not include this information because of the phrasing of the task. 

In the following two quotations, the conflict can be directly connected to our 

preliminary findings in Papadaki (2017). The students seem to struggle with the idea 

of three vectors being linearly dependent and at the same time one of them not being 

able to be expressed as a linear combination of the others. 

Interviewer: Well, so for w not to belong in the span of the two other vectors it could not 

be written as a linear combination of them… 

Pasiphae: Yes… yes… well… But then how can they be linearly dependent? They are all 

together linearly dependent… 
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The student thinks of the two notions as equivalent. She later justifies her thinking 

by stating that if they are linearly dependent she can solve the algebraic equation   

av1 + bv2 + cw = 0 for any of the three vectors. Similarly, Ariadne describes her own 

experience with the task. It is worth mentioning that later in the interview Ariadne 

successfully refers to the (personal) definitions for both concepts. 

Ariadne: To begin with, to me it seemed absurd at first... because… what does it tell me? 

It tells me that they are linearly dependent, so if I solve for w, I will find a linear 

combination, so based on the theory it belongs to the subspace spanned by v1 and v2. 

In Ariadne’s case, it can be assumed that although her concept definition for linear 

dependence includes the information that the coefficients a, b and c are not all zero, 

in her evoked concept image this statement is replaced by none of them being zero. 

The quotations depict two possible roots of students’ difficulties with the task. That 

is, thinking of the linear span of two vectors as necessarily a 2-dimensional subspace 

or thinking of the algebraic representations of linear dependence and linear 

combination as equivalent. 

Task 2 was thoroughly discussed with the students using different approaches based 

on the line of thinking of the students, but also influenced by the interviewer. The 

ideas portrayed in this task were discussed using an algebraic approach with four of 

the students and geometrically with two of them. In each interview the final example 

was found by the students using an informed trial and error approach. All six 

students reported that the discussion was very useful and Task 2 is important for 

understanding the concept. Three of them also said that this was the task that made 

them the biggest impression and four of the students suggested that it would be better 

if this task was presented to them in a problem workshop after a sequence of related 

more instrumental tasks. 

Concluding, four of the students reported that they understand a notion better 

through examples and tasks. The way that students’ concept image is formed through 

model examples and experience, is of course well known. What is important is the 

fact that the students are aware of this happening. This last observation is an 

indication why it is crucial to pay attention to the examples and tasks used in any 

course. There are students who are consciously depending on them and expect to 

understand the “mysterious” concepts that the lecturer is talking about through them. 

RESULTS & DISCUSSION 

The analysis of the interviews gave us very important information about how tasks 

can be improved and used in a problem workshop for an introductory course on 

Linear Algebra. Although all students indicated that they found the tasks useful they 

gave us opportunities to reflect upon their design and experiment with different 

tactics which can be used by tutors in an attempt to make the most out of these tasks. 
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Beginning with the first task, students appeared to have particular difficulty in 

subtask (iii). One reason might be that (iii) requires a shift in thinking and cannot be 

fully answered by using the same approach as in subtask (ii). In an attempt to resolve 

this issue we are also considering a slightly different version of this part of the task 

that forces students to begin with the shifted approach as follows: 

Show that for every u = (x, y, z) there exist a, b, c, d such that: 

u = av1 + bv2 + cw1 + dw2 

Conclude that v1, v2, w1 and w2 span R3
. Moreover, show that every vector u∊R3

 can be 

expressed as a linear combination of v1, v2, w1 and w2 in infinitely many ways.  

Another observation we made while discussing Task 1 with the students was that of 

“nested subspaces”. This is another conflict factor we didn’t take into account at first 

and realized it only during the interviews with the students. Our observation is in line 

with the hypothesis of Warwo et al. (2011).  

Task 2 was fruitful both in terms of meaningful discussion and reflection. Students 

found Task 2 important for understanding the concept of span. We also observed 

manifestations of cognitive conflict which indicates that the task can be used as a 

means to resolve potential conflict factors. Different approaches can be used to 

discuss these conflicts with students (algebraically, geometrically or by trial and 

error). A useful tactic might be to discuss the conflicting factors using more than one 

representation of vectors with the same group of students. 

In addition, the indications about the need of examples and tasks made by the 

students were of great importance. This fact depicts the necessity of well thought 

examples and tasks in order to help students create a coherent concept image. 

This paper presents an approach on how lecturers can design tasks inspired by their 

observations on students’ misconceptions and taking advantage of the research in 

Mathematics Education. The framework could be used as guidelines for tutors that 

are interested in developing tasks for a Linear Algebra course based on their students 

needs and related research. Finally, the tasks need to be tested in a problem 

workshop and be compared to other tasks aiming to familiarize first year 

Mathematics undergraduates with the concept of linear span. 

References 

Anthony, M., & Harvey, M. (2012). Linear algebra: concepts and methods. 

Cambridge University Press. 

Bingolbali, E., & Monaghan, J. (2008). Concept image revisited. Educational Studies 

in Mathematics, 68(1), 19-35. 

Clute, P. S. (1984). Mathematics anxiety, instructional method, and achievement in a 

survey course in college mathematics. Journal for Research in Mathematics 

Education, 50-58. 

273 sciencesconf.org:indrum2018:174405



  

Dorier, J. L., Robert, A., Robinet, J., & Rogalski, M. (2000). The obstacle of 

formalism in linear algebra. In On the teaching of linear algebra (pp. 85-124). 

Springer Netherlands. 

Harel, G. (2000). Three principles of learning and teaching mathematics. In On the 

teaching of linear algebra (pp. 177-189). Springer Netherlands. 

Hillel, J. (2000). Modes of description and the problem of representation in linear 

algebra. In On the teaching of linear algebra (pp. 191-207). Springer Netherlands. 

Kourouniotis, C. (2014). Geometry and Linear Algebra [lecture notes]. University of 

Crete, Heraklion. http://math.uoc.gr/~chrisk/GLA-Notes.pdf 

Mason, J., & Watson, A. (2008). Mathematics as a constructive activity: Exploiting 

dimensions of possible variation. In M. Carlson & C. Rasmussen (Eds.), Making 

the connection: Research and teaching in undergraduate mathematics education 

(pp. 191-204). Washington, DC: MAA. 

Nardi, E. (2006). Mathematicians and conceptual frameworks in mathematics 

education… or: Why do mathematicians’ eyes glint at the sight of concept 

image/concept definition.  In Retirement as Process and concept; A festschrift for 

Eddie Gray and David Tall, (pp. 181-189). Charles University, Prague. 

Papadaki, E. (2017) Design of tasks for the understanding of the concept of linear 

span (Master’s thesis). University of Crete, Heraklion, Greece. 

Sierpinska, A. (2000). On some aspects of students’ thinking in linear algebra. In On 

the teaching of linear algebra (pp. 209-246). Springer Netherlands. 

Stewart, S., & Thomas, M. O. (2009). A framework for mathematical thinking: The 

case of linear algebra. International Journal of Mathematical Education in 

Science and Technology, 40(7), 951-961. 

Tall, D. (2004). Building theories: The three worlds of mathematics. For the learning 

of mathematics, 24(1), 29-32. 

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics 

with particular reference to limits and continuity. Educational Studies in 

Mathematics, 12(2), 151-169. 

Wawro, M., Sweeney, G. F., & Rabin, J. M. (2011). Subspace in linear algebra: 

investigating students’ concept images and interactions with the formal 

definition. Educational Studies in Mathematics, 78(1), 1-19. 

Wawro, M., Rasmussen, C., Zandieh, M., Sweeney, G. F., & Larson, C. (2012). An 

inquiry-oriented approach to span and linear independence: The case of the magic 

carpet ride sequence. PRIMUS, 22(8), 577-599. 

274 sciencesconf.org:indrum2018:174405



  

Delineating Aspects of Understanding Eigentheory through 

Assessment Development  

Megan Wawro
1
, Michelle Zandieh², and Kevin Watson

1
  

1
Virginia Polytechnic Institute and State University, Department of Mathematics, 

USA, mwawro@vt.edu; ²Arizona State University, Mesa, AZ, College of Integrative 

Sciences and Arts, USA 

In this report, we share insights we have gained from developing an assessment for 

documenting students’ understanding of eigentheory. We explain the literature and 

theory that influenced the assessment’s development and share question examples. 

We frame our results in terms of three eigentheory settings (     ,           

and eigenspaces) and four interpretations (numeric, algebraic, geometric, and 

verbal). Results from our analysis include students’ reasoning being influenced by 

setting, insights into students’ struggle with understanding eigenspaces, and the 

importance of making connections between and across various interpretations.  

Keywords: Teaching and learning of linear and abstract algebra, teaching and 

learning of specific topics in university mathematics. 

INTRODUCTION 

Linear algebra is particularly useful to science, technology, engineering and 

mathematics (STEM) fields and has received increased attention by undergraduate 

mathematics education researchers in the past few decades (Dorier, 2000; Artigue, 

Batanero, & Kent, 2007; Rasmussen & Wawro, 2017). A specifically useful group of 

concepts in linear algebra is eigentheory, or the study of eigenvectors, eigenvalues, 

eigenspaces, and other related concepts. Eigentheory is important for many 

applications in STEM, such as studying Markov chains and modeling quantum 

mechanical systems; however, research specifically focused on the teaching and 

learning of eigentheory is a fairly recent endeavor and is far from exhausted.  

As part of our ongoing research program analyzing students’ understanding of 

eigentheory (e.g., Watson, Wawro, Zandieh, & Kerrigan, 2017; Wawro, Watson, & 

Christensen, 2017), we created an assessment instrument focused on the multifaceted 

and interconnected nature of eigentheory. The purpose of this paper is to describe 

insights have we gained about students’ conceptual understanding of eigentheory as a 

result of developing, using, and refining this assessment instrument.  

THEORY AND LITERATURE REVIEW 

We ground our work in the Emergent Perspective (Cobb & Yackel, 1996), which 

assumes that mathematical development is a process of active individual construction 

and mathematical enculturation. In this paper we focus on the former by analyzing 

mathematical conceptions that individual students bring to bear in their mathematical 

work (Rasmussen, Wawro, & Zandieh, 2015). The literature on the teaching and 
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learning of eigentheory points to several aspects important to students’ conceptual 

understanding. Here we summarize that literature by highlighting what we found to 

be important aspects for building a working model for understanding eigentheory. 

Literature on student understanding of eigentheory 

Thomas and Stewart (2011) found that students struggle to coordinate the two 

different mathematical processes (matrix multiplication versus scalar multiplication) 

captured in the equation       to make sense of equality as “yielding the same 

result,” an interpretation that is nontrivial or even novel to students (Henderson, 

Rasmussen, Sweeney, Wawro, & Zandieh, 2010). Furthermore, students have to keep 

track of multiple mathematical entities (matrices, vectors, and scalars) when working 

on eigentheory problems, all of which can be symbolized similarly. For instance, the 

zero in           refers to the zero vector, whereas the zero in             

is the number zero. This complexity of coordinating mathematical entities and their 

symbolization is something students have to grapple with when studying eigentheory.  

Thomas and Stewart (2011) also posit that this struggle to coordinate may prevent 

them from making the needed symbolic progression from       to         
 , which is central to determining the eigenvalues and eigenvectors of  . In their 

genetic decomposition of eigentheory concepts, Salgado and Trigueros (2015) posit 

that students need to interpret the procedure of finding eigenvectors and eigenvalues 

of   as determining the solution set of the homogeneous system of equations created 

by the matrix equation          . Harel (2000) posits that the interpretation of 

“solution” in this setting, the set of all vectors   that make the equation true, entails a 

new level of complexity beyond solving equations such as     , where    , and   

are real numbers. When considering the notion of eigenspace in particular, Salgado 

and Trigueros (2015) found that students struggle to coordinate the number of 

eigenvectors corresponding to a given eigenvalue with the dimension of the space 

spanned by the eigenvectors. Thus, understanding eigentheory not only involves 

coordinating mathematical processes and entities but also equations and solution sets. 

In addition, students have to make sense of instructors’ frequent movement between 

geometric, algebraic, and abstract modes of description, but this may be challenging 

(Hillel, 2000). In fact, Thomas and Stewart (2011) found that students in their study 

primarily thought of eigenvectors and eigenvalues symbolically and were confident 

in matrix-oriented algebraic procedures, but the majority had no geometric or 

embodied views. In contrast, other researchers have shown how exploration through 

dynamic geometry software (Çağlayan, 2015; Gol Tabaghi & Sinclair, 2013; Nyman, 

Lapp, St John, & Berry, 2010), geometric interpretations of a linear transformation 

(Zandieh, Wawro, & Rasmussen, 2017), or real-world contexts (Salgado & 

Trigueros, 2015) can help students develop conceptual understanding of eigentheory. 

We similarly agree on the importance of understanding eigentheory concepts in 

multiple ways and navigating between various interpretations, and we incorporate 

this complexity in our model of student understanding of eigentheory. 
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Working Model of Understanding Eigentheory 

Regarding what it may mean to have a conceptual understanding of eigentheory, our 

current working model is a network of connections within and across three main 

settings of how eigentheory is framed. The three sets of relationships that are 

pertinent are: (1) relationships indicated by the eigen-equation      ; (2) 

relationships indicated by the homogeneous form of the eigen-equation         
 ; and (3) relationships indicated by a linear combination of eigenvectors. Within the 

first two settings, what is most frequently the focus of inquiry is one particular 

eigenvector   for either form of the eigen-equation. However, when considering the 

collection of all   that satisfy either eigen-equation, one arrives at the eigenspace of 

  associated with  . The relationships between vectors in the same eigenspace are the 

focus of the third setting. For instance, if    and    are eigenvectors of   with 

eigenvalue  , then all vectors that are a linear combination of    and    (i.e., 

                      for scalars    and   ) are also eigenvectors of   

associated with  . Furthermore, reasoning about relationships in this third setting 

almost certainly involves reasoning about either the first or second setting as well. 

Each of these settings includes entities and relationships between those entities that 

may be realized in various ways. We organize this variability in our model according 

to four main interpretations: graphical, numeric, symbolic, and verbal. 

THE EIGENTHEORY MCE ASSESSMENT 

The development of the Multiple Choice Extended (MCE) assessment instrument for 

eigentheory grows from our prior work in student understanding of span and linear 

independence in which we developed the MCE-style question format (Zandieh et al. 

2015); questions begin with a multiple-choice element and then prompt students to 

justify their answer by selecting all statements that could support their choice (see 

Figure 1). This format was inspired by existing conceptually-oriented assessment 

instruments in undergraduate mathematics and physics (e.g., Carlson, Oehrtman, & 

Engelke, 2010; Hestenes, Wells, & Swackhamer, 1992; Wilcox & Pollock, 2013).  

Development of the Eigentheory MCE involved multiple steps. First, we compiled a 

database of questions about eigenvectors, eigenvalues, and related concepts from 

research on student understanding of eigenvectors and eigenvalues (e.g., Gol Tabaghi 

& Sinclair, 2013; Salgado & Trigueros, 2015; Thomas & Stewart, 2011), online 

resources for clicker and classroom voting on linear algebra (Cline & Zullo, 2016), 

and previous linear algebra homework assignments, exams, and interview protocols 

used by research team members (e.g., Henderson et al., 2010). Second, we used 

research results regarding students’ understanding of eigentheory from the literature, 

as well as our own teaching experience and theoretical thinking, to determine which 

questions seemed to address important aspects of what it may mean to have a 

conceptual understanding of eigentheory. Third, the most promising questions were 

edited into the MCE format, which involved moulding the problem into a multiple-

choice question and developing six corresponding justification choices that required 
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students to reason within and between various eigentheory settings and 

interpretations. Fourth, through multiple rounds of administering the assessment to 

students, analysing the data, and subsequent refinement, we arrived at the current 

Eigentheory MCE. It contains six questions, each with six justification choices; five 

questions are in Figure 1 (the sixth is omitted because of space limitations).  

 

Figure 1: Questions 1-5 from the Eigentheory MCE 

The MCE questions were created to elicit student thinking about eigentheory within 

and across the settings and interpretations within our working model of understanding 

eigentheory. For example, the stem of Question 1 is a numeric interpretation; its 

given justifications for students to choose as true and relevant, we see that 

justification (i) is a symbolic interpretation in the       setting, (iii) is a symbolic 

interpretation in the           setting, and (v) is a geometric interpretation in 

the       setting (Figure 1). As students choose justifications that support their 

answer to the main question, they are prompted to reason about eigenvectors and 

eigenvalues within and across multiple settings and interpretations.  

METHODS 

The Eigentheory MCE was given to two introductory linear algebra classes taught by 
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the same instructor at a large, research-intensive public university in the United States 

at the end of Spring Semester 2016. The course utilized the Inquiry-Oriented Linear 

Algebra (http://iola.math.vt.edu) curricular materials and Lay (2012) as its textbook. 

One class (of 29 students) received the MCE with given closed-ended justifications 

(see Figure 1), and the other class (of 28 students) received an open-ended version 

where students had to write their own justifications for their multiple-choice answer; 

we refer to these as Class C and Class O, respectively. Students had 20-25 minutes to 

work on the assessment. All student work referred to in this paper is labelled “B#.”  

Analysis of the closed-ended MCE consisted of entering the data into spreadsheets 

and looking for trends such as: (a) common sets of justifications that students selected 

or did not select; (b) how selecting certain justifications may have influenced 

students’ multiple choice selection; and (c) instances in which we would have 

expected students to select what we viewed as related justifications, but they did not. 

We used Grounded Theory (Glaser & Strauss, 1967) to characterize the concepts 

students brought to bear in their justifications in the open-ended MCE, coding 

independently and discussing our results as a team to find emerging themes. Finally, 

we compared students’ responses across questions and across classes to discover 

further insight into student understanding of eigentheory.  

RESULTS 

We include four insights into student understanding of eigentheory discovered from 

our MCE data analysis. These selected results are organized by settings (sections 1-2) 

and interpretations (section 3) from our working model of understanding eigentheory. 

  

Figure 2: B65’s reasoning within the       setting. 

Reasoning about relationships within       or           

We found that as students respond to an MCE question, they seem to situate it within 

a particular setting, perhaps the setting they are most familiar or comfortable with, 

regardless of the setting in which the question was initially written. Furthermore, a 

student’s chosen setting can lead to different ways of reasoning about a problem. We 

present two illustrations of this from Class O: B65’s justifications for Q1 and Q2, and 

B66’s justifications for Q1 and Q3. First, in Figure 2, B65 seemed to situate both 

problems within the       setting. On Q1, B65 explained that multiplying the 

vector   
 
  by the matrix   resulted in six times that vector. On Q2, B65 explained that 

279 sciencesconf.org:indrum2018:174806



  

   needed to be a scalar multiple, and thus the only possible vector would be one 

along the same line as the vector  , namely the vector  . In both cases B65 

emphasized that for an eigenvector, multiplying by the matrix yields a multiple of the 

original vector, thus working within the       setting. 

Second, in Figure 3, B66 seemed to situate both problems in the           

setting. On Q1, we infer this student first found the matrix       , multiplied each 

vector from the MCE question by it, and chose the vector that was mapped to the zero 

vector. Then, on Q3, although what s/he actually writes is idiosyncratic, we can infer 

s/he was still reasoning with the homogeneous equation, imagining the vectors   and 

  being mapped to zero by the matrix       , and thus the vector   would also map 

to zero. In both Q1 and Q3, B66 emphasized an action on the eigenvectors to produce 

the zero vector, seemingly invoking the           setting. 

 

Figure 3: B66’s reasoning with the           setting. 

We note that the stems of Q1, Q2, and Q3 are not written so as to elicit student 

reasoning within a particular setting. This allows for use of the open-ended 

assessment to measure a student’s preferred setting or for the closed-ended 

assessment to measure whether students can interpret the problem in either setting 

Reasoning about Eigenspaces 

The previous section provides examples of the relationships involved in the first two 

settings:       to          . In this section we attend to the eigenspace 

setting, which focuses on the relationships involved with scalar multiples or linear 

combinations of eigenvectors. An eigenspace, like any vector space, is closed under 

addition and scalar multiplication; thus, a linear combination of vectors in an 

eigenspace is also an eigenvector with the same eigenvalue as the other vectors in 

that eigenspace. When asked about eigenspaces, students may draw on these facts 

and/or may work within one of the previous two settings to derive these principles.  

For Q3, only six (of 28) students in Class O circled the correct answer (a) that   is an 

eigenvector with eigenvalue 2, five chose (b) an eigenvalue of 5, and 16 chose (c) 

that   was not an eigenvector. Approximately half the students in each group used the 

phrase “ is a linear combination of” as part of their justification (3 for (a), 3 for (b), 7 

for (c)). Sample justifications using “is a linear combination of” are given in Figure 4. 

v is a linear combination of y & z 

Since the value 2 already causes y & z to equal 0, adding a multiple to it 

will not change that  
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Figure 4. Example of four students’ open-ended justifications for Question 3 

 

Very few students in Class O gave justifications that brought in the relationship 

between eigenvectors and eigenvalues described in the first two settings. One such 

student was B66, described in the above section. In Class C, however, 13 (of 29) 

students chose justification (iv) (symbolic      ), 11 of which correctly selected 

answer (a). Because a much higher percentage of Class C circled (a) than in Class O, 

it is possible that this justification served as a hint that helped some students choose 

the correct answer. On the other hand, this MCE option allowed us to test whether 

students recognized the relevance of this set of relationships for the given question.  

Although some students who answered (c) used the phrasing “linear combination,” 

their arguments focused more on the linear independence of the vectors. The answers 

students gave for (c) include: “Eigenvectors must be linearly independent from each 

other so if   is a linear combination of   and   then it cannot be an eigenvector,” 

[B58], and “Because they all correspond to the same eigenvalue they all must have 

unique eigenvectors and   is a linear combination of   and   and therefore not unique 

and not an eigenvector of  ” [B79]. These answers focus on eigenvectors as 

necessarily being linearly independent or unique. This focus may come from students 

remembering that eigenvectors of distinct eigenvalues are linearly independent or that 

textbook solutions often give an eigenspace basis as the final answer, which may 

explain students thinking there are only finitely many eigenvectors for an eigenspace. 

In Q5, eigenspaces were represented geometrically, and students who completed it 

were rather successful in selecting the correct multiple-choice answer (14/21 in Class 

C and 21/26 in Class O). However, many students still focused on finite numbers of 

vectors. On Q5, reasons given by some students to support the correct choice (b) 

similarly focused on finite numbers of eigenvectors: “Matrix   already has 3 

eigenvectors so there’s no room for a 4
th
” [B59], and “  is a linear combination of   

and  , and there are already 3 eigenvectors for 3 dimensions, so   cannot be an 

eigenvector of  ” [B66]. We conjecture these students may have been conflating the 

total number of possible eigenvectors (infinite) for a 3x3 matrix with the number of 

linearly independent vectors needed to create the bases for the 1- and 2-dimensional 

eigenspaces. Alternatively, B58’s justification for Q5 focuses on dimension: “In a 

3x3 matrix there can only be 3 dimensions to the eigenspace.    and    together span 

the entire space of    so there cannot be another eigenvector of   besides    and 

  .” We conjecture grasping the difference between finiteness of dimensions and 

infiniteness of eigenvectors may be particularly vital for understanding eigenspaces. 

Justification given 

with choosing (a) 

Justification given 

with choosing (c) 

Justification given 

with choosing (b) 

Justification given 

with choosing (b) 

  is a linear combination 

of   and   which have 

the same eigenvalue.  
 

No, because   is a 

linear combination 

of the two vectors.  

  is a linear combination of   and    Both 

   and    are scalar multiples of their 

previous form so the resultant vector will 

be an eigenvector as well 

Since it is a linear 

combination of the other 

eigenvectors, it would also 

be an eigenvector. 

NOTE: Typed versions are used here to improve readability of students’ handwritten justifications 
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Reasoning Across Interpretations 

We conclude our results by discussing various aspects of students reasoning across 

interpretations and the ways in which the MCE afforded that. In particular, we focus 

on symbolic versus geometric interpretations of eigentheory. On Q1, as noted in the 

previous section, a majority of students in Class O wrote at least one equation 

(symbolic interpretation), but none wrote anything geometric in their justifications. 

This could be an indication that students might favour algebraic reasoning over 

geometric reasoning when justifying their answers to eigentheory questions, even 

though the classes used the IOLA curriculum which specifically introduces 

eigenvectors and eigenvalues geometrically. On the other hand, it could be that the 

numeric interpretation that Q1 was written in did not elicit geometric interpretations 

from students in their open-ended justifications, or that students see symbolic 

justifications as more acceptable to the teacher or the broader math community than 

geometric ones. In a more direct way of assessing students’ ability to see connections 

to the geometric interpretation, the closed-ended MCE gives students the geometric 

justification choice (v) on Q1, and roughly half (14/29) of the students in Class C 

selected it. Furthermore, over 80% of the total students from both classes answered 

the multiple choice stem of Q1 and Q2 correctly (48/57 and 51/57 respectively), 

demonstrating some ability to reason both numerically and geometrically about 

eigenvectors and eigenvalues. Because the wording of the MCE questions and 

justifications makes use of the four different interpretations from our working model, 

we are better able to assess students’ understanding of the symbolic, numeric, 

geometric, and verbal interpretations in eigentheory, both within and cross settings. 

DISCUSSION 

Research on student thinking often relies on students’ written work on mathematics 

problems as evidence of how students make sense of or reason about particular 

content. Our research here is no exception, with student work on the MCE revealing a 

variety of ways that students understand aspects of eigentheory. However, the MCE’s 

closed-ended justifications extend a written question’s ability to examine connections 

between settings and interpretations that students might not have initially considered 

or felt the need to include in their justifications. For instance on Q1 in Class O, four 

students wrote some form of           as part of their justification, ten wrote 

some form of      , four wrote some form of both equations, and ten students did 

not write either equation. In contrast, on Q1 in Class C, 23 students selected both 

justifications (i) (symbolic      ) and (iii) (symbolic          ), and only 

one student selected neither. Hence, when students were forced to consider the two 

eigentheory settings (i) and (iii), the large majority was able to see both as true and 

relevant. As other researchers have pointed out the importance of understanding both 

equations in eigentheory, it is significant that the MCE may give new insight in 

students’ understanding of connections between these two settings. 

We do see some potential limitations of the MCE. First, it is more time consuming to 
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take than a simple multiple-choice test, and this affects the number of questions that 

can be asked. The MCE can also be cognitively taxing because students must 

consider each justification to determine its truth and relevance. Third, scoring MCE 

results can be complicated. We hope that further refinement and use of the MCE, as 

well as developing possible scoring systems, will continue to broaden and deepen the 

mathematical community’s understanding of how students reason about eigentheory. 
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We study a class of mathematics education MA students in an introductory course on 

Chaos and Fractals, as they grapple with the Sierpinksi triangle, and in particular 

with the apparent paradox that its area equals 0, while its perimeter is infinitely long. 

For this purpose, we network an approach for investigating the construction of 

knowledge in small groups with one for examining how ideas and ways of reasoning 

function-as-if-shared in a classroom. Our results show complexities: (i) small group 

work and whole class discussions mutually influence each other; (ii) ideas may 

function-as-if-shared in the whole class even if the majority of students have not 

previously constructed them in their groups; (iii) knowledge constructed in the small 

groups may or may not later function-as-if-shared in the whole class. 

Keywords: Teachers’ and students’ practices at university level, teaching and 

learning of analysis and calculus, knowledge construction in classrooms, paradoxes 

INTRODUCTION 

The research presented here deals with the construction of knowledge in a student 

centred, inquiry-based classroom, where small group work (SGW) alternates with 

whole class discussions (WCDs). Construction of knowledge is usually investigated 

by observing small groups (1 to 4 students) of students. The reason for this is that in 

larger groups, the density of information for each student is low and does not allow 

the researcher to interpret their utterances or actions. However, intentional learning 

more often than not takes place in classrooms with many more than 4 students. We 

therefore use different approaches for analysing the SGW and the WCDs. The aim of 

our research is to link the two analyses by following ideas from their emergence in 

SGW or WCD, via their flow between SGW and WCD settings, until they possibly 

function-as-if-shared in the class, even though they may not have been constructed by 

all students. We thus aim at tracing and describing the complexity of knowledge 

construction across several classroom settings.  

THEORETICAL BACKGROUND  

The perspective we adopt for analysing the construction of knowledge during SGW is 

Abstraction in Context (AiC), a theoretical framework for analysing processes of 

constructing abstract mathematical knowledge (Dreyfus, Hershkowitz, & Schwarz, 

2015). AiC methodology begins with an a priori task analysis identifying the new (to 

the learner) knowledge elements required or useful when solving the task. It then uses 

a model of three types of epistemic actions – actions pertaining to the knowing of the 

learners – to analyze their learning processes. The model suggests constructing as the 

central epistemic action of mathematical abstraction. Constructing consists of 

assembling, interweaving and integrating previous constructs to make a new 
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construct emerge. It refers to the first time the new construct is expressed or used by 

the learner. Hence, while the term constructing refers to the process, the term 

construct refers to the outcome of the action. 

The perspective we adopt for analysing WCD episodes is documenting collective 

activity (DCA). Collective activity of a class refers to the ways of reasoning that 

function-as-if-shared (FAIS) as students work together to solve problems, explain 

their thinking, represent their ideas, and so on (Rasmussen & Stephan, 2008). These 

FAIS ways of reasoning can be used to describe the mathematical activity of a group 

and may or may not be appropriate descriptions of the characteristics of each 

individual student in the group. The empirical evidence that a way of reasoning is 

FAIS is obtained by using Toulmin’s (1958) model of argumentation, the core of 

which consists of Data, Claim, and Warrant. Typically, the data consist of facts or 

procedures that lead to the claim that is made. To further improve the strength of the 

argument, speakers often provide more clarification, which serves as a warrant for 

connecting the data to the claim. Backings provide further support for the core of the 

argument. For examples, see the data analysis below, e.g., in WCD 9. The following 

three criteria are used to determine when a way of reasoning becomes normative: 1) 

When the backing and/or warrants for particular claim are initially present but then 

drop off; 2) when certain parts of an argument shift position within subsequent 

arguments (e.g., a claim shifts to data); or 3) when a particular idea is repeatedly used 

as either data or warrant for different claims across multiple arguments. 

In earlier studies (Tabach et al., 2014; Hershkowitz et al., 2014), we have shown how 

DCA and AiC combine to provide an in-depth analysis of knowledge shifts in the 

classroom and of the knowledge agents that initiate these shifts. In Tabach et al. 

(2017), we articulate why and how the two approaches are theoretically compatible. 

In this paper, we analyse a lesson where students dealt with an apparent paradox 

because of its potential to bring to the fore the complex nature of knowledge 

constructing processes across social settings in a classroom. Specifically, the paradox 

is an infinite perimeter that delimits a shape with no area, a phenomenon occurring in 

fractals. While paradoxes are abundant in the study of infinity, we found only two 

studies relating to similar ones: Sacristán (2001) examined how the coordination of 

visual and numerical representations supported a single student’s resolution of this 

apparent paradox. Wijeratne & Zazkis (2015) found that their students were hindered 

by contextual considerations when attempting to resolve a similar paradox of a solid 

of revolution with finite volume but infinite surface area. Neither of these studies 

focused on the construction of knowledge in a classroom community.  

METHODOLOGY 

The setting for the research was a course on Chaos and Fractals at a US university, 

which formed part of the mathematics requirement toward a master’s degree in 

mathematics education. Participants were 11 students with an undergraduate degree 

in mathematics, the teacher, and an instructor/observer who occasionally intervened. 

The teacher and instructor were both part of the research team. Classes took place 
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during one semester twice a week for 75-minutes each; typical class periods 

alternated between SGW and WCD. During SGW, students worked in four stable 

groups; they were invited to use huddle boards - one table sized white board per 

group - in order to promote group communication and to facilitate subsequent whole 

class presentation of their work. The teacher and instructor went from group to group, 

trying to understand student thinking and attempting to focus students’ activity on 

what they saw as the main issues; they did this mainly by asking questions but did not 

otherwise intervene in the SGW. The four stable groups will be numbered 1 (Carmen, 

Jan and Joy); 2 (Kevin, Elise and Mia); 3 (Soo, Kay and Shani); and 4 (Curtis and 

Sam). All names are pseudonyms. Groups 1 and 2 were video-recorded during SGW; 

the class was video-recorded during WCDs. In WCDs, groups had the opportunity to 

use the huddle boards to share their thinking; there were also teacher led discussions 

and short lectures whose aim it was to facilitate reflection on issues having been 

discussed by some groups.  

On Day 9 (out of 24), class work was based on an activity about the Sierpinski 

Triangle (ST). As shown in Figure 1, the ST may be produced by a recursive 

procedure: Draw an equilateral triangle; connect the midpoints of its sides; remove 

the middle triangle to get three equilateral triangles (of side ½ of the original one); 

repeat these steps (including the repetition) for each of the three smaller triangles. 

The ST is obtained by means of the (infinite) recursion.  

 

Figure 1. The Sierpinski Triangle (shown after 6 iterations) 

The activity was based on a three-part worksheet. In Part A, students were asked to 

carry out the recursive procedure six times, blackening the removed triangles on the 

huddle boards. In Part B, they were asked to imagine continuing the recursion forever 

and to discuss the figure they would obtain, in particular its area and its perimeter. In 

Part C, they were asked about properties of the resulting figure, especially comparing 

it to its parts.  

The teacher had planned for the students to come up with enough properties in Part C 

to enable a definition of self-similarity, and as a by-product of learning about self-

similarity, to realize that self-similar objects may have finite (or even zero) area and 

infinite perimeter. However, as will be seen below, the class had its own emergent 

goals, which led us to investigate student reasoning about area (A) and perimeter (P).  

Our task analysis yielded 4 knowledge elements for each of A and P: nature, process, 

limit, and infinity, denoted An, Ap, Al, A∞, and Pn, Pp, Pl, P∞. Nature refers to the 
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nature and properties of the region at step k whose area/perimeter is being considered. 

Process refers to the process of removing the triangles and computing the relevant 

area/perimeter. Limit refers to the realization that the process is never-ending and the 

areas form a sequence converging to zero whereas the perimeters form a diverging 

sequence. Infinity refers to the awareness that the actual figure has zero area and an 

infinitely long perimeter. The difference between limit and infinity may be construed 

as the difference between potential and actual infinity. These knowledge elements 

have been formulated in precise language and operational criteria have been fixed to 

decide whether a student or group of students has constructed each knowledge 

element. As an example, P∞ is defined as follows: Eventually, there actually is a 

figure whose perimeter is longer than any finite curve. Operationally, we will say that 

a student has constructed P∞ if the student explicitly claims that the eventual shape or 

figure or region has an infinitely long perimeter.  

The data used in this paper consisted of transcripts from Day 9, images of the groups’ 

huddle boards, and researcher notes taken in the classroom. SGW was analysed using 

AiC. We present only constructing actions here. In most cases, these will be 

attributed to the groups rather than individual students; exceptions will be noted. The 

WCDs were analysed using DCA; for each argument (numbered as A1, A2, etc.), 

Claim, Data and Warrant were identified, so that the criteria for ideas that FAIS could 

be applied.  

SMALL GROUP WORK AND WHOLE CLASS DISCUSSIONS 

The class on Day 9 started by watching and discussing an excerpt from a video about 

fractals with real world examples including a cauliflower, mountains, a magnetic 

pendulum and the coast of Britain; this took about 25 minutes and included WCD 1, 

SGW 2, and WCD 3. Then students were then asked to start working in groups on the 

worksheet; they spent about 26 minutes on drawing according to Part A and 

discussing the meaning of repeating the repetition (SGW 4, WCD 5). They used 

terms such as “infinite loop” and “zooming in”. The focus of this paper is their work 

on Part B of the activity during the remaining 24 minutes, split into three episodes of 

SGW (6, 8, 10) and three WCDs (7, 9, 11). The class did not reach Part C on Day 9.  

SGW 6 (area as process) - The teacher invited the students to develop a conjecture 

about area and perimeter. After a brief discussion about the perimeter showing 

confusion (Joy: “in one sense it's infinity, because you keep adding a little bit more. 

But it should approach a number, right?”), Group 1 focused on area, and attempted to 

compute the area after one repetition. A reminder by the teacher to produce a 

conjecture led to a seed of the idea of recursion (Carmen: “That’s one-fourth of it, so 

each term maybe three-fourths of it”) thus starting the construction of Ap.  

Group 2 quickly came up with a formula (Elise: “So it's three fourths to the n of our 

A1?”) and spent the reminder of the time discussing what n means and how to denote 

things (e.g., A0 for the initial area). We interpret this as having constructed Ap. 
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WCD 7 (computations) - The teacher asked whether the groups had come up with a 

conjecture, and the students reacted by presenting computational results. Kevin 

presented their result as the sequence (3/4)
n
 and Joy added that they had just started in 

this direction after computing the area of the first triangle. Student arguments 

included only claims and hence were not analysed per the DCA approach.  

SGW 8 (perimeter as process) - Group 2 focused on computing the perimeter (Kevin: 

“we have an additional a, we have three halves more a”, and later Mia: “So, it's like, 

it's going by a scale of three over two, to the n”). The group also made attempts at 

seeing what happens in the long run (Mia: “the perimeter is just keeps getting bigger, 

and bigger and bigger”; Elise: “Or is there, like, a limit? That it stops?”). While this 

points in the direction of Pl, our interpretation is that they have not constructed Pl yet: 

In spite of them having identified what an expert might see as a diverging geometric 

sequence, they question whether it converges or not. We also note that some students 

may be thinking additively rather than multiplicatively.   

Group 1 quickly constructed Ap (Carmen: “And then three-fourths of our three-

fourths”; Jan: “It's alright, we got enough… to do the whole”) and somewhat 

hesitatingly, Al (Carmen: “Maybe zero?”; Joy: “No no no, because this is like three-

fourths time three-fourths is nine-sixteenths, and after that would be… what? 

Twenty-seven over sixty-four?”; Carmen: “Is it approach… zero? I think it does”; 

Joy: “Okay, so you are right, it approaches zero”). There is evidence that they also 

constructed A∞ (e.g., Joy: “If you keep filling it in, there's not going to be any white 

area”). We note that there was no discussion about An. However, they then held a 

long discussion about Pn (e.g., Joy: “So what counts as the perimeter?”; Carmen: “Is 

it cumulative perimeter?”). Our analysis resulted in the decision that while 

constructing Pn was under way, it had not yet been achieved. Next, they mentioned 

aspects of Pp (Joy: “So let's say the perimeter of this is three, we would add in… half 

of each. So, like, three… times the half”) without completing a constructing process. 

They were reminded by the instructor of the area tending to zero, which brought 

tension with respect to the perimeter (e.g., Carmen: “if we keep zooming in, there's 

no area, so there can be no fence [perimeter]”).  

WCD 9 (the controversy) – This discussion in Group 1 prompted the instructor to ask 

for the teacher‘s permission to ask Carmen and Joy to present their controversy to the 

class. Carmen’s argument (A2) used as data “there’s no area” and claimed “there’d 

be no perimeter” with warrant “there’s nothing to… nothing to put a fence around it”. 

Joy, on the other hand, argued (A3) for the opposite, using as data “as you zoom in 

there’s more and more to fence”, supported by the warrant that one keeps putting in 

more fencing material. This brought about a suggestion that when one removed a 

triangle (i.e. colours it black), the perimeter of this black triangle is added to the 

existing perimeter. In argument (A4) the claim is that “the perimeter of the, the white 

is also the same as the perimeter of the, perimeter of the black part” (Curtis), and this 

is based on the data “When you shade it in, you’re adding the perimeter of the black” 

(Kevin) with the warrant that “the fence is guarding both properties” (Carmen). When 
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encouraged by the instructor to explain Carmen and Kevin’s thinking, Soo built 

argument A5: Claim: “So you keep adding the numbers, right?”; Data: “So you have 

more areas”; Warrant: “You keep zooming in, you’re going to get more triangles 

forming”. Next, Mia argued (A6): Claim: “I see the perimeter increasing and then 

this, the unshaded area is what’s left over, and that’s constantly decreasing and going 

to zero”; Data: “You’re going to have all these shaded triangles, with perimeters”; 

Warrant, upon Carmen’s question “Is this a cumulative perimeter or a perimeter at a 

point in time?”: “I see it the first way” (Mia). Several more arguments (A7, A8, A9) 

in this WCD focused on the area decreasing and tending to zero in an unending 

process of creation. The analysis of arguments in this WCD resulted in two ideas that 

FAIS:  

FAIS A: Perimeter of white is also perimeter of black; this was a claim in argument 

A4 but a justification in argument A6; the justification was that the perimeters of the 

shaded (black) triangles cumulatively constitute the perimeter of the remaining, 

unshaded, white area. Hence this idea satisfies Criterion 2.  

FAIS B: The perimeter is cumulative; this was a claim in A5 and a warrant in A6 (we 

will see it serving as justification again in A13), and hence also satisfies Criterion 2.  

SGW 10 (connections) - Group 1 had a discussion of all four aspects of perimeter, 

completing the construction of, at least, Pn and Pp. They built their thinking on the 

fact that they used more and more ink at each stage to draw the additionally generated 

bits of perimeter, and concluded (Joy): “I thought it went infinitely, because if you 

zoom in, there's more fencing to put in. And if you zoom in there's more fence to put 

in”. We have no evidence that they constructed Pl and P∞. In fact, this is unlikely 

since they only completed constructing Pn and Pp toward the very end of the SGW. 

Moreover, Carmen, while admitting that the perimeter tends to infinity, insisted that 

intuitively, no area implies no perimeter.   

Group 2 attempted to combine what they knew about the unending processes of area 

and perimeter. For example, Mia: “There's nothing for the area, but you're still… 

you're counting the perimeter of what you're taking out” and Kevin: “…as soon as 

you say - as n approached infinity, that means you're going to computation. So, I 

think what we want is something general, like - the area is getting smaller, but the 

perimeter is getting larger, and just leave it at that general statement”. Our 

interpretation is that they may have started constructing A∞ and P∞ but are still far 

from completing these constructions.  

The constructing processes resulting from the AiC analysis are summarised in Table 

1. The table lists only constructs that we have evidence for; in other words, the fact 

that, for example, An does not appear does not mean they have not constructed An – it 

only means that An has not been discussed during SGW in a manner that lets us as 

researchers conclude that An has been constructed.  

Group SGW6 SGW8 SGW10 
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1 (Ap) Ap Al A∞ (Pn) (Pp) (P∞) Pn Pp 

2 Ap (Pp) (Pl) (A∞) (P∞) 

Table 1. The constructs; parentheses mean (under construction) 

WCD 11 (linking area and perimeter processes) - The instructor called on group after 

group to present their thinking, however tentative. Group 1 used an ink metaphore, 

the ink being used to draw the additional perimeter bits. In this way, they explained 

how cutting out further triangles reduces the area while using more ink – thus 

increasing the perimeter. Carmen, however, added, that for her “that’s not 

resonating”. The researchers identified two arguments while this group was reporting 

(A10, A11) and one (A12) while another group was reporting. During their report, 

Group 2 connected the perimeter process to the area process like Group 1. Elise built 

the following argument (A13): Claim: “The area is getting smaller and the perimeter 

is getting bigger”. Data: “You’re adding smaller and smaller pieces”. Warrant: “…but 

you’re adding those pieces to what you already have”. Backing: “The perimeter is, 

like, all of this, combined with all of this, combined with all of this, combined…”. 

We note that the argument focuses almost completely on perimeter, although the 

claim equally relates to area. Finally, the report of Group 4 included arguments A14 

and A15. We only describe A15, produced by Sam: “So the area would be… go to 

zero… There would be limited amount of areas, so we're going to have a limited 

number of… perimeters. So, we don't have infinite number of perimeters”. Sam’s 

claim of a “not infinite perimeter” is based on the data that the area goes to zero and 

hence there is a limited amount of area, with the “limited number of perimeters” 

serving as warrant. Based on these arguments, we identified two more ideas that 

FAIS:  

FAIS C: Unending process of creation; this meets Criterion 3: Continued use of an 

idea (e.g., keep adding) across multiple arguments to describe the process that is 

being analysed. This idea is related to potential infinity. 

FAIS D: Area going to zero; this was repeatedly a claim, including in arguments A6, 

A7, A8, A9, A13 and became data in argument A15, hence satisfying Criterion 2. 

The relationship between SGWs and WCDs 

As a preliminary, we note the richness and diversity of students’ ways of reasoning 

about area and perimeter, which in a less student-centred classroom might have been 

quickly undermined with an infinite geometric sequence that is decreasing (r<1) and 

hence tending to zero for area and an infinite geometric sequence that is increasing 

(r>1) and hence tending to infinity for perimeter. We note that the term geometric 

was once mentioned briefly with respect to area by Sam during WCD 11 (“it's 

geometric, so it's going to converge. So, the area would be… go to zero”) but this 

was rather toward the end of class and was not picked up by any of the other students. 

Generally, students seem to have been satisfied by arguments of the type “the 

sequence is infinite and decreases, hence it tends to 0” (as in the discussion of Group 
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1 in SGW 8) or “the sequence is infinite and increases” (e.g., Mia and Elise of Group 

2 in SGW 8). 

The diversity manifests itself, among others, in the metaphors the students used 

(fence, ink), in a tendency to use, at least initially, numerical considerations for area 

and perimeter, in the attempt to link the area process with the perimeter process, and 

the related discussion about the nature of the perimeter as separating the region that 

belongs to the ST from the one that doesn’t. Little of this was initiated or suggested 

by the teacher or the worksheet.  

This last issue appears as Pn in the AiC analysis of the SGWs and as FAIS A in the 

DCA analysis of the WCDs. Similarly, there are relationships between the other 

FAIS ideas and knowledge elements. Table 2 shows these relationships. 

FAIS A B C D 

Constructs Pn Pp Al, Pl Al, A∞ 

Table 2. Relationship between FAIS and constructs 

While FAIS idea A (the perimeter of white is also perimeter of black) is related to 

construct Pn, the relationship between the constructing process of Pn and the 

arguments establishing A as FAIS is complex. We don’t have evidence of Pn having 

been constructed in either of the two observed groups before the relevant WCD 9; 

and the first argument establishing idea A as a claim (A4) was initiated by Curtis but 

immediately supported by Kevin and Carmen. Moreover, the second argument, in 

which idea A became a justification, A6, was presented by Mia. This may indicate 

that the beginning Pn construction we identified in Group 1 was substantial, and 

maybe even that the discussion in Group 2, which on the face of it focused on Pp 

caused Kevin and Mia to think about Pn. Finally, we ask ourselves to what extent the 

constructing process of Pn continued during WCD 9 for Kevin, Carmen and Mia. 

FAIS B (the perimeter is cumulative) – is similar to FAIS C (and intimately related to 

it from the point of view of the mathematical content). While we hesitated to claim 

that Pp has been constructed by Group 2, it is Mia from that group who produced A6 

and Elise from that same group who produced A13, the two arguments where the 

element switched position to becoming a justification and thus allowed us, according 

to DCA to categorize this idea as FAIS.  

FAIS C (unending process of creation) exhibits a case in which the two analyses 

connect rather smoothly. Group 1 constructed Ap and Pp, and Group 2 may be 

assumed to have implicitly constructed Ap and to be progressing in the constructing 

process of Pp. The frequent use of this knowledge element in many WCD arguments 

may indicate a similar situation in the other two groups. Soo from the Group 3 

produced Argument A5; and Sam from the Group 4 produced Argument A9.  

Finally, the relationship between FAIS D (area going to zero) and Al seems obvious 

and needs little comment. When this idea functions as if shared in the classroom, it is 
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possible that some of the students relate to construct A∞ (as shown above for Carmen 

and Joy) and others think in terms of Al or even in terms of Ap only. While to the 

expert, thinking in terms of Al may be satisfactory at best, and thinking in terms of Ap 

may be insufficient, such differences are tended to be glossed over in this classroom 

with respect to the rather basic construct of area, and we may speculate that similar 

situations pertain to more complex constructs in this and other classrooms.  

It becomes obvious that there are many ways, in which SGW and WCD can interact. 

The relationship is by no means unidirectional from constructing an idea in SGW to 

this idea FAIS in WCDs. Rather, constructing processes may well be continued or 

even initiated in WCDs. On the other hand, ideas may FAIS without having been 

constructed by all or even by a majority of the students in class. For example, we 

have no evidence for Pl having been constructed in either of the two observed groups, 

though Group 2 had started this constructing process; but C (unending process of 

creation) is anyway FAIS in relation to both area and perimeter. Of course, it could 

have been constructed in the groups we have no data on. This raises the question 

whether an idea can FAIS if it has not been constructed at least in some group. We 

can only say that we have no example for this having happened in these data.  

On the other hand, notions can be constructed by some students, or in some groups, 

without ever functioning as if shared. In fact, some of the constructs may not have a 

chance to come up in any WCD. We have no unequivocal evidence for this 

happening but we do know that in the first few minutes of the next lesson (Day 10), 

which took place two days later, Kevin referred to the perimeter as an increasing and 

hence diverging geometric sequence. We could also point to the fact that Ap has been 

constructed by both analysed groups but does not appear in the lower row of Table 2. 

However, this argument is weak since Ap appears indirectly as a component of Al.  

CONCLUSION  

The complexity of knowledge flow in the classroom, even based on this one class 

session, is far greater than one might imagine. Inquiry-based instruction features 

students’ deep engagement in mathematics and peer to peer interaction. As such 

instruction increases at the university level, the field is in need of theoretically 

grounded approaches for analysing individual and collective mathematical progress. 

This paper makes a contribution in that direction. A strength of AiC is that the 

approach allows researchers to gain insight into the ideas that individuals or small 

groups of individuals construct, as long as the number of students remains small. 

DCA provides a complementary approach that provides researchers insight into the 

ideas and ways of reasoning that characterize the collective progress of the classroom 

community. In Tabach et al. (2017), we showed how the two approaches combine 

theoretically, and the present paper adds to this a detailed analysis of how an AiC 

analysis interacts with a DCA analysis to expresses the complexity of knowledge 

construction in the classroom. An open question, and one that we are currently 

pursuing with this data, is how to coordinate the small group and classroom level 

findings with individual interviews conducted shortly after such rich class sessions. 
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Finally, the analysis presented here also contributes to what we know about how 

students reason about area and perimeter in a paradoxical situation. In contrast to the 

findings of Wijeratne and Zazkis (2015), the students in our classroom found ways to 

profitably use contextual considerations, metaphors, numerical computations, and 

figural reasoning to support their endeavour to understand the apparent paradox.  
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The advent of Flipped Classroom as a framework for organizing the teaching and 

learning of mathematics has the potential to revitalize the attention to tasks as a vehicle 

for meaningful learning in tertiary education. Flipped Classroom is based on the idea 

of student active learning under close guidance of the university teacher. Due to the 

possibility to engage the students in meaningful discovery of how mathematics can 

relate to real-life situations during in-class sessions, the tasks are seen to have a 

central role in a successful implementation of Flipped Classrooms. This paper explores 

the realistic mathematics education (RME) as a theoretical framework for task design 

and analysis in the context of in-class flipped engineering mathematics classrooms, 

and I seek evidence of knowledge construction through analysing students’ work on 

modelling the height of a rider in a double Ferris wheel. 

Keywords: Flipped Classroom, RME, Mathematics for engineers, the role of digital 

and other resources in university mathematics education 

INTRODUCTION 

One of the fundamental principles of Flipped Classroom (FC) approaches in education 

is the opportunity it provides for a more interactive and meaningful use of class time. 

(Bergmann & Sams, 2012). The idea is to use valuable classroom time for the more 

advanced learning processes like analysing, evaluating, and modelling in a cooperative 

environment consisting of peers and tutors. A contrast to this form of in-class student 

participation can be the traditional university teaching style where the lecturer is more 

or less seeking to “transfer” the mathematics in a monologue fashion (Sfard, 2014).  

Moving the lecturing part out of the classroom as a preparatory activity can help 

remedy the problem lecturers often feel is present during the delivery of traditional 

lectures, the one of disengaged and passive students. Rather, the social setting of the 

classroom can be used to let the students discuss, evaluate, try out, and receive 

assistance with their ideas and conjectures. However, such learning processes need a 

structuring element, which can be the tasks that students work with, preferably in 

groups. The purpose of this paper is to advance knowledge on task design and analysis 

in connection with FC implementation, specifically considering the theoretical 

framework of RME. I attempt to do this through a case study of students’ work with a 

modelling task that follows the heuristics of RME.  

Previous research 

FC is an innovative teaching approach, initially described by Lage, Platt, and Treglia 

(2000) that has many implementations. As the popularity of FC teaching has caught 

296 sciencesconf.org:indrum2018:173684



  

up, interest has been considerable also for tertiary educational settings (Wasserman, 

Quint, Norris, & Carr, 2017). 

Various authors have done research on general issues of FC pedagogy (Abeysekera & 

Dawson, 2015; Wan, 2015). However, little research has emerged on analysing how 

task design should be addressed in connection to FC implementation. In particular, I 

was not able to find any research considering RME as a framework for analysing tasks 

in connection with FC in-class activities. Several articles seem to call for more research 

on providing insights on FC pedagogic heuristics (Song, Jong, Chang, & Chen, 2017; 

Wan, 2015). Task design is of particular importance for the in-class FC component, 

since the model of FC considers the classroom activities to be the arena for attaining 

the highest levels of skills and knowledge (Bergmann & Sams, 2012). The challenge 

is to bridge the out-of-class videos with these in-class activities in a meaningful way. 

The particular task analysis performed in this paper is based upon students’ group work 

with mathematizing the double Ferris wheel movement. A study using a similar type 

of problem is described in Sweeney and Rasmussen (2014). They found that the 

students’ bodily engagement using gestures and measurements by fingers facilitated a 

link between the movement of the rider and the mathematical model. 

THEORETICAL FOUNDATIONS OF RME 

According to Van den Heuvel-Panhuizen and Drijvers (2014), RME is a domain-

specific instruction theory for mathematics that focuses on rich, “realistic” situations 

serving to initiate development of mathematical concepts, tools and procedures. Core 

teaching heuristics give these directions: 

 The activity principle emphasises students’ direct participation throughout the 

learning process. Mathematics is considered to be best learned by doing 

mathematics, which is in accordance with student active learning that is 

considered a widely accepted principle of FC. 

 The reality principle expresses the importance of presenting students with real-

life situations and problems that they can imagine and mathematize upon.  

 The level principle highlights the idea that students pass through various 

cognitive development phases, from informal context-related descriptions of the 

problem towards the use of more formal mathematical language. This process 

sets the stage for bridging student understanding that the model of the context-

related situation at hand can become a model for similar kinds of problems.  

 The intertwinement principle emphasises that mathematical content domain 

should not be considered as isolated fragments, but rather seen as a connected 

whole. This principle supports task designs facilitating open problems that 

stimulate students’ own thinking and reasoning about which mathematical 

solution techniques and mediating artefacts to employ. 

 The interactivity principle relates to the idea that learning mathematics is not 

purely an individual pursuit, but rather a social activity, where group work and 
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whole-class discussions should be orchestrated by the teacher. This principle 

aligns well with socio-cultural learning theories, as also emphasised by Cobb, 

Jana, and Visnovska (2008). They consider semiotic mediation and cultural tools 

as important means of conveying mathematical meaning in an RME setting. 

 The guidance principle refers to the idea of “guided re-invention” of 

mathematics. Instructional sequences in task design can involve historical 

evolutionary steps in mathematics as inspiration for rich context problems 

(Gravemeijer, 1999).  

Further, RME makes a distinction between horizontal and vertical mathematization. 

According to Van den Heuvel-Panhuizen and Drijvers (2014), students use 

mathematics as a tool to understand and organize problems in a real-life context, 

typically during task solution. This is called horizontal mathematization. Vertical 

mathematization refers to mathematizing one’s own mathematical activity to reach a 

higher level of abstraction. 

The research question explored in this paper can be framed in the theory of RME:  

“To what extent does RME task design facilitate students’ modelling activities and 

knowledge construction in a FC context?” 

METHODOLOGY 

The data for this paper was collected from video filming the work of two groups of 

computer engineering students in their first semester of study. These student groups 

were part of a larger research project conducted at a university campus in Norway. FC 

teaching was performed throughout the whole year of study. I focus on one in-class 

session where students were modelling the double Ferris wheel. 

The Flipped Classroom setting 

Before this in-class session, 

the students had watched an 

out-of-class session of videos 

that introduced the unit circle 

and how the y-component 

would map to the sine 

function as the angle rotated 

(Figure 1). In addition to this, 

there were videos showing 

examples on how to make 

mathematical models using this function, and how one could sketch a particular sine 

function based on textual information. Lastly, they were showed examples of how to 

determine the period, amplitude, baseline and phase shift by considering various graphs 

of this function. These videos were provided using English as the spoken and written 

language, while students were using Norwegian as working language in class.  

Figure 1: Mapping of unit circle y-component to the sine-function 
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The particular task that I refer to in this paper was given to the students in connection 

with the teaching of trigonometric functions during the second week of the semester. 

In this task, they were asked to 

create a model of the evolution 

of the height of a rider on a 

double Ferris wheel. The double 

Ferris wheel was represented in 

an applet available for the 

students to watch on their 

computer (Figure 2). The Ferris 

wheel consisted of two separate 

wheels rotating at the same 

speed and centred at the end of a 

larger rotating bar as seen on 

Figure 2. The students had the possibility to study each rotation separately by 

starting/stopping each of them. The height measurement of an imagined rider called 

Marit (marked with a dot on one of the wheels), was available as a readout at all time. 

The interested reader can study the applet at 

http://sigmaa.maa.org/rume/crume2017/Applet.html. The task presented for the 

students was the following:  

1. Create a representation of your choice that illustrates Marits’ ride on the double-

Ferris wheel 

2. Create a sketch/graph of Marits’ height versus time as she ride on the double 

Ferris-wheel 

3. Create a function for Marits’ height versus time as she travels on the Double-

Ferris wheel.  

4. Graph the functions you found in the previous problem using a graphing utility 

like geogebra. Does the graph of your function make sense? Is it similar to the 

graph you sketched?  

The design is seen to follow the principles of RME. Firstly, the purpose of the task is 

to engage students in exploring the dynamics of a familiar situation; the Ferris wheel 

ride. This meets the demands of the activity and reality principles. Furthermore, the 

sequence of the task, asking students to initially make a representation of the 

movement, followed by sketching a graph, and finally creating a function, attempts at 

making the students move from more informal to formal mathematizing, respecting the 

level principle. In setting the stage for employing trigonometric functions for 

mathematical modelling, the intertwinement principle is considered. Further, the 

interactivity principle is kept through the group work context of the task. The guidance 

principle, however, will not apply to this task design. For most themes in engineering 

mathematics, a reinvention can be a considerably challenge to embed in task designs. 

Students were placed in groups of 3 or 4 when working with the task, and a 90 minutes 

session was spent on the task. The author of the paper was the teacher throughout this 

Figure 2: The double Ferris wheel simulation 
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session1. The study was performed under a naturalistic research paradigm to ensure as 

realistic settings as possible for the observation of students’ collaboration 

(Moschkovich & Brenner, 2000). The students were filmed using a high definition 

camera that followed the group work for the whole session. Prior to the filming, 

students had acknowledged their participation in the study through signing a letter of 

consent. The selected students had watched the videos beforehand. Statistics about 

which videos and how long the students had spent watching them were available in the 

tool I used for video-distribution to the students. I analysed each recording using 

descriptive accounts (Miles & Huberman, 1994), where sessions of data are broken 

into separate entities of activity. Each such entity were subsequently analysed for 

content informing us on the research question, and I report on a variety of such episodes 

in what follows. In the aftermath of the last case, I performed an interview with two 

selected students to obtain deeper insights about certain episodes during the work with 

the task and general qualities about videos and the session. 

Furthermore, the study was performed on the cohort of 2017/2018, a class consisting 

of 20 students. The two groups that I report from had highly varied backgrounds, most 

of them from a pre-calculus course comprising two years of mathematics from upper 

secondary into 1 year of study at the university. They were acquainted with 

trigonometric functions through this pre-calculus course before arriving at the 

engineering study. However, as one of the students mentioned in an interview 

afterwards, he only remembered sparsely what the various mathematical terms was 

named by, but claimed to be able to use them anyway. I filmed two of the groups to be 

capture some of the variation taking place inside the single classroom environment. I 

will refer to these groups as group 1 and group 2. 

I specifically looked for traces of content from the videos, that is, the out-of-class 

component of FC when analysing students’ discourse. Such content can be word use, 

theoretical elaborations like definitions and theorems, visually mediated ideas and 

specific examples. 

RESULTS 

The two groups seemed to develop a rather different focus in terms of how to approach 

the task. One group spent much more time on the formal mathematizing part of the 

task, compared to the other one that wanted to understand the movement from a more 

informal, empirical viewpoint.  

Group 1 

The students in this group followed the layout of the task in the sense that they 

attempted to sketch a graph of the movement before moving on towards formal 

mathematical modelling. This seemed to set the scene for a discussion among the group 

                                           
1 A pilot-study in a very similar setting was performed on the previous cohort of 2016. This was part of a cooperation 

project with San Diego State University, where the research fellow Matt Voigt was responsible for the teaching material 

in addition to conducting the in-class teaching.  
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members on which physical properties were influencing the model. They constantly 

argued about where the “x-line/dotted line” should be, meaning the baseline, in 

addition to discussing how the various lengths of the rods and rotation times were 

influencing the amplitude and period. However, synthesizing the two movements into 

one seemed to form the biggest challenge for the group. For instance, the teacher was 

consulted on how one could decide the amplitude on a combined sine. After about 15 

minutes of trying to comprehend this, the group moved on to a more formal 

mathematical phase of modelling. One of the students, let us call him Finnegan, 

appeared to get a breakthrough at about 17:40 (timestamp corresponds to video 

recording). Figure 3 show this situation where he is pointing to the printed unit circle 

that expresses various exact values of sine and cosine, while he states: 

“I suggest that we make 

two functions that are zero 

when… They are not zero, 

but 
3𝜋

2
 at 2𝜋. Then you 

would have made a 

function that is zero when 

the period…Well you have 

to make two functions…” 

After this episode, the 

students seemed to prefer 

working in two pairs to 

discuss further details of the functions. Both pairs of students agreed that the model 

should consist of a sum of two different sine functions.  

Analysis 

We can see that Finnegan struggles with the correct phrasing of what he is trying to 

express, but the visual connection between the Ferris wheel circle and the unit circle is 

guiding Finnegan towards an understanding of phase shifting. The printout of the unit 

circle became an important mediating artefact for Finnegan, although shared with 

students earlier for solving trigonometric equations, not for modelling. They spent 

much of the time getting accustomed to the mathematical terminology with amplitude, 

period and, as one sees, phase shifts. The informal part of the task where students were 

asked to elaborate on a sketch of the function seemed to facilitate these discussions, 

much in line with the interactivity and level principles of RME. 

I was unable to make any clear connection to the videos from the discourse of these 

students. During the interview with one of the students in this group, it was pointed out 

that using English as the formal language in the videos was difficult to handle. 

Figure 3: Phase shift of the sine mediated through the unit circle 
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Group 2 

The other group that was filmed 

during this session utilized a variety 

of means to depict the movement of 

the Ferris wheel. In Figure 4 we can 

see two of the students working in 

parallel, where one is considering 

using a graphing calculator, while 

the other is attempting to graph the 

model on GeoGebra. On the right 

PC the applet with the simulation is 

displayed. Another member in this group even mapped the movement from the PC 

screen to a sheet of paper, letting the pen trace the movement of a point on the Ferris 

wheel, similar to what was reported in Sweeney and Rasmussen (2014). The group also 

attempted other practical means of tracing the movement like taking screenshots in 

timed intervals and putting the variable height values displayed in the applet in a 

function table for later analysis. It was even suggested that they would let GeoGebra 

use these data-points to produce an expression for them using interpolation. After 

working with various such “empirical” approaches to the problem, mostly on an 

individual basis, one student arrived at an expression for the model at 49:16. He gave 

this explanation to the others in the group on how he was able to arrive at a summation 

of two sinusoidal functions: 

“Analyse the small circle, height over time, that became f(x), then we did the same with 

the large one, called this g(x), then we made a new one h(x) consisting of the two of them 

together” 

Analysis 

The big surprise in this session was that the one student that had not prepared watching 

the videos seemed to be the leading the group discussions. It might seem that RME can 

act to remedy group dynamics where certain individuals come unprepared. The reality 

principle in RME stresses the importance of using real-life situations which is likely to 

provoke engagement, discussions and active participation during group work.  

In this particular data set, it seemed hard to find a direct link between not being 

prepared by the out-of-class session and poor participation in the group work although 

this was a prevalent finding in other analyses of group work (Fredriksen, Hadjerrouit, 

Monaghan, & Rensaa, 2017). 

An important observation that was made for both these groups was the physical 

arrangement of four students placed face to face, which made it harder to collaborate 

on the task. This was a setup originally meant to spur more discussion since the students 

would face each other. However, it turned out to be a poor design in this particular 

setting due to the importance of using the laptops for controlling the visual simulation 

in addition to the actual modelling in a digital graphical environment. It became 

Figure 4: Utilizing various digital tools to model 
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apparent that two students would look at one PC, while the adjacent students would 

look at an opposing one, effectively hindering much of the discussion across the group 

(Figure 3 and Figure 4) The teacher recognized this, trying to convince students to look 

at the same PC, but they quickly went back to work in pairs again. One of the students 

also confirmed this observation during the post-interview. Thus, it seems that this 

configuration interfered with the interactivity principle of RME for the groups.  

DISCUSSION 

In this study, I investigated to what extent RME task design facilitates students’ 

modelling activities and knowledge construction in a FC context. 

The analysis found students were making active use of computers, calculators, 

printouts of the unit circle, internet, and even their mobile phones to support their 

exploration of the task. This can be seen to support the intertwinement principle: 

students were actively using various tools, in addition to the mathematics introduced 

in the videos, to explore the problem.  

The second group seemed to have problems progressing towards the formal 

mathematizing part of the task. An observation made from studying the group 

dynamics was a quite individualistic working attitude. There seemed to be little 

collaboration on working towards a common model for the group, effectively violating 

the interactivity principle of RME. During the post-interview with one of the students 

in the group, I asked him if he shared this impression, which he confirmed, stating that 

some kind of internal competition among the members evolved. 

The guidance principle of RME refers to students’ re-invention of mathematics. 

Although there are examples of RME facilitating such inductive discovery 

(Gravemeijer, 1999), we can conjecture that the FC out-of-class preparatory 

component turns this table. Through the videos, the students should have attained basic 

knowledge of mathematics that is to be articulated through the modelling activities in-

class. Thus, instead of re-inventing the mathematics, they are rather re-employing it at 

a given situation and, through this, making conceptual ties towards it. 

We can clearly see how the level principle of RME is at play in these observations. 

Initially, students are grappling with understanding the basics of the movement, using 

gestures, making sketches and talking to each other using informal language. The next 

stage of the task prompts students to express a formal mathematical description of the 

movement, which all students achieved to some extent. Although the students work 

was directed towards making a model of this particular movement, the whole-class 

discussion at the end of the session pointed towards similar situations that this could 

apply as a model for. This was also done in the videos prior to class. 

The reality and activity principle seem to be well safeguarded in this task. This is also 

supported by the statements by one of the students during the informal interview 

conducted after the session: 

“To see the task in a physical real framing was motivating” 
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Throughout the session, students used the familiar terms and concepts related to the 

sine function. Words like amplitude, phase shift, period and baseline were all referred 

to, and the students seemed to be able to connect these to the real-life situation of the 

Ferris wheel. If this really stems from watching the videos or originates from previous 

experience with the sine function, I have no direct evidence. This of course influences 

the capacity to answer the research question. Light on this may be shed by statements 

from the other student interviewed: 

“It’s very nice that you can see the videos, think about it for some days, get it refreshed in 

the lesson and then start working with tasks related to it. This has helped me a lot”.  

Although this is a statement about the general nature of the teaching layout, it 

nevertheless gives indication about FC as an instructional platform giving learners a 

potential for experiencing different motivations for mathematics. 

CONCLUSION 

When working with task design in mathematics, we employ various theoretical 

frameworks that has certain sets of design principles that the designer should adhere to 

(Kieran, Doorman, & Ohtani, 2015). We have seen that the Ferris wheel task design 

presented in this paper aligns well with the principles of RME for task design. 

However, designing such tasks for a FC pedagogic context will need an additional 

component, namely the adoption of the video preparation. Clearly, close attention to 

the pedagogical structure combining videos and tasks seem to be necessary for 

facilitating rich discussions, modelling activity and knowledge construction to take 

place in-class. This statement is supported by the cases that were analysed in this paper, 

where we saw students engaged in horizontal mathematization utilizing out-of-class 

preparation through videos and mathematical modelling of realistic situations.  
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Maths for Business is a first-year mathematics module for approximately 500 non-

mathematics specialists. It has continuous assessment consisting of ten weekly 

quizzes, worth 40% of the final mark. In 2016/17, students who did not receive the 

maximum five marks on their weekly quiz were offered the opportunity to resubmit 

their quiz, with correction(s) and an explanation of their error(s), for one additional 

mark. We refer to this process as ‘remediation’. In this paper, we examine how 

students remediate their errors in order to identify features of a ‘good’ remediation. 

These features are identification, description, and correction of errors. By analysing 

a subset of students (n=31), we observe that a student’s quiz mark, and the cognitive 

level of the quiz question may impact the nature of the remediation provided.  

Keywords: assessment practices in university mathematics education, feedback, 

remediation of errors, students’ practices at university level.  

INTRODUCTION 

Maths for Business is a core first-year mathematics module for non-mathematics 

specialists enrolled on three business programmes in University College Dublin, 

Ireland. Topics from one- and two-variable Calculus are covered in the module and 

given the cumulative nature of the content, students should (ideally) achieve the 

learning outcomes for a topic before proceeding to the next. To encourage mastery of 

learning outcomes, the module has a continuous assessment component consisting of 

ten weekly quizzes, worth 40% of the final mark. A week after sitting a quiz, graded 

quizzes are returned to students with a mark out of five, and tutors provide oral 

feedback to each tutorial group highlighting the most common errors made. In 

addition, the lecturer provides an online video entitled “Most Common Errors” and 

posts a pdf of the quiz solutions online. With our focus on mastery, we believe that 

students who do not get full marks on a quiz should engage with the feedback to 

identify and remediate their errors in a timely manner. However, Gibbs and Simpson 

(2004) discuss how, even if timely and good quality feedback is provided to students, 

there is no guarantee they will engage with it. Therefore, to encourage this 

engagement, in 2016/17 we offered students who did not receive full marks on a 

quiz, one extra mark if they resubmitted their graded quiz one week after it was 

returned with error(s) identified and corrected. We refer to this process as 

“remediation”.  
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Handley, Price and Millar (2011) propose a shift from examining feedback 

evaluation and attributes to investigating the process of students’ engagement with 

feedback. To this end, we first wanted to explore: which students were most likely to 

participate in the remediation process; which feedback resources were they most 

likely to access; and, whether engagement in the process impacted academic 

achievement in the module. The analysis and findings from this part of the study are 

described in detail in Howard, Meehan and Parnell (under review). The main 

findings were that 70% of students who had the opportunity to remediate did so; the 

most accessed feedback resource was the pdf of the quiz solutions which were made 

available online; and, students who achieved an average quiz mark of 3-4 (excluding 

remediation marks) and who consistently engaged in the remediation process, 

exhibited the most learning gains as measured by their performance on the final 

examination. Secondly, we wanted to examine how students remediated quizzes in 

order to identify aspects of a “good” remediation, and from these findings, refine the 

instructions given to students at the start of the module on how to remediate their 

quizzes. We also want to identify and explore what factors might influence the nature 

of students’ remediations. It is this second part of the study that we wish to focus on 

in this paper by addressing the following research questions: 

1. What ways, in general, do students remediate their weekly quizzes?

2. What instructions would we give to future students to assist them in

remediating their quizzes?

3. What factors may influence the nature of a student’s remediation?

LITERATURE REVIEW 

Assessment and feedback  

There have been a number of in-depth reviews in the area of assessment and 

feedback (Bennett, 2011; Sadler, 1989) with some focusing specifically on higher 

education (Evans, 2013). Assessment is generally discussed under the headings of 

formative assessment, where the primary objective is to provide feedback to the 

student and evaluation of students’ knowledge is secondary; and summative 

assessment, where the primary role is to evaluate students’ knowledge and feedback 

is secondary. Ramaprasad (1983, p. 4) describes feedback as “information about the 

gap between the actual level and the reference level of a system parameter which is 

used to alter the gap in some way”. Building on this description of feedback in terms 

of its effect rather than its content, Sadler (1989) argues that the learner must:  

(a) possess a concept of the standard (or goal of reference level) being aimed

for, (b) compare the actual (or current) level of performance with the standard,

and (c) engage in appropriate action which leads to some closure of the gap (p.

121, italics in original).
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While most of the major studies on assessment and feedback relate generally to a 

variety of subjects, there have been calls for specific domain-focused research 

(Bennett, 2011). Specifically, in mathematics education at the university level the 

area of assessment and feedback seems to be under-researched. Of those studies 

conducted in this area, an emphasis on summative assessment and closed-book 

examinations has been noted (Iannone & Simpson, 2011; Iannone & Simpson, 2012; 

Trenholm, Alcock & Robinson, 2015). Underpinning the need to conduct discipline 

specific research in this area, Iannone and Simpson (2013) found that in contrast to 

the general literature on assessment, mathematics students prefer traditional closed-

book examinations to more alternative assessment methods.  

Engagement with feedback 

There has been recognition that despite timely and informative feedback being 

provided to students, students may not take action on it (Gibbs & Simpson, 2004; 

Handley et al., 2011). Handley et al. (2011) emphasise the difference between the 

student who skims and bins the feedback to one who takes “responsibility for 

understanding, interpreting and applying assessment feedback” (p. 557). Price, 

Handley and Millar (2011) discuss how a student may reject feedback “due to lack of 

understanding, or based on identity or self-efficacy issues” (p. 892). They further 

state that students may need more support in taking action on feedback. Of course, 

feedback needs to be of an appropriate level to help the student. Similar to the 

remediation process, Covic and Jones (2008) provided psychology students with the 

opportunity to remediate corrected essay assignments. In this voluntary remediation, 

48% of students opted to remediate for potentially higher marks. Students’ feedback 

consisted of individual and group feedback on their corrected essays as well as an 

initial grade. We have been unable to find an equivalent study in a mathematics 

context.  

MODULE CONTEXT AND DATA COLLECTION 

For our analysis, we only considered students who were completing Maths for 

Business for the first time and who sat the final examination in the module (n=470). 

In Maths for Business, students have the choice of completing the module through 

using online videos or by attending lectures or a combination of both (Howard, 

Meehan & Parnell, 2017). The students are assigned to one of two lecture cohort 

groups and have three lectures weekly. The lectures are designed to be partly 

interactive with at least 15 minutes for in-class tasks. All students have access to 67 

videos/screencasts which cover the entire module content and have an average length 

of 7 minutes each. These videos were designed and developed by one of the two 

module lecturers (and third author of the paper). There are no recommended 

textbooks for this module. Students also have access to the Maths Support Centre, 

and prior research has shown that students focus on using module resources with 

very little if any use of external resources such as websites. A student’s final mark on 
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the module consists of 40% continuous assessment and 60% for the final 

examination. To encourage consistent engagement with the module and mastery of 

learning outcomes, Maths for Business has ten fifteen-minute weekly quizzes, with 

each quiz usually consisting of two parts. Each quiz accounts for 5% of the final 

mark, directly relates to the module’s content for the prior week, and is marked out 

of five. However, only students’ best eight quizzes contribute towards their 

continuous assessment mark of 40%.  

One week after completion of a quiz, tutors returned the graded quiz to each student 

with a mark for both parts of the quiz and the overall mark provided. Tutors also 

provided oral feedback to their tutorial class on the most common errors made in the 

quiz. There were approximately 50 students registered for each tutorial. On the 

university’s Virtual Learning Environment (VLE) Blackboard, the lecturer provided 

a video entitled “Most Common Errors” and a pdf copy of the quiz solutions that 

also indicated the most relevant online videos from the module that a student may 

wish to revise. In Semester 1 of 2016/17, students who did not receive the full five 

marks on their quiz were given the opportunity to resubmit their remediated quizzes 

for one additional mark. The following instructions were provided by the lecturer to 

students: 

• When your quiz is returned to you go over it and identify your errors. Write a

sentence beside each error on the quiz sheet so that when you are revising the

material again, you will have a note to yourself about where you went wrong.

• If it is the case that your errors were more than just a “slip”, then you should

write out the correct solution on the quiz sheet and write a sentence or two

beside the solution summarising the method.

• You should use a different colour pen so that the tutor can clearly distinguish

between what you wrote in the quiz and your remediation comments.

• Imagine you are correcting your friend’s quiz and you are explaining to your

friend where he/she went wrong.

The third author had difficulty in articulating these instructions, hence the second 

research question. To remediate a quiz, students were encouraged to use any of the 

resources available: “Most Common Errors” video; quiz solutions; relevant online 

videos; Maths Support Centre; tutor feedback; and, friends. From the VLE, we were 

able to record when a student accessed the first three resources listed, and from 

Maths Support Centre records we had information on who attended the centre for 

remediation purposes. We have no data for the number of students who sought help 

from their friends, or those who made use of the tutor’s feedback comments. 

Owing to the semester timetable, students could only remediate the first eight 

quizzes. In total 1,746 remediation marks were awarded. We collected the 
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remediated quizzes, however, as some from the first quiz are missing, we only use 

remediated quizzes two to eight inclusive in our qualitative analysis (n=1,511).  

QUALITATIVE METHODOLOGY 

Qualitative analysis of the remediated quizzes loosely followed the stages of 

thematic analysis (Braun & Clarke, 2006). Initially, the first author examined the 

remediated quizzes several times in order to familiarise himself with the data. The 

remediated quizzes where students only provided a full, complete solution as 

remediation were removed as limited information could be obtained from examining 

them, especially since complete solutions were available as an online resource. This 

left 687 remediated quizzes where students had done something other than provide 

only a full solution. Guided by the instructions provided to students, the first author 

analysed each of the remaining 687 quizzes in order to determine: 

1. Has the student successfully identified each error?

2. Has the student provided a solution for each error?

3. Has the student explained their error, and if so, how?

Most quizzes consisted of two questions, therefore each question was analysed 

separately. In order to ascertain whether a student had identified each of their errors, 

the first author identified each error on a student’s quiz, and noted how many of 

these the student identified. In terms of examining whether the student had provided 

a solution for each error, two approaches taken by students were identified. Some 

students provided a full solution to the complete question even if the error made only 

related to part of it, whereas other students only wrote a solution for the specific 

error made. Finally, the first author analysed if, and how, students explained the 

errors made.  Students seemed to vary in their approaches based on variables such as 

the nature of the question asked, for example procedural or conceptual, and the quiz 

mark received. We will elaborate on this further in the section below. 

RESULTS 

To allow for comparison between students with similar levels of achievement on the 

quizzes, we divided students into four groups based on their average continuous 

assessment mark (excluding remediation marks) received for the first eight quizzes 

(4-5, 3-4, 2-3 and 0-2). These groups were of sizes 103, 188, 115 and 64 

respectively. Of the 470 students, 47% were female. The following findings are 

detailed in Howard et al. (under review): students who scored less than two on a quiz 

were less likely to remediate; students in the two lower groups showed a limited 

increase in final examination mark as a result of participating in the remediation 

process in comparison to their peers; and, students who averaged 3-4 on their 

continuous assessment, particularly benefited from participating in the remediation. 
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Students’ approaches to remediation 

After coding was completed on all remediated quizzes, it was possible to compare 

students’ remediation styles within a single quiz as well as the individual progression 

through all submitted remediations. With regard to error identification, there was a 

notable difference between students with high and low quiz marks. For students with 

marks of 3 or 4 in a quiz, mistakes were usually simple calculation slips and thus 

many students had only one or two errors to identify. This resulted in the majority of 

students with these marks successfully identifying all their errors. However, for those 

with lower marks, there were more conceptual misunderstandings to identify as well 

as several calculation errors. It is not surprising that these students were less 

successful at identifying every error. For students who received low grades on 

average, this pattern was clearly evident, but in addition, higher grade students 

exhibited this style on quizzes where they obtained a lower mark. There was a clear 

contrast in the level of error identification between an individual students’ highest 

and lowest scoring quiz. This supports our hypothesis that when students achieve 

low marks, they are less successful at identifying their errors. In terms of provision 

of solutions to errors, as noted above students either provided a complete solution to 

the question even if the error only related to part of the solution, or they provided a 

solution that related to a specific error.  

In relation to how students explained their errors, three codes or types of 

explanations were identified. Based on our knowledge of feedback, we define these 

explanations as: diagnostic, instructional, and objective. Some students explained 

errors in the context of incorrect notions or ideas that lead to them making a mistake. 

We refer to this approach as being diagnostic for example, “I thought brackets 

implied find the product but I should have used the chain rule”. Others focused on 

providing advice or helpful tips to themselves to help prevent mistakes in any similar 

questions they faced in future. We refer to this approach as instructional for example, 

“Add powers together as they have the same base (multiply rule). Finally take away 

the powers from each other (division/fraction rule)”). The final, and most common 

approach, was an objective explanation of the error, simply describing the specific 

error without referring to prior knowledge or providing instructions on how they 

might answer future questions on the topic for example, “I compounded continuously 

but the question asked for quarterly”.  

Additionally, there was a less frequent code for whether a student provided an 

incorrect statement, or identified their errors incorrectly. Having addressed the first 

research question, we propose that in future the following instructions be given to 

students: 

1. With a different coloured pen to the one in which the quiz was completed, put

an “X” beside each error or, where relevant, indicate an omission in your

work.
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2. Provide an explanation for each of your errors, either describing the error or if

you can, elaborate on any incorrect notions you had which may have led to the

error.

3. Correct each of your errors by writing the correct version beside each one.

Avoid copying down the written solutions for each quiz without explicitly

consulting your areas of error.

4. If you are still unsure how to remediate your quiz or need help with the

questions, we suggest you visit the Maths Support Centre for help.

In addition to the above instructions, we would provide students with exemplars of 

“good” remediations.  

In-depth analysis of specific students’ remediations 

We now turn to Research Question 3: What factors may influence the nature of a 

student’s remediation? Owing to the large amount of data involved, we have chosen 

to address this research question by examining a specific subset of the data. It is our 

hope that this analysis will help us identify factors that may prove beneficial when 

analysing the larger data set. We consider a subset of students (n=31) who 

remediated at least six quizzes and achieved on average 3-4 quiz marks as these had 

particularly benefitted from the remediation (Howard, et al., under review) and we 

could investigate their style of remediating over several quizzes. These students 

attended between 1-26 lectures and accessed between 11-232 videos with students 

from the weaker mathematical backgrounds (based on the Irish State Examination 

Mathematics results) accessing more resources than the others. All of these students 

passed the end-of-semester examination achieving at least a B grade (60%) and 58% 

were female. Twelve students accessed the Maths Support Centre and all but one of 

these were female. Detailed records from centre show that at least five of these 

students received help from the tutors on remediating the quizzes, including quizzes 

where they received four out of five marks. Seeking help from the Maths Support 

Centre for remediating the quizzes was uncommon among the larger Maths for 

Business cohort. Overall, based on their module resource usage, these students seem 

to work consistently throughout the semester.    

To investigate how these 31 students remediated, their coded, remediated quizzes 

were further analysed to examine any prevalent styles of remediation. Within this 

group some students remediated consistently in the same manner each week, while 

others exhibited various remediation styles. Due to the initial division made between 

students writing only a full solution as remediation, and those who articulated some 

form of further explanation, we decided to categorise a student’s overall remediation 

style based on the amount of times a remediation consisting of just a solution was 

submitted. Students could be split into roughly equal groups based on whether they 

provided only full solution in every remediated quiz (n=10), more than half of their 
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remediated quizzes (n=8) or in half or less of their remediated quizzes (n=13). 

Overall there was no obvious difference in the resources accessed (Maths Support 

Centre, quiz solutions etc.) between the three groups of students. In terms of error 

identification, these students were, in general, successful in identifying all their 

errors. A prevalent remediation style consisted of students identifying their errors, 

providing an objective explanation of the error, and writing a solution of the specific 

error. With regard to the three main approaches to error explanation, the objective 

explanation was the most common method. Interestingly, the diagnostic and 

instructional approaches were rarely used consistently in remediations by individual 

students. 

The nature of the quiz question seemed to impact the remediation approach. The quiz 

questions could be considered under the headings: conceptual (‘The following is a 

graph of the first derivative f’(x) of a function f(x). Your friend is attempting this 

problem...He asks you: “How can you tell that f has a minimum at x=2 just by 

looking at the graph?”’), procedural (‘Find all first and second-order partial 

derivatives of z = f(x,y) = ...) and economic context (‘Compute price elasticity of 

demand, E... In one sentence, explain what your answer means’). Notably, for these 

students, quiz questions that were more conceptual in nature, resulted in more 

“solution only” remediations. As full solutions were provided as a resource to 

students, it was possible to copy them and submit it as remediation. Thus, an increase 

in the number of solution-only remediations for a given quiz question may allude to a 

lack of student understanding of the module content. A number of quiz questions 

also resulted in more diagnostic remediation responses. These questions were more 

application based, and focused on application of techniques to economic contexts. 

The two quizzes that contained these applied questions had the highest average 

marks of all eight quizzes, with 21/31 quizzes obtaining full marks between the two. 

We believe the increased use of diagnostic remediations may indicate students find it 

easier to locate misconceptions in mathematical application than with more abstract 

questions.  

DISCUSSION AND CONCLUSION 

Semester 1 2016/17 was the first time we implemented the remediation process. 

Following from the definitions of Ramaprasad (1983) and Sadler (1989), students 

were provided with their actual level of understanding (mark out of five), the desired 

level of understanding (for example, pdf of quiz solutions), and were incentivised to 

engage with feedback for the intention of closing the feedback gap. Gibbs and 

Simpson (2004) propose that even if feedback is provided, students will not 

necessarily use it. Despite assessment marks being provided as an incentive, on 

average 70% of students engaged in the remediation process. Initially, we considered 

providing remediation marks on a sliding scale based on a student’s initial quiz mark 

received. This method would reflect the additional work of remediating for lower-
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scoring students and offer them additional incentive over high-scoring students, 

however, this system was not implemented as it required additional time and effort 

from the tutors.  

Qualitative analysis of the entire set of remediated quizzes allowed for the isolation 

of certain properties that indicate whether a student is engaging with their assessment 

feedback. We note that a substantial number of students provided the full solution 

only for their remediation, however we advocate the three-step approach -

identifying, explaining and correcting errors encourages students to recognise their 

own standard and utilise feedback to help close the gap between their own level and 

the desired standard. It is for this reason that we suggest this style as a guideline for 

future processes similar to remediation.  

Owing to the brevity of the explanations provided in this paper on the different 

remediation responses, it is pertinent to mention different avenues that will be 

investigated as this research progresses. The in-depth analysis of the 31 students in 

this paper suggests that task design and a student’s initial grade influences 

remediation style. Different task types elicited different remediation responses, based 

on whether the question was conceptually or application based. Perhaps, owing to a 

lack of understanding of the content material or the inability to transfer knowledge 

from one context to another, students tended to provide full solutions to conceptual 

questions. In addition, quizzes where students received lower grades tended to result 

in more solution only remediations. As these solutions are available as resources, this 

may suggest that some students utilise solutions when they are unable to fully 

identify and understand their errors on a quiz. From this, one can hypothesise that the 

remediation process may have less benefit to weaker students as a level of baseline 

knowledge may be required in order to engage with the process. In subsequent 

research, task design and initial quiz mark will be examined further to discern any 

influence on remediation response across the full set of remediated quizzes.  

One limitation of our study is the lack of student perspective on the remediation 

process. Also, while the remediation process was beneficial to the students of this 

large non-specialist mathematics module, an investigation of the benefits/drawbacks 

of the remediation process for mathematics modules for specialists would be a 

constructive contrast with this research.  

This study was completed with approval from the University College Dublin ethics 

committee in accordance with ethics applications LS-E-17-20-Copeland-Meehan and 

LS-16-48-Howard-Meehan.  
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A team consisting of three mathematics education teacher-researchers, four former 

Foundation students (called Student Partners, SPs), and two analytic assistants 

worked together to produce mathematical tasks in a computer medium for the 

mathematical learning of current Foundation students (FSs). We have explored the 

collaboration between the SPs and researchers, the processes and outcomes of task 

design, and the contribution of the collaboration to tutorial teaching of FSs. We seek 

insight into the learning of all concerned of mathematics, mathematics teaching, task 

design and personal-professional development. The project is ongoing. Here we 

introduce the project and present early findings – specifically related to task design 

and the contribution of SPs. 

Keywords: Teachers’ and students’ practices at university level; Novel approaches to 
teaching; The role of digital and other resources in university mathematics education; 
Students as partners in task design.  

INTRODUCTION TO THE CATALYST PROJECT 

We report from an exciting new development project (2016-18: The Catalyst 
Projecti) in which mathematics teacher-educators collaborate with former Foundation 
students as partners in designing computer-based mathematical tasks for current 
Foundation students. Our research explores the collaboration of participants, the 
design of tasks, teaching of students in tutorials, use of computer software for 
teaching and learning mathematics and the learning of all concerned. 
The mathematics learning of students in our university Foundation Studies 
programme (henceforth Foundation Studies students – FSs) is the focus of this 
developmental project. These are students who need a higher-level qualification than 
they hold currently in order to be able to enter the first year of their desired 
undergraduate programme (e.g., programmes in engineering or science). For such 
programmes, mathematics is an essential component. All FSs are required to pass 
their year-long module in mathematics. It has been observed that teaching and 
learning in this module in the past has been rather procedurally based: students have 
been introduced to and expected to learn the application of procedures to 
mathematical problems and have been examined on their procedural competency. A 
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current aim is to make the module more conceptually based, and to explore the use of 
computer-based tasks for this purpose. Our previous research has shown that: 
a) The involvement of peer learning-teaching in a mathematics module has resulted
in participating students gaining higher marks, with associated experiences reported
as positive to their understanding of concepts; (SYMBoL, e.g., Duah, Croft & Inglis,
2013; Solomon, Croft, Duah, & Lawson, 2014);
b) The cultural differences between teacher-researchers designing an innovation in
mathematics teaching-learning and students engaged in learning mathematics
through the innovation have contributed positively to outcomes/higher marks.
(ESUM, e.g., Jaworski, Robinson, Matthews, & Croft, 2012).ii

Beyond this activity, we have found very little other research involving students’ 
engagement through partnerships in mathematics teaching and learning. There is 
relevant work in Higher Education more generally involving Partnership Learning 

Communities (Healey, Flint and Harrington, 2014), but this does not include 
mathematics specifically. A recent special issue of NoMAD, the Nordic Journal of 
research in mathematics education, included several papers in which teachers were 
involved in exploring their own practice. The reports address three themes, one being 
‘innovative approaches to teaching and learning, with emphasis on student 
participation in the educational process’ (Goodchild & Jaworski, 2017). One paper, 
in particular, reported positively on students’ activity in oral presentations as a tool 
for promoting metacognitive regulation in Real Analysis (Naalsund & Skogholt, 
2014). Student engagement and understanding were seen to improve through their 
participative activity. Searches to date have revealed no other relevant work.  
Building on our experiences in SYMBoL and ESUM, we sought to design 
mathematical tasks which would challenge the FSs in new ways, engage them 
visually and actively and promote the beginnings of a new learning culture. 
Recognising the value of student design of resources and peer support as 
demonstrated in the SYMBoL Project we built both of these aspects into our Catalyst 
project. One of the Catalyst aims was: To promote collaboration between staff and 
students that results in higher degrees of confidence, motivation and learning in 
mathematics and a new culture in the teaching-learning of mathematics (e.g., HEA, 
2014). We hoped to learn from the various elements of this project in ways that 
would have relevance beyond mathematics, particularly in the inclusion of former 
FSs as Student Partners (SPs) in course design and teaching. Our own learning from 
working with students in these ways was also a central aim, with the intention to 
bring staff and student cultures into focus through our joint activity. The reflections 
of the students on their activity, both SPs and FSs, were seen as an important 
outcome of the project. Thus, our innovation in the Catalyst Project has two main 
areas of inquiry:  
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 The design of computer-based tasks in matrices and complex numbers for the
FSs using Autograph software.

 The involvement of former FSs (the SPs) in the design of teaching and in the
tutorial teaching of the current FSs.

According to its specification, the Foundation Studies programme provides “An 

opportunity to make it onto a degree course at Loughborough University”. Within 
the programme there is a wide range of student experience in mathematics from 
GCSE grade C to A level grade A. We focus on a mathematics module called 
‘Applicable Mathematics’ which prepares students to take up degree programmes in 
Science or Engineering. The two semesters focus on the following topics: 
Semester 1: Algebra, Logarithms, Inequalities, Functions, Trigonometry, Vectors, 
Differentiation, Integration, Sequences; Semester 2: Polynomials, Partial Fractions, 
Further Calculus, Conic Sections, Vectors, Matrices, Complex Numbers. 
The project has focused on the teaching of Matrices and Complex Numbers in 
Semester 2 in 2017. The three project leaders (PLs) have worked with four SPs to 
design tasks using the computer software Autograph in the two topic areas. Tasks are 
for use in tutorials with Foundation Students (FSs). SPs are former FSs: in the 
previous year group they were successful in having achieved grades at the levels 
required for transition to programmes in Mechanical Engineering, Chemical 
Engineering, Physics and Chemistry. At the time of their recruitment, they were first 
year students in their current programmes. In addition, two doctoral students in 
Mathematics Education were recruited as “Analytical Assistants” to support data 
collection and analysis. Thus, nine participants have been involved in the project, 
with differing roles. 

THEORETICAL BACKGROUND 

We are concerned with learning at a number of levels. 

 FSs learning of mathematics;

 SPs learning of mathematics, task design and participation with staff in
preparing for undergraduate learning;

 Mathematics teachers and researchers learning about the design of teaching in
partnership with students.

This learning is influenced by a wide range of factors which include the curriculum, 
and institutional settings within the broader sociocultural setting. Some of these 
factors we can seek to influence; others are less amenable to innovation. We take a 
fundamentally Vygotskian (e.g., Vygotsky, 1978; Wertsch, 1991) perspective 
recognising particularly mediation by people and tools that support learning; goal-
directed activity and action related to learning and teaching; scientific concepts that 
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require pedagogic mediation; and the zone of proximal development in which 
mediation fosters learning and development. We engage particularly with digital 
tools, their design and use, and the ways in which they mediate the learning process 
through both support and challenge for making sense of mathematical concepts.  
An important theoretical concept is that of “partnership” between staff and SPs (e.g., 
Healey, Flint and Harrington, 2014). Relationships within the partnership have 
resulted in the design of mathematical tasks and their use with the FSs. The nature of 
this partnership is central to project outcomes, in terms of the designed tasks and 
their use. We see ourselves as having formed a ‘Learning Community’ in which co-

learning is an important concept (Wagner, 1997), and which demonstrates tenets of a 
Community of Practice, such as mutual engagement and joint enterprise (Wenger 
1998) and a Community of Inquiry, such as critical alignment (Jaworski 2006). 

METHODOLOGY 

We take a developmental research approach, consistent with our Vygotskian theory, 
which both studies project development and learning within the project and 
contributes to development and learning (Goodchild, 2008; Jaworski, 2003). 
Mediation and tool use, for example, can be seen in an interactive stance of 
reflection and negotiation in which participants engage together in activity and 
action with growth of mutual understanding and co-learning (Wagner, 1997). 
Analysis begins in questioning of what is done and achieved and is formalised 
through scientific inquiry addressing a range of data through recognised methods. 
Research questions and data 

Our Research Questions relevant to this paper are as follows: 

 How have SPs engaged with task design and what has been the outcomes and
issues arising?

 How have FSs worked with the designed tasks?

 What have we learned about the FSs’ learning of mathematics with the
designed tasks? What issues arise?

Data, which are being analysed to address these questions include: 

 The involvement of SPs and staff in the design process as shown through
recordings of project meetings, SP reflections/reports, documents (collected at
the design meetings and from the SPs’ own work).

 The tasks, and their use as seen through observation, screen capture and
discussion. The teacher’s narratives from her reviewing of tutorial data.
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Analytical approach to date 

Reflection and negotiation have taken place through meetings, discussion, sharing 
and review of designed tasks leading to increased awareness of issues in design and 
communication. This collaborative co-learning has involved a bringing to collective 
consciousness of key elements of the design process and issues to be resolved.   
Analysis of collected data according to research questions has been qualitative, 
focusing on data from the design meetings, and from tutorials with FSs in which 
designed tasks have been used. A process of data reduction has summarised and 
coded recorded data, allowing initial identification of key elements and issues 
relating to research questions. The process is cyclic with developing depth of inquiry 
and insight to significant issues expressed through analytical memos. The tasks 
themselves have also been a focus of scrutiny which is ongoing. These analyses are 
as yet in their very early stages, so what we report below is tentative and indicative. 
Here, we discuss some emergent findings in task design and use of tasks with FSs.  

EMERGENT FINDINGS 

Task Design 

The teacher/lecturer of the Foundation course provided course notes on the two 
topics, Complex Numbers (CN) and Matrices. An expert in Autograph gave the 
group an induction into its use and potential for mathematical representation and 
exploration. SPs were asked to review the notes and think about possible tasks using 
Autograph. Task design, in 2 SP pairs (one to each topic) took place over 6 weeks 
and across 4 meetings – finding times for these meetings, from timetables of 9 
partners, over a short time period was challenging. At the meetings, SPs’ presented 
their ideas to the whole team, hesitantly in the beginning but with growing 
confidence in response to expressed appreciation and suggestions from the team. The 
pair working on tasks in complex numbers were quick to provide examples and to 
modify them according to suggestions in meetings.  The pair who worked on 
matrices found it harder to get going. Tasks in complex numbers appeared to be more 
readily achievable than in matrices where concepts seemed less amenable to digital 
representation/questioning – it became necessary both to identify the barriers and to 
find some resolution. Collaboration between the SP pair and the PLs, focusing on the 
mathematics of matrices and the learner difficulties suggested by SPs, resulted in a 
set of tasks on matrices. One of the PLs also designed a set of tasks in GeoGebra 
focusing on matrix arithmetic. The emerging ‘raw’ tasks, consisting of an Autograph 
(or GeoGebra) file with brief associated notes, were then ‘prepared’ by the FS 
lecturer to make them ready for FS use. We see two examples of the prepared tasks, 
one for each topic, in Figure 1. Certain characteristics, incorporated by the SPs into 
these tasks can be seen in the examples; FSs have to:  
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 use several display features of Autograph to “see” mathematical objects and
relationships;

 undertake some associated calculation by hand;
 relate movements on their screen to the handwork and theory involved;
 reflect on specific results to develop a more general awareness of concepts.

Some of these demands turned out to be a challenge for many FSs as we see below. 

Figure 1: Examples of prepared tasks in complex numbers and matrices 

Use of tasks with Foundation students 

The tasks were used in timetabled tutorials with the FSs, who were asked also to 
comment on the tasks for the research. Those agreeing to participate were audio-
recorded in conversation with the teacher and one researcher. From analysis to date 
we are gaining some insight into FS participation with the tasks. We have recorded 
instances of FS requesting help from the teacher, asking questions, explaining their 
solutions, revealing mathematical insight, surprise, or lack of understanding. In 
interactions with the FS, the teacher responds to students, asks questions, explains, 
and provides technical information. The dialogue in Figure 2 shows a teacher-student 

Question 7: Open the Autograph File Matrices 5 

On this page you see two straight lines. Their equations are   4x - y = 14  and  7x + 4y = a 

(a) By hand, using matrices, calculate the value of a so that the solution to the simultaneous
equations is 3   . 

2 

(b) When you have a solution, use the “constant controller” to vary the value of a until the point
(3, 2) is clearly displayed.

(c) Select both lines by holding down the “Shift" key. Both lines should have changed colour.

Go to “Object" in the menu bar and choose “Solve f(x) = g(x)". 

A point is displayed. To see what the co-ordinates of this solution are, go to “View" in the menu 
bar and choose “Results Box". Does your solution make Autograph show the intersection of the 
lines to be x = 3 and y = 2? 

Question 2: Open the Autograph File Task 2 

There are three complex numbers labelled z1, z2 and z.   z1 is fixed while z2 and z can be moved. 
Select z2 and move it until z reaches the position 3 + i. 

(a) What complex number is z2?

(b) Right click and “Unhide All" to check your answer.

(c) What is the relationship between z1, z2 and z?

(d) Explore subtraction of complex numbers in Autograph.

(e) Now calculate by hand:

With z1 = -1 - 3i and z = 3 + i, find z2 such that z2 - z1 = z. 

(f) Draw (by hand) all three complex numbers on an Argand diagram.
Give a geometric interpretation of the relationship between z and z1 and z2.
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exchange, relating to Question 2 above, that reveals an issue in the student’s 
engagement with the task that is typical of several such exchanges:  
We see that the student had engaged with the task, moving z2 as instructed. However, 
he did not know what is meant by “the relationship between z1, z2 and z” although 
he had written that “z2-z1 gives you z”. It seems a case of not understanding the 
meaning of the word “relationship”, although he had written the relationship. We are 
learning here about language issues in working between the visual mode of 
Autograph and the symbolic mode of expressing complex relationships.  

Figure 2: Example of dialogue between FS, working on Task 2, and the teacher 

Although the teacher had used Autograph, in demonstration mode, in her lectures, 
students had not developed a language to express what they could see visually. So, 
from what the student said here, it was difficult to gauge the contribution of 
Autograph to the student’s understanding of complex subtraction. When pushed by 
the teacher to explain his process in getting an answer, he replied that he “worked 
out” the result. As the teacher interpreted, this might mean that he calculated the 
result. Whether this is as well as discerning it from the movements in Autograph or 
instead of this, is not clear. Thus, it might be that the student had used Autograph 
effectively and made links with the symbolic forms. Or it may be that he had 
sidestepped interpretation of the visual and instead had worked out the result 
symbolically (the latter perhaps being a more familiar task). 
The teacher’s reflective narrative relating to the recordings from the second tutorial 
on CN reveals the following example [Teacher’s written words are italicised]: 

[Student] found the additive relationship by adding separately the real parts and 

then the imaginary parts. He says “is it bisecting the angle?” I reply “it’s 

something to do with it”. [She asks about her related lecture presentation and 
mentions a comparison with vectors.] The student correctly relates vector addition 

to “adding head to tail” and that this forms a “triangle”. [She indicates that he 
does not seem to understand what is meant by a “geometric interpretation”.] 

The teacher’s reflection suggests a student engaging correctly with several concepts 
including complex addition and vector representation. Yet, again, we see a problem 
with language – the term “geometric interpretation” is unfamiliar to the student. One 

T: What are you doing in Question 2? [She looks at what he has written] 3+i... Haa! 
What did you find out? What relationship? 

FS: I don't know what it means. 
T: You don't know what that means? Well they are connecting aren't they? You must 

be doing something with them. If they are moving together [z1, z2 and z are moving 
together] we do something to them and then you get the third. 

FS: I wrote that z2-z1 gives you z. 
T: So you did write it down. For [part] c, that is the relationship. Yes, that's what we 

meant. 
FS:  OK 
T:  So the relationship is subtraction. You are subtracting two complex numbers. How 

did you know that though? Did you know that from the picture? Or did you do 
something else? 

FS:  I worked it out. 
T:  Ah ok. So you actually did the calculation.     T=Teacher   FS= Foundation Student 
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student, asked about his work on the Autograph tasks, replied that he found the 
questions “hard to read” and could not “understand the way they are worded”. 

The two examples quoted are typical of recorded exchanges. We see from these 
a) Students not understanding the words or expression of ideas in the written
questions (e.g., “relationship”, “geometric interpretation”)
b) Students not articulating explicit conclusions from what they see on screen –
rather using the familiar forms of calculation to answer questions.
These observations lead us to question both the Autograph tasks and the wording of 
the tasks. How might we have worded the tasks differently so that students would 
engage with what they could see on screen and discern the mathematical 
relationships that the task was designed to reveal? How might we wish to modify the 
task itself so that students engage visually rather than depending on calculation? The 
challenge for the team here is twofold: to design a teaching approach that introduces 
the language we want students to use and enables students to become familiar with 
its use; and to design tasks that are revealing of concepts in and of themselves, so 
that students can see visually what they familiarly work out in calculation. These 
seem to be important elements of the learning culture we are trying to foster. 
We are aware that many FSs come to their university course from school or college 
where their mathematical enculturation towards success in national final 
examinations may have encouraged a procedural perspective on learning 
mathematics (Minards, 2013) and that we see the results of this to some extent in 
their response to the designed tasks. As well as looking critically therefore at the 
design of the tasks, we have to consider the wider mathematical culture, the nature of 
teaching that seeks to interact with this culture and the ways in which the tasks can 
be incorporated within the teaching-learning interface.  

CONCLUSION AND FURTHER RESEARCH 

The developmental nature of the project can be seen through the development of 
mathematical tasks for Foundation students by SPs and PLs in partnership, the 
subsequent use of the tasks in tutorials with the FSs, and issues arising from task 
design and use revealed both in practice and in analysis of data from the various 
events. An aim of the project was to foster conceptual understanding of mathematics 
by the FSs. We see above some issues arising from the nature of the tasks and the 
ways in which they are written, and from the ways in which FSs’ mathematical 
experience influences their engagement with the tasks. 
Because analysis is in its very early stages, we are not yet in a position to report on 
many of the aspects of learning in the project (such as aspects of the learning of the 
SPs). However, already we can start to see indications of important learning and the 
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feedback element of the developmental research. Co-learning has been demonstrated 
between the FSs and the teacher-researchers – FSs’ learning of mathematics has 
raised issues for the intention and preparation of tasks which offer challenges to the 
researchers and for future work with the SPs. The tasks and their design have been 
mediational tools not only for the mathematical learning of the students but also for 
the awareness of the researchers about teaching-learning issues, not least the issue of 
language in which tasks are expressed. The project is ongoing, both in terms of 
teaching-learning development and of analysis of the data collected so far.  
A major issue for the project has been the timescale as dictated by the funding body 
and university organisation of teaching.  We had barely half a semester to recruit 
SPs, initiate the design process, hold 4 spaced meetings, prepare the tasks for FSs 
and hold the tutorials. The project end coincides with the time for the next cohort to 
reach the teaching of matrices and complex numbers, so we could not build this into 
the project.  We expect to use the same tasks again with the new cohort and collect 
further data, informed by our experiences a year ago.  Since our data is extensive, in 
depth analysis is ongoing from which more in-depth reporting should be possible. 
We expect to be reporting further on the many aspects of this project. 

i Supported by HEFCE (Higher Education Funding Council for England) Catalyst Fund: Innovations 
in learning and teaching, and addressing barriers to student success A: Small-scale, ‘experimental’ 
innovation in learning and teaching. 
ii SYMBoL – Second Year Mathematics Beyond Lectures – was a project designed to support 
teaching in two second year mathematics modules, Vector Calculus and Complex Analysis. 
Students who had experienced these modules were employed over a summer period to design 
resources in collaboration with mathematics staff. The resources were used in subsequent delivery 
of the modules and a peer support system was initiated in which third year undergraduates 
supported their second year counterparts. 

ESUM – Engineering Students Understanding Mathematics – was a developmental research project 
involving an innovation in mathematics teaching seeking to engage students more conceptually with 
mathematics through inquiry-based activity, a computer-based learning environment, small group 
tasks and an assessed small group project.  
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In the presented study we adopt a process-oriented perspective on proving in order 

to gain further insights into relevant actions and typical obstacles in 

undergraduates’ approaches to proving. The primary aim is to theoretically and 

empirically describe different phases, understood as bunches of intentionally closely 

related actions of proving. Therefore, we suggest a theoretical model of the proving 

process and confirm empirically that it can be used as an analytical tool for proving 

approaches. Based on this model, several proving processes have been analysed. In 

this paper we present first findings regarding the contribution of each phase to proof 

construction as well as the general structure of the proving process.     

Keywords: proof construction, proving process, phases, proving cycle. 

THEORETICAL BACKGROUND 

It is well known that undergraduates commonly have to deal with great difficulties in 

constructing proofs (e.g. Weber, 2001; Moore, 1999). In order to gain additional 

insights into the main obstacles in proving at university level, we focus on the 

processes of proof construction. Preparing further projects, the presented study 

serves as a pilot study, which initially aims at investigating the general structure of 

proving processes on a macroscopic level. Therefore, we first give an overview about 

the main characteristic of the proving process in contrast to its product. Based on 

this, we deduce a theoretical model from literature in order to use this model as an 

analytical tool for undergraduates’ approaches to proving. 

The process of proving  

Talking about proof construction, there is a consensus that a proof, especially at 

university level, is a line of reasoning, which is strictly deductive and exclusively 

based on theorems and axioms. In contrast to its result, the process of proving 

contains not only deductive reasoning, but also includes inductive and explorative 

processes (e.g. Hersh, 1993). Thus, developing a key idea and transferring it into a 

formal proof is a complex and highly demanding process, which occurs in the tense 

atmosphere of conviction and explanation as well as intuition and formality (Hemmi, 

2008). In the present paper we will discuss on a theoretical and empirical basis, how 

these different perspectives and processes interact in constructing proofs.  

Mejia-Ramos and Inglis (2009) distinguish between three distinct types of 

construction activities, which emerge from different external conditions. Although 

all of these activities aim at constructing an appropriate proof, each is guided by a 

specific goal: Exploration of a problem consists of working on an open-ended 
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question in order to discover and at least prove a new statement. However, 

estimation of truth starts with an already prepared conjecture and justification begins 

with a statement estimated to be true. In these cases, proof construction is rather 

aimed at determining or verifying the truth-value of a statement instead of inferring 

it. Meyer (2010) differentiates activities associated with mathematical proof 

construction in a similar way based on the theory of abduction, induction and 

deduction. According to his approach, each kind of inferring is related to a different 

type of construction activity. Thus, external conditions and, especially, task designs 

have a relevant influence on proving processes by stimulating different types of 

inferring and construction activities. Combining both frameworks, we assume that 

the activities described above are independent for the reason that they consist of 

different types of processes and pursue different goals. In particular, justification is 

not a part of exploration, which follows producing a conjecture, but requires specific 

cognitive processes.  

In order to describe those cognitive processes, various models have been developed, 

which summarise the relevant actions and demands associated with proof 

construction. These models mainly focus on processes related to the exploration of a 

problem. As proving tasks at university level often consist of a statement estimated 

to be true, these models only seem to be partially suitable for analysing 

undergraduates’ proving processes. Hence, we suggest a model of proving, which is 

mainly following existing models, but focusses on justification. 

Models of proving processes 

To analyse the cognitive processes of mathematical proof construction, there is a 

need for abstraction. The complex structure of the process has to be reduced to the 

relevant actions and, therefore, transferred onto a macroscopic level. Doing so, most 

process-oriented models use the unit of episodes or phases in order to subsume 

closely related actions in service of the same goal under a generic activity. Thus, 

phases are “macroscopic chunks of consistent behaviour” (Schoenfeld, 1985, p. 292), 

which summarise the relevant processes associated with proof construction. 

Existing models of the proving process mainly differ in their amount of suggested 

phases. The most cited models have been presented by Stein (1984) and Boero 

(1999). Both models focus on the activity of problem exploration, which means that 

the proving process is based on an open-ended problem area. In the first phase of 

proving this problem area is explored regarding relevant conditions and regularities 

in order to produce a conjecture. When the conjecture has been formulated as a 

statement, the proving construction contains three phases: Identifying arguments for 

the correctness of the statement, linking them into a deductive chain and formulating 

an appropriate proof. As Stein’s (1984) model focusses on proving approaches of 

students at secondary level and Boero (1999) describes the proof construction of 

mathematicians, quality and formalisation of the proofs intended in the models differ 

according to the mathematical standards shared in the particular context. Boero 
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(1999) even adds a further phase, in which mathematicians approach a formal proof. 

Apart from this last step, which primarily seems to be relevant for experts, the phases 

of proof construction described by Stein (1984) and Boero (1999) have been taken as 

a basis for several research projects in mathematics education (e.g. Reiss & Renkl, 

2002). According to this, we suppose the phases described in both models to be 

relevant for undergraduates’ proving processes as well. However, proving tasks in 

the initial phase of studies rather initiate justification instead of exploration. Due to 

this, we suggest the following variation of Stein’s and Boero’s model: 

In contrast to the existing models, the proving cycle starts with a proving task 

consisting of a statement estimated to be true. Although this statement can be similar 

to the produced conjecture in other models, it plays another role in the proving 

process. In case of problem exploration the statement is connected to insights from 

conjecturing and exploration, but in case of justification no further information about 

the statement is given. Hence, it is necessary to analyse the given statement, to 

clarify the terms and conditions and to access previous conceptual or strategic 

knowledge. Leaning on the approach of a situation model (Kintsch & Greeno, 1985; 

Reusser, 1990), we suppose undergraduates to develop a mental representation, 

which refers to their individual understanding of the given statement and guides 

further processes. Based on this mental representation we suggest similar phases as 

presented in the models of Stein (1984) and Boero (1999). The second phase aims at 

exploring the statement area and discovering key ideas. By (re-)constructing 

relations and objects or applying theorems reasons for the validity of the statement 

can be identified. If some key ideas have been found, it is necessary to select 

promising ideas, work out their details and structure single arguments in an 

appropriate deductive order. This phase results in a proof outline, which contains the 

main aspects of the proof, but can be fragmentary or difficult to understand for 

someone else. In order to prepare a final proof, which meets the mathematical 

standards of one’s community, one has to fill gaps and revise the linguistic and 

formal arrangement of the proof. As a last phase the model includes validating 

activities, which can be compared to a certain extent to Pólya’s stage of looking back 

Figure 1: Proving cycle as a model for proof construction 
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(Pólya, 1945). In this phase the final proof is reviewed regarding content, structure 

and linguistics. Beyond that, one can consider further (shorter or more elegant) 

proofs in this phase or reflect on the proving process, as, for example, thinking about 

key ideas, difficulties and their solutions. 

The single phases in the model are arranged as a cycle. In accordance with Stein’s 

(1984) and Boero’s (1999) considerations, we assume that proof construction does 

not necessarily proceed in a linear way. Instead, the proving process is shaped by 

interruptions and revisions that cause transitions between different phases. 

RESEARCH QUESTIONS  

The primary aim of the presented study is to develop an analytic tool for proving 

processes, which makes it possible to describe and compare students’ approaches to 

proof construction on an individual, macroscopic level. Therefore, a proving cycle 

has been derived from literature consisting of five phases estimated to occur in 

undergraduates’ proving approaches. The unit of a phase seems to be well-suited to 

describe proving activities in a clear and abstract way without neglecting specific 

details and differences in the proving processes. Accordingly, the proving cycle may 

be used to analyse proving approaches by describing the frequency, the duration and 

the order of different phases occurring in the process. The presented study aims to 

provide evidence of the utility of the proving cycle as an analytical tool and – if so – 

to gain more detailed information about the process of proof construction at the level 

of phases. In detail, the aims of the study described above lead to the following 

research question:  

1. Is the proving cycle an appropriate tool for analysing proving processes? That 

means, is it possible to reconstruct the different phases stated in the proving 

cycle empirically? Do further activities exist, which do not fit the theoretical 

description? 

2. How can the process of proof construction be described in general? That 

means, which phases are taking a relevant share in the process? In which order 

do undergraduates go through the different phases? Can the cyclic nature of 

the proving process be confirmed?  

METHOD  

In accordance with the open-ended character of the research questions, an 

explorative laboratory study has been designed. In this study proving processes of 

undergraduates are initiated, observed and finally analysed. The concept of the study 

and its conditions are described in more detail below. 

Sampling and data collection 

The study focuses on undergraduates and pre-service mathematics teachers (high 

school) attending their first year of studies. Performing an informal unstructured 
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interview, participants are encouraged to work on proving tasks in the field of real 

analysis. Doing this, they are told to prepare a joint solution that satisfies the 

requirements of a proof in the initial phase of studies and that would be accepted by 

a tutor or a lecturer. To encourage the participants to talk about their ideas and 

approaches, the working processes are organised in pairs. In order to secure the same 

conditions for all participants and, therefore, the comparability of the observed 

processes, the interviewer offers no support. Instead, a commonly used textbook of 

real analysis is provided. For investigation such proving tasks have been chosen that 

require a one- or two-step proof and can be solved by applying a prominent theorem 

of real analysis like the intermediate or mean value theorem. In order to explore the 

proving cycle’s applicability, the proving tasks contain universal as well as 

existential quantifications and can be proved directly or by contradiction. 

While working on the proving tasks, the participants are videotaped. That means, 

their proving approaches are recorded in sound and vision. Additionally, we 

collected the final solutions as well as the notes of each pair. During the pilot phase 

of the study seven pairs of undergraduates took part in the interviews and worked 

each on one or two proving tasks. Processing time for a single task varies from 30 to 

75 minutes. However, not all proving approaches were successful. While some 

participants gave a proof, which was not completely correct, but contained useful 

approaches, other students could not achieve any solution. 

Preparation and analysis of data 

To prepare the observed proving approaches for analysis, we transcribed each 

videotape entirely. For precise investigations the transcripts of the dialog are 

expanded by further information like non-verbal activities and notes. Combining the 

transcription of natural conversation and written approaches, the protocols of the 

proving processes are finally encoded according to Mayring’s (2014) structuring 

content analysis. In accordance with the research questions a deductive category 

formation with nominal categories has been chosen, which is closely related to the 

proving cycle described above. The aim of the coding is to identify changes in the 

participants’ behaviour in order to describe the structure of their proving process as a 

sequence of transitions between different phases. Leaning on Schoenfeld’s (1985) 

method of protocol analysis the coding consists of two steps: First, the proving 

process is parsed, that is, making decisions regarding dividing lines of phases. Once 

a proving process is partitioned into phases, each phase is characterised as one of the 

theoretical stated phases in the proving cycle. The coding results in a macroscopic 

description of the students’ proving processes that combines closely related actions 

into phases and provides a summary of relevant activities.  

RESULTS 

In this section the results of analysing data from nine proving processes is presented. 

For the moment, a case study is introduced to demonstrate the methodological 
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approach as well as possible results on an individual level. Based on this, findings 

regarding the proving cycle being an appropriate analytic tool are discussed in 

general. Beyond that, we present first assumptions concerning the frequency, the 

duration and the order of different phases in undergraduates’ approaches to proving. 

Case study of Michael and Leon  

Michael and Leon are working on the following task, which can be solved by 

applying the intermediate value theorem: 

Partitioning their working process and characterising the identified phases, the 

proving process of Michael and Leon can be described by the sequence of phases 

presented in Figure 2.  

After reading the task, Michael and Leon start their working process with a brief 

brainstorming concerning useful theorems. Because the given function does not meet 

the required preconditions, they experience difficulties applying these theorems, 

which makes them reading the given statement a second time more carefully. Doing 

so, they express confusion about the term fixed point and, hence, try to clarify its 

meaning by looking it up and making a drawing. Based on an enhanced 

understanding, Michael and Leon review their ideas and add new ones by leafing 

through the book. Sooner or later, each of these ideas proves to be inadequate. While 

Michael is reading in the book searching for applicable theorems, Leon makes 

further drawings in order to visualise the preconditions and assertions given in the 

task. Thereby, he remembers a strategic approach used in a proof before. Leaning on 

this approach, he tries to construct an auxiliary function, which turns the original 

problem of the existence of a fixed point into a similar one of a zero. Michael and 

Leon work together on this approach until they recognise they have different 

concepts regarding the connection between the domain and the range of the given 

function. They resolve this disagreement by referring to the drawings and regarding 

some exemplary points of the function. For more than half an hour Michael and Leon 

have been working out the details of the proof now. At times they stop working on 

new ideas and summarise previous insights in order to structure their arguments and 

to identify gaps or inconsistencies in the proof outline. One of this structuring 

activities sends Michael having doubts about the correctness of their formulation. 

Figure 2: Parsing of the proving process of Michael and Leon 

331 sciencesconf.org:indrum2018:173782



  

Leon is able to convince Michael of their approach, but has to admit that some 

modifications are necessary like regarding an additional case. Later, another phase of 

validating occurs as a result of identifying arguments. This time they recognise that 

their auxiliary function is the identity function and that they can prepare their 

arguments in a more elegant way. Michael and Leon are now able to construct a 

satisfying proof by formulating and structuring alternately.  

During the whole process of proof construction Michael and Leon are progressing 

continuously until 

they have achieved a 

satisfying proof. 

They only return to a 

previous phase, when 

their proving process 

comes to a temporary 

halt and they feel 

there is a need for 

reviewing some steps 

done before in order 

to specify or improve 

their mental 

representation, their key idea or the proof outline. Michael and Leon go through a 

phase of validating twice, because one of the student voices doubts about the 

previous considerations being correct. They do not review their final proof to check 

or improve details.  

As displayed in figure 2, at times it has been inevitable to encode the same period of 

time with two different categories. This kind of double-coding is necessary, if both 

students work on their own in service of different goals or if some related activities 

from different phases are done contemporaneously. The analysis of the proving 

process presented in this section is quite typical for the sample. In the following 

section similarities and differences between the individual proving processes are 

discussed in general. 

General observations 

The analysis of data from nine interviews shows that the categories are applicable to 

the proving protocols in a satisfactorily objective and reliable way. Interrater 

reliability in coding is quite high (𝜅 = .73-.93). Therefore, the proving cycle seems to 

be an appropriate tool for describing and analysing undergraduates’ approaches to 

proof construction on a general macroscopic level. Regardless of the proving tasks 

and a direct or non-direct approach to proving, each of the suggested phases could be 

empirically confirmed in at least five of nine cases (Figure 4). In those cases, where 

the phases identifying arguments and selecting and structuring arguments are 

missing, participants have not been able to establish any serious approach due to a 

Figure 3: Proving process of Michael and Leon, validating 

activities are represented by stars 
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poor mental representation or a lack of key ideas. However, quitting the working 

process without any solution was only observed twice. More frequently it happens 

that even in successful proving processes the phases of formulating and validating 

are omitted. Instead of formulating a precise and clear proof, some participants 

content themselves with quick but fragmentary solutions. Here, formulating the proof 

according to mathematical standards does not seem to be as important as gaining 

insight into the key ideas of a proof and verifying the statement for oneself. This 

kind of view might be a general attitude towards mathematical formalism, but could 

also be caused by the laboratory setting. Analysing the phase of validating, we 

differentiate two kinds of action: Validating activities in service of reviewing and 

enhancing a final proof could only be observed in one single case. In contrast, 

activities like checking details and analysing suggestions occur continuously and are 

connected to several other activities in the proving process. Although validating 

activities are only listed in five of nine cases, it is reasonable that more validating 

takes place without being encoded on a macroscopic level because of no sufficient 

impact on the proving process. Comparing the percentages of different phases, it 

emerges that in nearly all cases the phase of identifying arguments as a highly 

creative and demanding action takes a large share in the proving process and, 

therefore, seems to be one of the most significant parts of mathematical proof 

construction. In contrast, the percentage of understanding and exploring the given 

assertion varies greatly. While some participants spend a lot of time on drawings or 

clarifications, others start with a brief glimpse on the task and continue with applying 

theorems immediately.  

In regard to the composition of proving processes, it has been assumed that the 

underlying structure is a cycle. Due to that, there must be a high amount of 

transitions and revisions in the proving approaches. In fact, only one third of the 

encoded transitions is linear in that way that students move forward to the next phase 

in the proving cycle. Though, the proving processes does not proceed as cyclic as 

suggested. As illustrated in the case study of Michael and Leon a large shape of non-

Figure 4: Percentages of the different phases occurring in proving processes  
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linear transitions is made by transitions between consecutive phases, that is, moving 

backwards to the phase before. Wider leaps from one phase to another are quite rare. 

Most of these transitions between non-consecutive phases contain an interaction with 

validating activities as students switch from any phase to validating and backwards. 

This finding supports the assumption that validating is an activity, which is closely 

related to other phases of the proving process. Only in a very few cases the key idea 

is rejected at some point in the proving process and the participants restart 

identifying arguments and exploring the given statement cyclically. Accordingly, we 

suggest proof construction to be less cyclic than a linear process, which is interrupted 

by several mini-cycles between consecutive phases.  

DISCUSSION 

In this paper a model for the process of mathematical justification at university level 

has been derived from literature to develop a macroscopic analytical tool, which 

describes a proving process as a sequence of phases. In a sample of nine processes 

the proving cycle has proved suitable for describing undergraduates’ approaches to 

mathematical proof construction. Each of the suggested phases could be empirically 

confirmed. Analysing similarities and differences between individual proving 

processes, there have been two key findings: Undergraduates’ proof construction 

mainly proceeds on a straight line basis, which is interrupted at times by transitions 

into immediately preceding phases in order to specify or improve considerations 

done before. An exception to this are validating activities. Questioning, reviewing 

and reflecting seem to be processes, which are rarely performed at the end of proof 

construction, but are closely connected to other phases of the proving cycle. Hence, 

initial results indicate that validating is not confined to the final proof, but relates to 

the mental representation as well as the key ideas and the proof outline.  

The presented study prepares a larger project by providing an analytical framework 

for students’ approaches on proof construction. Based on the proving cycle, we 

intend to analyse a larger sample including participants, who differ in progress and 

performance. Comparing first-year and advanced students as well as successful and 

non-successful proving processes might provide new ideas for fostering programs in 

the introductory phase of studies. On the one hand investigations will remain on the 

macroscopic level of phases in order to identify effective and less effective patterns 

of proving processes. Therefore, the occurrence and the duration of a phase in a 

proving process are compared with the quality of the corresponding proof. On the 

other hand, further investigations are intended, which gain more inductive insights 

on a microscopic level. Therefore, we aim at describing typical actions of each 

relevant phase in detail. By doing so, frequent difficulties and potential obstacles of 

an individual phase can be identified as well as effective and non-effective proving 

strategies to overcome these obstacles. This information can help arranging effective, 

process-oriented fostering programs. 
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In this study we have investigated the resources used by first year engineering students 
in a technical university in the Netherlands, for their learning of Calculus and Linear 
Algebra. Using a case study approach we have focused on how the resources and their 
use (a) differed from upper secondary school as compared to university, and (b) 
differed between the two university courses. The results indicate that, in terms of (a) 
students built on secondary school experiences and emulated these into their university 
courses, where some subsequently experienced difficulties. In terms of (b), we argue 
that the course organization and the alignment of curriculum materials with the 
learning goals had an impact on the students’ choice and use of resources. Human 
resources played an important but varying role.  
Keywords: Student use of resources, Case study, Transition from school to university, 
Calculus, Linear Algebra. 

INTRODUCTION 
At university level a large diversity of resources is currently made available for 
students learning mathematics. These include traditional curriculum resources (e.g. 
readers, textbooks); digital (curriculum) resources (e.g. YouTube, websites, apps); and 
also human resources (e.g. drop-in clinics run by tutors; setups for peer groups). The 
ways in which university mathematics teachers interact with various resources has been 
investigated by Gueudet (2017), for example, and several studies have been conducted 
related to university students and their use of particular resources to learn mathematics 
(Anastasakis, Robinson, & Lerman, 2017; Biza, Giraldo, Hochmuth, Khakbaz, & 
Rasmussen, 2016; Inglis, Palipana, Trenholm, & Ward, 2011). However, relatively 
little is known about how students of mathematics in their first year of university “cope 
with” the plethora of available resources available to them, and how they organise and 
coordinate them for their learning.  
Using a case study approach, we have studied the resources in a Calculus (CS) and a 
Linear Algebra (LA) course, and their use by students, in the context of a first year 
Bachelor College programme at a technical university in the Netherlands. Moreover, 
we have investigated, retrospectively, which resources were used by the students, and 
how, in upper secondary school (as compared to university). Hence, we propose the 
following research question:  
Which kinds of resources are used by the students, and how, in first year university 
Calculus and Linear Algebra courses, and how do these practices compare to students’ 
experiences at upper secondary school?  
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In this paper, first, we briefly outline selected insights from the relevant literature, 
including our theoretical frame of “resources” (and their use) as a lens to develop a 
better understanding of students’ mathematics learning. Second, we describe our 
chosen methodology and data collection strategies, before we present our findings and 
discuss our results in the third section. Fourth, we present our conclusions and outline 
implications for the practice of university mathematics learning and teaching.  

THEORETICAL FRAMEWORKS 
Transition from secondary to tertiary education 
In terms of mathematics learning, the transition from secondary school to university is 
challenging for many students (Pepin, 2014), as discontinuities exist between 
secondary and tertiary mathematics education. The literature reports numerous 
differences between studying mathematics at school as compared to university. It is 
said that in comparison to secondary education, at university: (a) the mathematical 
content is introduced at a higher speed; (b) more mathematical autonomy is expected; 
(c) the levels of generalization and abstraction are higher; (d) the approach is more
formal with an increased emphasis on proof; and (e) the institutional cultures at the two
institutions (secondary school, university) are different (Artigue, 2016; Gueudet,
2008). The ways the content is made available to students also differ between
secondary and tertiary education (e.g. Corriveau & Bednarz, 2017). University students
have to autonomously manage the various resources to learn mathematics, and it is
argued that secondary school does not prepare them well for this task (Williams, Black,
Davis, Pepin, & Wake, 2011). Thus, it can be expected that first year university
students have to find new ways of working with the resources they have access to, and
that are proposed to them in their courses.
Student use of resources 
The use of resources by students has been the subject of relatively little research. 
Selected studies (e.g. Anastasakis, et al., 2017) indicate that students, in their selection 
of resources, have been predominantly motivated by the goal to be successful in 
examinations (and to obtain high grades). The authors of this study made an inventory 
of the resources used by students when studying for mathematics modules, and 
explicitly related these to their learning goals. The most widely used resources were 
those that the university provided for the students, and their own notes. The use of 
particular resources, for example mathematics textbooks, was specifically linked to the 
study of worked examples, which were said to help students to prepare for 
examinations; albeit this often lead to emphasise the surface aspects of the examples 
(Biza, et al., 2016). In their review study Biza, et al. (2016) identified several 
limitations of tertiary mathematics textbooks, in particular the emphasis on formal 
aspects of mathematics, at the cost of opportunities to develop intuitive meanings and 
understandings. Relating the use of particular resources to examination grades, a study 
by Inglis, et al. (2011) found that students who attended lectures or used the 
university’s mathematics support centres had higher grades than students who often 
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watched online lectures. The authors suggest that students might need explicit guidance 
on how to combine the use of various resources into an effective learning strategy. 
Before this guidance can be given, or be reified in a blended learning environment, 
more in-depth information on the actual use of resources by students is needed.    
The lens of resources 
In this study we use the notion of “re-source/s” that students have access to and interact 
with in/for their learning. We assume that the ways university students learn 
mathematics is influenced/shaped by their use of the various resources at their disposal. 
By “use of resources” we denote, for example, which resources students choose 
(amongst the many on offer) and for what purpose (e.g. revision); the ways they align 
them (e.g. first lecture then checking the textbook, etc.); which ones seem central to 
achieve particular learning goals (e.g. for weekly course work, examinations, for their 
engineering topic area). However, we do not address the specific learning of CS and 
LA, that is how students interact with particular (e.g. cognitive) resources to learn 
particular topic areas in CS and/or in LA.  
Gueudet and Pepin (in press) have defined student resources as anything likely to re-
source (“to source again or differently”) students’ mathematical practice, leaning on 
Adler’s (2000) definition of mathematics “re-sources” (in Adler’s case used by 
teachers). In this study we distinguish between (1) material resources, and (2) human 
resources. (1) For material resources a further distinction has been made between (a) 
curriculum resources (those resources proposed to students and aligned with the course 
curriculum), and general resources (which students might find/access randomly on the 
web).  Curriculum resources are developed, proposed and used by teachers and students 
for the learning (and teaching) of the course mathematics, inside and outside the 
classroom (Pepin & Gueudet, 2014). They can include text resources, such as 
textbooks, readers, websites and computer software, but also feedback on written work. 
General resources are the non-curricular material resources mobilized by students, such 
as general websites (e.g. Wikipedia, YouTube). (2) In terms of human resources we 
refer to formal or casual human interactions, such as conversations with friends, peers 
or tutors. 

METHOD 
Context 
The study took place at a university of technology in the Netherlands, with a student 
body of approximately 13000 engineering students. The university offers 15 bachelor 
courses related to technology and engineering. 
We selected two first year courses in the first term of the 2016-2017 academic year: 
Calculus (CS); and Linear Algebra (LA). We purposefully chose these courses, as they 
were different in size and target group: the CS course was obligatory for all first year 
engineering students, approximately 2000 students, whereas the LA course was 
targeted at “applied mathematics and physics” engineering students only, 
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approximately 130 students. The CS course was organized by the mathematics 
department, differentiated at three levels (A, B, and C), according to perceived level of 
difficulty and with varying level of emphasis on formal aspects of mathematics (e.g. 
proof).  
In CS, six hours of lectures were organised each week, and one hour of tutorials in 
groups of eight students. In the course catalogue, and this was supported by lecturers, 
the aim of CS was to give engineering students a “basis” to be able to “calculate 
correctly”. It appeared that the aims of the CS course were to provide students with a 
basic set of mathematical/computational tools they could subsequently use in their 
engineering studies and in their future work as engineers. 
In LA, four hours of lectures were organised each week, and four hours of tutorials, in 
groups of approximately 30 students. As in CS, the LA learning aims were described 
as the acquisition of mathematical skills. Moreover, aims of the course were to help 
students develop the skills and realize the importance of correct mathematical 
communication, including writing formal proofs. Completing a mathematical writing 
assignment was part of the course requirements to reach this aim. It appeared that the 
purpose of LA was to prepare students for higher mathematics (used in the mathematics 
and physics courses).  
Participants 
In total, 24 students participated in the study: 18 CS students (involved in nine different 
engineering programs and all taking the B level CS course); 1 CS student who dropped 
out of university; 5 LA students (all studying for the ‘applied mathematics’ engineering 
course). In terms of background, of the interviewed CS students 15 came from 
secondary schools in the Netherlands, three came from other educational systems. For 
the Dutch students the CS content was partly familiar, in particular for those who took 
“strong mathematics” courses (Wiskunde D) at secondary school. Four of the five 
interviewed LA students came from secondary schools in the Netherlands, one student 
had attended secondary school in Belgium. 
Data collection strategies 
Data collection strategies included the following: 
(1) Student interviews: The CS students were interviewed in four focus groups, and
one individual interview. During the interviews students were asked to make a drawing
of the resources they used for their mathematics course (Schematic Representation of
Resource System, SRRS - Pepin, Xu, Trouche, & Wang, 2017). These helped the
interviewer to understand the ways the resources were used, and for which purpose.
The LA students were interviewed in two groups of two, and one individual interview.
(2) Documents/curriculum resources: Relevant curriculum materials and documents
(digital and text materials) were collected and analyzed. These materials were provided
by the university for the students (e.g. examples of examinations, LA syllabus, LA
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study guide, LA assignments, CS study guide, the CS textbook, course summaries in 
the university’s course catalogue, video clips, videos of the lectures).  
(3) Teacher interviews: Interviews with two CS lecturers and one CS tutor were
conducted, as well as one LA lecturer and one LA tutor.
For analysis, the interviews were transcribed and interview quotations were coded 
using ATLAS-ti software. The codes were based on our knowledge from the literature 
concerning the different curriculum resources and their use. In the next step of the 
analysis the findings from CS and LA were compared, and subsequently these with 
those from upper secondary school. 

RESULTS 
Resources at secondary school 
In terms of curriculum materials/material resources the textbook was an important 
resource for most secondary school students, and so were the graphical calculator (also 
used in examinations) “to quickly plot graphs” (interview reference: CSS01), and past 
examination papers for revision and practice to prepare for the national examinations. 
The textbook was seen as the main source of exercises, which were done in class or at 
home. Regarding homework one student remarked:  

At school I didn't do my homework. There was homework but yeah, if you worked on 
it during the class … you would get halfway and then at home I was like oh, I get it. I 
don't have to do the remaining exercises (LAS01).   

Online general resources (e.g. YouTube; Kahn academy) were hardly mentioned in 
relation to secondary school.  
In terms of human resources the teacher and classmates were mentioned as an 
important support for secondary school students. Interestingly, teachers’ explanations 
of the mathematical concepts were not important for all students: in some schools 
students apparently worked largely independently (with the textbook) and the teacher 
was only occasionally consulted. 
In short, to learn the mathematics and pass the examinations, students reported that it 
was sufficient to follow the teachers’ explanations, do (all) the exercises in the 
textbook, and practice with the past examination papers. There were few resources, and 
the ones provided could be straightforwardly accessed and used for solving the 
problems posed.  
Resources for CS 
Figure 1 shows the typical resources used by a CS student. The lecture appeared to be 
an important starting point for many students, albeit not for all. They provided an 
orientation on the subject (“it’s easier for me to revise/practice when I have already 
seen/heard about it”; Figure 1), and to some extent an enculturation into the world of 
mathematical concepts and their usages. A lecturer said: 
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I do the historical aspect too. Some things have been known for 3000 years, so you have 
to know that too. So I also do applications and add historical things (..) I just want them 
to be excited about the subject (CSLI03). 

CS was supported by an almost 1100 page general CS textbook (authored by an 
“external” author) chosen from commonly used university CS textbooks. It contained 
the essential theory and part of the homework exercises (explained by someone 
“outside” the students’ environment), but its content was not specifically aligned with 
the lectures and the final examinations. Curriculum resources, such as the textbook, 
were mainly used for exercises, whereas lecture notes (by the teacher) seemed 
important for knowing about the content to be learnt. Students’ own notes were often 
used for orientation (“I write down important stuff; also when the teacher says ‘this is 
likely to be on your exam’, I write this down.”; Figure 1). Selected students used the 
textbook for additional/different purposes: to read the theory in the textbook to prepare 
in advance for the lecture.  
At the same time digital resources, such as general online videos (e.g. YouTube; Kahn 
academy) and video-recorded lectures (whole lectures or clips of particular moments), 
were said to provide additional explanations. The course’s online tests and the weekly 
coursework were used to check whether one had a good (basic) understanding of the 
content. Moreover, students also mentioned human resources, such as the lecturer/tutor 
and the roommate “to ask questions” (Figure 1). Friendship groups were important for 
many students, and for some they were their first line of support (before the tutor or 
peers in the tutorial/s), to work with on the coursework or to consult about difficult 
theory or exercises.  

Figure 1. Purpose and coordination of resources by a CS student 
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Resources for LA 
In terms of material resources LA was supported by a 200 page course-specific reader, 
authored by the lecturer and developed and improved over the years. It contained the 
essential theory and the exercises required to prepare for the examinations - this was 
“the backbone” of the course, according to the lecturer and the tutors. Other resources, 
such as the lectures, the homework/coursework exercises, the lecture notes and the 
videos with worked examples were all aligned with the reader, to become a 
comprehensive and complete set of resources for the students. The importance of using 
these resources to individually make sense of the mathematical content, and doing lots 
of practice exercises “at home”, was emphasised by a student:   

But now you have like a huge amount of homework and then you also have workgroups 
where you can work on it, but then you don't get very far. (…) And if you don't do it at 
home, you just won't get it and you won't make your tests really good. So you really 
have to do a lot at home  (LAS01). 

As in the CS course, the lectures appeared a starting point for many students; they 
provided an orientation on the subject, and an enculturation into the world of 
mathematics (e.g. when mathematical proof was explained as an essential 
mathematical thinking process). Moreover, in terms of human resources, students 
relied on peer groups (e.g. they collaboratively solved problems during the weekly 
tutorials), and on the tutors to provide help- this was an important support in the LA 
course. Tutors were considered more approachable than the lecturers, although students 
were generally positive about the possibilities to ask questions to lecturers.  
Comparing resources and their use 
School – university: Whilst selected resources (e.g. textbooks, past examination 
papers) appeared to be part of the “staple diet” for every student at university or school 
level, at university students tended to use more, and more varied resources than at upper 
secondary school, including online lecture videos, video clips (of “difficult” notions), 
online texts. In addition, selected resources, such as lecture notes, were not mentioned 
in the secondary school context, where the theory would be taught by the teacher who 
aligned his/her lessons with the book. Some of the additional resources, such as video 
lectures, teachers’ lecture notes, readers on specific topics, and online tests, were part 
of the curriculum resources made available by the university. Other resources, such as 
online applets and videos, were identified by the students themselves.  
In terms of human resources there were also differences: at secondary school for most 
students the teacher provided practically all of the necessary guidance for learning the 
mathematical topic. At university the lecturer provided the theory, an overview of what 
was important for their learning of the topic area (and also for the examinations), and 
selected worked examples. The practical guidance, i.e. how to solve particular 
mathematical problems, was mainly provided in the tutorials and the 
exercises/coursework accompanying the lectures. Hence, students had to find their own 
learning/peer groups and supports for learning, as on their own it was not possible to 
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manage the amount of work and the pace it was taught. This situation was exacerbated 
in the CS course, as only one hour of tutorial group work was offered, and students had 
to work collaboratively outside this hour for completion of their tasks. Hence, many 
CS students organized and coordinated their own support to work with their peers on 
the coursework, or to consult about difficult theory or exercises.  
The students reported that, compared to secondary school, at university: (a) the pace 
was faster, (b) the content was more difficult to understand, and (c) the mathematical 
content was offered in larger steps/sections. The interview data suggest that the role 
and importance of resources changed as a result of this, as students needed more 
support structures and feedback on their work. This was particularly pertinent with one 
(autistic) student, who had dropped out of university. He claimed that he had done all 
possible CS textbook exercises and interim tests – a practice he had succeeded with at 
school, but he could not make sense of the questions when he sat the final examination. 
He was lost in the immensity of resources on offer, which he could not possibly all trial 
out and use for his learning. And he clearly missed the guidance and support given by 
his schoolteacher, practices which had provided him with confidence for his learning, 
and success. 
CS- LA: Amongst the university curriculum resources, the student usages of the LA 
reader and CS textbook differed. To come to understand the topic/s, most LA students 
reported reading the reader, or the lecture notes, which were aligned with the reader. 
CS students mentioned the textbook as one of their resources, mainly used for worked 
examples and exercises. In CS, lecture notes and online resources were considered 
practically as important as the textbook, as part of the provided resource system. This 
can be understood in the light of the fact that the LA reader was very different, in 
relation to the course, to the CS textbook: the LA reader was a “book” prepared by the 
lecturer to align with his lecture, hence further lecture notes or online resources became 
secondary/ complementary. The reader contained all information for students to pass 
the examinations, and all other resources were related to/in line with the reader. In 
contrast, the CS book was only a backup for the lecture notes (which provided the 
essential notions to learn and study for the examinations), and students were only 
expected to “dip into” it for clarification, explanation and/or further exercises. Hence, 
the textbook did not provide a succinct support for CS students (e.g. to pass the CS 
examinations).  
An important difference between CS and LA was due to the different organization of 
the tutor hours: in LA- 4 tutor hours/week, tutor groups of ca. 30 students/ tutor; in CS- 
1 tutor hour/week, tutor groups of ca. 9 students/tutor. This meant that CS students had 
to work on practically all of the problems by themselves, as there was less support from 
the tutor. The fact that a wider variety of resources (used) was reported by the CS 
students, can in part be understood in the light of the different course organisation: in 
the LA case they adhere to the resources provided by the lecturer; in the CS case the 
students had to identify and organize their own support  (e.g. online resources, 
friendship groups). 
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CONCLUSION 
The results of this study have shown that the students built on secondary school 
experiences and they took these as default positions into their courses. However, 
learning mathematics at university was for most students different from learning 
mathematics at secondary school. At secondary school the resources (text book, past 
examinations, teacher) were well aligned and the teacher provided guidance and 
support. At university more difficult content had to be understood in a shorter period 
of time; and students had to identify and coordinate the relevant resources, and organise 
their own support system (including human support such as friendship learning 
groups), in particular in CS.  
When comparing the two courses, the results indicate that  (a) the course organization 
and (b) the provisions and organisation of the curriculum materials (in line with the 
learning goals) had an impact on which resources students used, and how they used 
them. In the LA course, with aligned curriculum resources, four weekly tutorial hours 
and group work, the use of resources largely corresponded to the intentions of use by 
the university teachers. In the CS course resources were not clearly aligned (although 
selected resources were recommended); it seemed that students were provided with a 
“bag of tools” to choose from. Moreover, students had only one weekly tutorial hour 
(plus six hours of lecture). This meant that students had (a) to identify which were the 
relevant resources for their individual needs, and (b) to find and navigate their own 
path through these resources, in order to work efficiently (with regards to 
examinations) and effectively (with regards to the learning of the mathematics). In both 
courses human resource, such as lecturers and tutors, peers and friends, played 
important albeit changing roles for orientation and help seeking.  
The results of this exploratory study indicate that in particular large courses, such as 
CS (> 2000 students), could become better manageable for the students, if they were 
supported and coached in their resource choice and organisation/management, so that 
they can cater for their individual needs and preferences. This finding was less visible 
in a smaller course, where less resources were on offer, and where resources and 
resource use were more prescriptive and well aligned with the learning goals (e.g. the 
LA course). However, when particular educational reforms are implemented (e.g. 
towards more blended learning, with an abundance of digital learning tools on offer), 
students need to be supported in their “use” of these resources, in particular at transition 
from school to university. Course designers would also need to take this into 
consideration.  
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Students’ efficacy beliefs have a positive influence on students’ academic 

achievement and retention, especially for female students. These beliefs are closely 

linked to students’ ability to regulate their learning. In this quantitative study, 

students’ self-efficacy and self-regulation of learning are compared in two university 

mathematics courses that differ in content but also in their pedagogical setting: one 

is a more traditional lecture-based course, and the other course is taught with the 

Extreme Apprenticeship (XA) method. The analysis is based on the same cohort of 

students in the two contexts (N=91). The results suggest that students have higher 

self-efficacy levels in the course using the XA method. Also, the XA course seems to 

diminish some gender differences present in the more traditional course setting. 

Keywords: teachers’ and students’ practices at university level, novel approaches to 

teaching, self-efficacy beliefs, self-regulation, instructional design 

INTRODUCTION 

According to Lave and Wenger’s (1991) view of situated learning, a set of skills as 

well as a set of values and perspectives are needed for a holistic understanding of a 

topic. Collins, Brown, and Holum (1991) suggest that the process of acquiring this 

kind of understanding occurs most naturally within the community possessing this 

knowledge. In this light, it is not irrelevant what kind of instructional practices are 

implemented to teach university mathematics, and how do these practices offer 

students opportunities to participate. As Greeno (1997, p. 9) states, “methods of 

instruction are not only instruments for acquiring skills; they also are practices in 

which students learn to participate”. Therefore, to enhance students’ learning, 

instructional designs used to teach university mathematics should offer students both 

an opportunity to acquire knowledge and an opportunity to become part of a 

community.  

Partly to answer to this need, lots of effort has been put into developing the 

educational setting at the Department of Mathematics and Statistics at the University 

of Helsinki (see eg. Oikkonen, 2009; Rämö, Oinonen, & Vikberg, 2015). The 

department’s teaching has gone through major changes during the past few years as 

many of the undergraduate level courses are now using the Extreme Apprenticeship 

(XA) method as their pedagogical framework. In addition, some of the courses 
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working within the traditional lecture-based framework have been developed 

towards a more interactive direction.  

This paper approaches the development of university mathematics education from 

the perspective of efficacy beliefs and self-regulation of learning. As a part of a 

larger research project aiming at comparing university mathematics teaching 

practices and transferring knowledge from research into practice, this paper 

elaborates on students’ experiences of different instructional designs with the focus 

on their efficacy beliefs and self-regulation of learning. 

THEORETICAL FRAMEWORK 

Self-efficacy is a person’s belief about how well they can perform a specific task in a 

specific context; these beliefs determine how people feel, think, motivate themselves 

and behave (Bandura, 1994). Self-efficacy beliefs play a crucial role in learning 

mathematics as self-efficacy enhances academic achievement (Pajares, 1996; Peters, 

2013), especially in female students (Raelin et al., 2014). The gender aspect of self-

efficacy is relevant as it affects female students’ career choices and increases their 

retention in STEM fields (Pajares, 1996; Raelin et al., 2014). In terms of 

instructional design, Peters (2013) shows that students’ self-efficacy is higher in 

teacher-centred than in learner-centred classroom. However, Kogan and Laursen 

(2014) argue that female students obtain affective gain from student-centred courses 

as they are more confident in their mathematical abilities in these kinds of contexts.   

The notion of self-regulation characterises how students regulate their cognition, 

behaviour, motivation and emotions to enhance their personal learning processes 

(Pintrich, 2004). Students are expected to learn self-regulation skills during their 

university studies and therefore instructional designs should support the development 

of these skills (Coertjens et al., 2013). The self-regulation process is cyclical in 

nature as feedback from prior performance is used to adjust future learning 

performances (Pintrich, 2004; Zimmerman, 2000). Consequently, the quality of self-

regulated learning is supported by motivational beliefs, such as self-efficacy beliefs 

(Heikkilä, & Lonka, 2006; Pajares, 1996). As the social aspect of learning has a 

significant role in learning self-regulation skills (Volet, Vauras, & Salonen, 2009), 

instructional designs should also encourage student collaboration. 

Aims and research questions 

The aim of the paper is to compare students’ self-efficacy and self-regulation of 

learning in two different course contexts. The further analysis focuses on gender as 

previous research shows that especially female students benefit from more student-

centred course designs. The research questions are: 

1. How do self-efficacy and self-regulation of learning differ between the two 

course settings? 
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2. How is the course setting related to male and female students’ self-efficacy 

and self-regulation of learning? 

METHODOLOGY 

This study approaches the research questions with a quantitative analysis of students’ 

self-efficacy and self-regulation of learning in two course contexts. The following 

subsections move on to describe the context, the data collection procedure and data 

analysis in greater detail.  

Context 

The research was conducted in a research-intensive university in Finland. Data was 

collected from two different courses that students usually take during the first 

semester of their university mathematics studies. Both courses are proof-based, six-

week and five-credit (ECTS) courses with over 200 students. In addition to 

mathematics majors, the courses are taken by many students studying mathematics as 

their minor subject; these students are usually majoring in physics, computer science, 

chemistry or education. The two courses, course A and course XA, are implemented 

in accordance with different pedagogical frameworks. The main difference in the 

course implementations are the role of lectures, design of the tasks, and the form of 

support given to the students by the teaching assistants. 

Course A is an analysis course. The main content of the course includes limit of a 

function, continuity, derivative, and its applications. It is necessary to point out that 

the course is an analysis course rather than a calculus course as exact definitions and 

proof construction are emphasised. The course functions within the traditional 

lecture-based setting. However, it has been developed over a decade towards a more 

interactive direction to respond to students’ challenges in the beginning of their 

university mathematics studies. 

The course A consists of four hours of lectures and four hours of small group 

sessions per week. The lectures are focusing on the main content of the course and 

aim at creating deep understanding behind those concepts. Inspired by Tall’s three 

worlds of mathematics (see e.g. Tall, 2014), the lectures are an active interplay 

between the human and formal sides of mathematics. The small group sessions are 

led by a teaching assistant, who is usually an older mathematics student. There are 

two different kinds of small group sessions. The other one is allocated to the 

problems students have solved prior to the class. The other small group session is 

allocated to solving a new set of problems during the session together with other 

students and with the help of the teaching assistant.  

Course XA is a linear algebra and matrices course. The main content of the course 

includes general vector spaces, subspaces, linear mappings, and scalar products. In 

addition to mathematical content, the course emphasises skills such as reading 

mathematical text, oral and written communication, and proof construction. The 

348 sciencesconf.org:indrum2018:174796



  

course is taught with the XA method. The XA method is a student-centred 

educational method developed in the Department of Mathematics and Statistics and 

the Department of Computer Science at the University of Helsinki. The method 

emphasises learning by doing, personalised scaffolding and continuous feedback, 

and the core idea is to support students in becoming experts in their field by having 

them participate in activities that resemble those carried out by professionals (see eg. 

Rämö et al., 2015). The XA method is constructed upon the ancient process of 

apprenticeship, where a skilled master supervises a novice apprentice, and its 

theoretical background is in situated view on learning and Cognitive Apprenticeship 

(Collins et al., 1991; Rämö et al., 2015).  

In the XA method, students learn skills and gain knowledge by working on tasks that 

have been divided into smaller and approachable goals, which are then merged 

together as the students start to master a topic. The main method of teaching is 

instructional scaffolding, and it is accompanied with continuous, bi-directional 

feedback. Further, it supports students to establish relations within the communities 

of practice which enhances the students’ integration into the community (Lave & 

Wenger, 1991). 

In practice, the teaching of the course consists of weekly problems, course material, 

guidance and three hours of lectures per week. There is a flipped learning approach 

as students start studying a new topic by solving a set of problems. These topics have 

not yet been discussed during the lectures, so students need to read the course 

material to complete the tasks. However, the tasks are designed to be approachable 

and there are teaching assistants specifically to this course helping the students in 

solving the problems. The teaching assistants guide the students in a learning space 

in the middle of the department in drop-in basis approximately six hours a day. 

Student collaboration is encouraged in the learning space. Students return written 

solutions to the problems every week. Few problems are selected for inspection and 

students get feedback for their solutions. The feedback focuses on solutions’ logical 

structure, but also readability and language are evaluated, and students’ have the 

possibility to improve and resubmit their solutions. Students are prepared when they 

come to lectures as they have done pre-lecture tasks. Lectures focus on active 

interaction as various small group activities are implemented and students’ active 

participation encouraged. The aim is to form links between the topics and enhance 

holistic understanding. After the lectures students get more challenging problems on 

the topic. 

Data collection 

Quantitative data was collected on a five-point Likert scale (1=completely disagree, 

5=completely agree) from students attending both courses. The questionnaire 

included items measuring students’ approaches to learning, their experiences of the 

teaching-learning environment, self-efficacy and self-regulation of learning. In this 

paper, the analysis includes items measuring self-efficacy and self-regulation of 
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learning from students who answered the questionnaire for both course contexts 

(N=91). 

There are five items measuring self-efficacy. The items are slightly modified from 

Pintrich (1991) and they are validated and highly used across disciplines in the 

Finnish context (see e.g. Parpala & Lindblom-Ylänne, 2012). The 15 items 

measuring self-regulation of learning are originally from the Inventory of Learning 

Styles (ILS, Vermunt, 1994) and they have been modified to Finnish context 

(Heikkilä, & Lonka, 2006). There self-regulation of learning is measured in four 

scales: self-regulation of process, self-regulation of content, external regulation, and 

lack of regulation. Self-regulation of process refers to a student’s ability to regulate 

their own learning when facing challenges. Self-regulation of content measures 

student’s seeking of additional literature beyond the course material. External 

regulation measures to what extent the lecturer regulates student’s learning. Lack of 

regulation refers to possible problems in regulation of learning, such as not knowing 

how to proceed in the learning process or having challenges in finding ways to cover 

the course content. 

Data analysis 

The data analysis is conducted by using IBM Statistics 24. The data in this paper is a 

part of a larger data set. The results reported here are from the factor analyses 

computed for the larger data set.  

At first, exploratory factor analysis (EFA) was conducted with principal axis 

factoring and a direct oblimin rotation. Based on the exploratory factor analysis, 

there are four factors measuring self-regulation of learning. This is in accordance 

with previous research (see eg. Heikkilä, & Lonka, 2006). Similarly, the factor 

structure of the self-efficacy scale is like in previous studies (see e.g. Parpala, & 

Lindblom-Ylänne, 2012) forming one factor. Boundaries used for Kaiser-Meyer-

Olkin measure of sampling adequacy (KMO) was 0.7, and for Bartlett's test of 

sphericity p<0.001. One item measuring self-regulation of content was excluded 

from the factor based on a low communality, a mixed factor loading and deviant 

skewness and kurtosis. Every factor was then checked for internal consistency: the 

Cronbach’s Alpha is 0.905 for the self-efficacy factor, 0.681 for the self-regulation 

of process factor, 0.671 for the self-regulation of content factor, 0.708 for the 

external regulation factor, and 0.661 for the lack of regulation factor.  The 

reliabilities are above the 0.65 level which can be considered acceptable. 

As the current study follows a repeated measures design, the data was analysed by 

using two-tailed paired samples t-test and Cohen’s effect size d. In addition, one-way 

MANOVA with Wilk’s Lambda was used to analyse the interaction of independent 

variables (gender) on the dependent variables (different course settings). 
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RESULTS 

The data consists of 91 students (46 male, 45 female). These students attended both 

course A and course XA. Students’ scores on self-efficacy and self-regulation scales 

in both course contexts are presented in Table 1 with means, standard deviations, 

mean differences, paired-samples t-test for statistical significance, and Cohen’s d for 

effect size. 

The biggest differences between the two course contexts lie in the self-efficacy and 

lack of regulation factors. Students report statistically significantly higher self-

efficacy levels in course XA compared to course A (MD=0.58, t(90)=6.226, 

p<0.001). This means that students are more confident in their abilities to succeed in 

course XA compared to course A. The effect size (Cohen’s d=0.62) implies a 

moderate role for the course context when measuring self-efficacy. A similar 

phenomenon occurs in the lack of regulation factor; students report statistically 

significantly less lack of regulation in course XA compared to course A (MD=0.48, 

t(90)=6.987, p<0.001). In practice this means that on average, students report that 

they lack regulation of learning more often in course A compared to course XA. In 

other words, it was easier for students to find ways to handle large quantities of 

content, self-evaluate their learning, and to meet the learning goals in course XA 

compared to course A. The effect size (Cohen’s d=0.63) implies a moderate role for 

the course context when measuring lack of regulation.  

There are also smaller mean differences in the self-regulation of process and self-

regulation of content factors between the two course contexts (MD=0.14 and MD=-

0.19 respectively). These differences are statistically significant on a 0.05 level 

(t(90)=2.189, p<0.05 and t(90)=-2.383, p<0.05 respectively). The results indicate 

that on average, students in course XA seek more actively additional literature 

beyond the course material and do more work than expected when compared to 

course A (self-regulation of content). In addition, an average student in course XA 

reports that they are more capable of regulating their learning processes when facing 

challenges when compared to course A. However, one must notice that the effect 

sizes are below 0.2 suggesting an insignificant role of the course contexts. 

There is no statistically significant difference in the external regulation factor (MD= 

0.06, t(90)=0.941, p=0.35). This means that on average, students report that the 

lecturers’ instruction on how and in what order to proceed in learning the content 

influences their learning similarly in both course contexts.  

 Course A Course XA   

Variable Mean SD Mean SD Mean difference 

(XA-A) 

Effect 

size 

Self-efficacy 3.09 0.96 3.67 0.86 0.58*** 0.62 

Self-regulation of 2.83 0.82 2.97 0.80 0.14* 0.17 
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process 

Self-regulation of 

content 

2.37 1.08 2.19 1.07 -0.19* 0.17 

External regulation 3.59 0.78 3.65 0.72 0.06 0.08 

Lack of regulation 3.28 0.78 2.80 0.75 -0.48*** 0.63 

Table 1: Students’ scores, mean differences and effect sizes on the self-efficacy and self-

regulation factors in courses A and XA, as determined by two-tailed paired samples t-

test (* for p<0.05 and *** for p<0.001 significance levels) and Cohen’s d. 

Let’s now move on to analyse both male and female students in one course context at 

a time. In course A context, male and female students differ statistically significantly 

in the self-efficacy factor (MD=-0.54, p<0.01, F(1,89)=6.602, partial η2=0.079). This 

difference is not present in course XA context (MD=0.04, p=0.821, F(1,89)=0.038, 

partial η2=0.001). These results indicate that female students have statistically 

significantly lower self-efficacy in course A compared to male students; however, 

this difference between genders is not present in course XA context. 

There are statistically significant differences also in the external regulation factor. In 

course A context, the mean difference between male and female students is not 

statistically significant (MD=0.31, p=0.054, F(1,89)=3.827, partial η2=0.041). 

However, the p-value is very close to the 0.05-significance level. In course XA 

context, male and female students differ statistically significantly in the external 

regulation factor (MD=0.51, p<0.001, F(1,89)=12.947, partial η2=0.127). This means 

that, in course XA contexts, an average female student applies more external 

regulation compared to an average male student. In other words, female students 

report that the lecturers’ instructions influence their learning more when compared to 

male students.  

There are no statistically significant differences between male and female students in 

the two course contexts in self-regulation of process, self-regulation of content, and 

lack of regulation factors. 

  Male Female  

Factor Course Mean SD Mean SD Mean difference 

Self-efficacy A 3.36 0.96 2.82 0.89 -0.54** 

XA 3.65 0.96 3.69 0.72 0.04 

External regulation A 3.43 0.80 3.74 0.74 0.31(*) 

XA 3.40 0.72 3.91 0.61 0.51*** 
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Table 2: Differences between courses A and XA based on students’ gender, as 

determined by one-way MANOVA (* for p<0.05, ** for p<0.01, and *** for p<0.001 

significance levels). 

DISCUSSION 

There are statistically significant differences between course A and course XA in 

relation to the self-efficacy and self-regulation scales. The biggest differences are in 

the self-efficacy and lack of regulation factors. The results show that an average 

student has higher self-efficacy levels in course XA than in course A, and that an 

average student lacks regulatory skills more often in course A than in course XA. 

This is supported by the effect sizes implying a moderate role for the course contexts 

when measuring self-efficacy and lack of regulation. The results bear significance as 

self-efficacy has a strong positive and lack of regulation a strong negative relation to 

academic performance (Pajares, 1996; Peters, 2013; Vermunt, 2005). 

Gender has a statistically significant interaction with the factor measuring self-

efficacy. On average, female students report lower self-efficacy levels in course A 

compared to male students. In contrast, the self-efficacy levels are very similar for 

male and female students in course XA. In practice, an average female student is less 

confident in her abilities to succeed in the course A context when compared to an 

average male student. However, it seems that the change in course context 

diminishes the difference as there is no statistically significant difference present 

between genders in the self-efficacy factor in course XA context. 

Female students report more external regulation compared to male students in both 

course contexts. The results are statistically significant only in course XA context, 

but the p-value is very close to the 0.05-significance level also in course A context. 

This means that the lecturers instructions have more influence on female students’ 

learning processes than on male students’ learning processes. This is supported by 

prior research (Vermunt, 2005), although the current study does give any 

explanations to this phenomenon. However, in Vermunt’s (2005) study there was no 

consistent interaction between students’ gender and their learning patterns, and 

external regulation did not relate negatively to academic achievement. Further 

research is needed to understand the motivations behind this phenomenon, as well as 

its implications to instructional practices. 

One of the major limitations of this study is that the two courses differ in content. 

The limitation is caused by the choice of research design as it was not possible to 

attain the same cohort of students in two different pedagogical settings with the same 

course content. However, the different course contents do not fully provide an 

explanation for the result that male and female students’ ability to regulate and 

reflect on their learning processes is dependent on the course context. One can argue 

that the gender differences are not caused by the characteristics of the mathematics 

studied but by the characteristics of the learning environment used to study the 
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mathematics. The results of this study may also be affected by the fact that some 

students are more capable to adopt themselves into new instructional designs. As 

argued by Kogan and Laursen (2014), student-centred course settings often feature 

collaborative work, problem-solving and communication, aspects known to be 

effective for female students. Also, Vermunt (2005) states that female students like 

cooperative learning more compared to male students. In addition, students who have 

high confidence in collaboration seek more likely help from other students; these 

help-seeking students then perform better in a flipped mathematics classroom 

compared to students seeking less help (Sun, Xie, & Anderman, 2018).  

Despite of the limitations, the findings of this study are supported by prior research. 

To conclude, the results propose that student-centred course designs support 

students’ self-efficacy and self-regulation, especially in female students. More 

thorough analysis should be completed to understand the mechanisms and 

motivations behind the differences in these two course contexts and to draw more 

general conclusions regarding instructional designs used in teaching university 

mathematics.  
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In the educational context where this study was conducted, the transition from school 

to university is associated with changes of the learning domain mathematics. In high 

school, solving real-world problems and performing calculations are dominating 

practices, whereas in university, the main focus is on proving. Successful learning 

processes are associated with appropriate prerequisites, e. g. interest. The question is 

which component of interest concerning which practice is important for successful 

processes. We developed an instrument to differentiate these facets of students’ situa-

tional interest. A study with 339 first-semester students in mathematics partially con-

firms the expected factorial structure of this instrument. Precise information concern-

ing learners’ interest may help us to support students at this challenging transition. 

Key words: Students’ interest; Feeling- resp. value-related component; Mathematical 

practices; Transition to and across university mathematics; Teachers’ and students’ 

practices at university level.  

INTRODUCTION 

The transition from school into a university mathematics programme is a challenging 

phase for many students. Reports mentioning high dropout rates in academic study 

programmes with a focus on mathematics (OECD, 2010) illustrate this fact. Reasons 

for students’ problems in the first year of university study are primarily attributed to

the changes of the learning domain: while the school subject mathematics strongly 

relies on performing calculations and solving real-world problems, mathematics in

university is presented as a scientific discipline with a focus on proving (Rach,

Heinze, & Ufer, 2014). It is yet not clear which of the individual prerequisites, that 

students bring from school, support successful learning processes in university 

courses. Many researchers assume that subject-specific interest, in the sense of a 

person-object or a person-situation relationship, is an important learning prerequisite 

in general (Wigfield & Cambria, 2010). Common instruments to survey interest in 

mathematics are questionnaires. Mostly, these use the word “mathematics” to 

describe the objects of interest. At the transition from school to university, however it 

is not clear if students refer to school or university mathematics when reporting their 

interest in this questionnaires. To obtain a more differentiated insight into students’ 

interest with a stronger relation to concrete learning situations, we develop a task-

based instrument to measure students’ interest concerning different mathematical 

practices. In this contribution, we present the conceptualisations of this instrument in 

detail and report results of an empirical study with 339 first-semester students that 

investigates the factorial structure of the instrument. 
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THEORETICAL BACKGROUND 

In the first section, we give an overview about the motivational construct “interest” 

by addressing common definitions and results concerning its role in learning 

processes. In the second section, we summarize ideas to the objects of interest, 

mathematics. 

Interest in mathematics learning processes 

Researchers agree that interest is an important motivational variable. Its role as a 

learning prerequisite, a learning processes measure, and as a learning outcome has 

been put forward repeatedly (Rotgans & Schmidt, 2017; Sonnert & Sadler, 2015; 

Wigfield & Cambria, 2010). Interest is defined as a specific relationship between a 

person (here: a student) and an object or a situation (here: mathematics resp. 

mathematical practices) (Krapp, 2002; Schiefele, 2009). The objects of interests may 

be concrete objects, topics, or school subjects. Whereas Schiefele, Krapp, and 

Winteler (1992) conceptualize interest mainly as a relatively stable trait: “Individual 

interest is conceptualized as a relatively stable affective-evaluative orientation toward 

certain subject areas or objects” (Schiefele, 2009, pp. 198), Linnenbrink-Garcia et al. 

(2010, 2013), in contrast, see interest as specific to a situation: “Situational interest is 

a temporary state aroused by specific features of a situation, task, or object (e. g., 

vividness of a text passage)” (Schiefele, 2009, pp. 197–198). Situational interest is 

limited at a point of time, e. g., in a certain learning situation and may or may not 

develop into individual interest (Hidi & Renninger, 2006). Schiefele (2009) 

distinguishes between two components of interest: (1) a feeling-related component, 

related to fun or other positively experienced emotions, and (2) a value-related 

component, related to a high importance of the objects of interest for oneself (adapted 

from Linnenbrink-Garcia et al., 2010, 2013). Linnenbrink-Garcia and colleagues 

(2010, 2013) could confirm in empirical studies the two-factor structure of 

(maintained) situational interest and separate the two components from each other. 

The separation of interest in a feeling-related and a value-related component is also in 

line with expectancy-value models that distinguish between an intrinsic and a utility 

value (Eccles & Wigfield, 2002). 

Several researchers assume that interest can trigger successful learning processes: 

interest can lead to more engagement and to an enhanced use of deeper learning 

strategies which then result in better learning achievement (Hidi & Renninger, 2006). 

However, empirical studies could not confirm this assumption for learning processes 

in undergraduate mathematics courses (Rach & Heinze, 2017). The conceptualisation 

and operationalisation of interest in mathematics may be one reason for these 

conflicting findings: firstly, the interest object “mathematics” changes its character at 

the transition from school to university. So the objects of reported interest may differ 

from the learning object in the first semester (see next section). Secondly, many of 

the used instruments measure the individual interest rather than the situational 

interest, although the situational interest is a more proximal variable to the specific 

learning situation.  

357 sciencesconf.org:indrum2018:173528



  

Mathematical practices at the transition from school to university 

In the literature (Gueudet, 2008; Engelbrecht, 2010), changes in two relevant aspects 

of the learning environment at this transition are described: a shift in the character of 

the learning domain, mathematics, and a change in the learning opportunities and 

their use. As interest is a person-object relationship resp. a person-situation 

relationship, the change of the learning domain is important for the conceptualisation 

of interest. The specific differences of mathematics at school and at university might 

vary between countries due to traditions concerning learning goals etc. The 

subsequent presentation refers to the situation in Germany which was analysed in 

empirical studies (Rach et al., 2014) and which is relevant for the empirical study we 

present below. Nevertheless, several of the described features might hold for other 

countries as well. One central goal of teaching and learning at school is to apply 

mathematics for solving real-world problems (CCSSI, 2010; OECD, 2016). Thus, 

describing realistic situations mathematically, performing computations, and applying 

mathematical procedures are central. On the contrary, university mathematics is 

usually taught as a scientific discipline based on formal definitions of concepts and 

formal-deductive proofs (Gueudet, 2008; Nardi, 1996). Mathematics at university is 

often presented in a DTP (Definition-Theorem-Proof) structure to emphasise its 

logical rigidity (Engelbrecht, 2010; Weber, 2015). These conclusions are mainly 

based on observations of lectures (Weber, 2004) or of tutorials (Nardi, 1996), 

interviews with involved parties (Nardi, 2008), or analyses of tasks (Gueudet, 2008). 

In general, mathematical tasks are often used to describe and examine learning 

situations and their cognitive demands (e. g., Stein & Lane, 1996).  

Theoretical analyses and anecdotal evidence from students and teaching staff have 

described a change of the learning domain (e.g., Engelbrecht, 2010; Gueudet, 2008; 

Thomas & Klymchuk, 2012). However, empirical studies supporting the role of this 

shift and its effects on student learning are scarce. In particular, reliable evidence on 

the role of students’ motivational variables, especially of students’ interest, is scarce. 

The SISMa project 

The goal of the SISMa project (“Self-concept and Interest when Studying 

Mathematics”) is to contribute evidence concerning students’ interest and self-

concept with regard to certain mathematical practices (Ufer, Rach & Kosiol, 2017). 

As a first step of the project, we developed interest and self-concept measures that 

focus central mathematical practices. Using these measures, the development of these 

variables during students’ learning processes and their effect on student learning in 

undergraduate mathematics programmes are investigated.  

In this contribution, we focus on the measurement of situational interest. We 

developed a questionnaire of situational interest that is based on the conceptualisation 

of interest as a person-object (situation) relationship, and on the assumption that 

interest concerning a specific task is an indicator of situational interest. Here, we 

follow the idea of Schukajlow and colleagues (2012) who operationalize the two 
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components of situational interest with the constructs enjoyment and value (see also 

Schukajlow & Krug, 2014). In this questionnaire, mathematics tasks are presented to 

students and they are asked to imagine solving this task (not to solve the task), and 

then to state their anticipated enjoyment and value appraisals when working on the 

task. For our questionnaire, we designed mathematical tasks concerning the topic 

derivatives that each prototypically represent one of the three practices “solving real-

world problems” (resp. applying mathematics, sample item: “Using metal, you should 

produce a cylindrical can with a prescribed volume. For which radius is the material 

consumption minimal?”), “performing complex calculations” (sample item: “Let f be 

. Calculate the extrema of the function f.”), “and “proving” 

(sample item: “Let  be a differentiable function. Show that f is 

continuous.”). After a pilot study (see Rach et al., 2014), we used 12 tasks. While the 

first and second practice are considered central in mathematical lessons at school, the 

last practice predominates in university courses. After reading each task, students rate 

their agreement to one statement concerning the feeling-related component (item: “It 

would be fun to me to work on this task.”) and one statement concerning the value-

related component of interest (item: “Even if the task is not part of an exam, it is 

important to be able to solve the task.”). So in sum, situational interest is divided into 

six subscales – one for each component and each mathematical practice (see table 1). 

 Solving real-world 

problems, applying 

mathematics (4 tasks) 

Performing complex 

calculations 

(4 tasks) 

Proving (4 tasks) 

Feeling related Feel Apply Feel Calc Feel Proof 

Value related Value Apply Value Calc Value Proof 

Table 1: Two components of situational interest and three practices. 

RESEARCH QUESTIONS 

The aim of this contribution is to investigate the structure of students’ situational 

interest as measured with our instrument. To achieve this, we applied the instrument 

to students from a first semester mathematics course. The questions focused in this 

contribution address students’ reported levels of interest and the empirical structure 

of the questionnaire: 

1. What level of feeling- and value-related situational interest do students from a 

first semester mathematics course report concerning the three practices? 

Since prior research has shown similar trends, we expected that students 

would report lower interest levels for each component and practice after six 

weeks, compared to the first day of their studies. One reason might be that high 

demands in the first semester lead to a decrease in interest.  

2. Is the theoretical structure of subscales, that guided their development, 

reflected in the factorial structure of the newly developed instruments? 
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We expected that the two components of situational interest, the feeling- and 

the value-related component, are reflected in the empirical data. Moreover, we 

expected that subscales concerning the three different practices can be 

separated from each other. 

METHOD 

Design and sample 

We present data from two measurements, at the beginning of the first semester (T1) 

and in the middle of the first semester (T2). Our sample consists of 339 mathematics 

students (162 female) of one German university of the course “Analysis I” which is 

compulsory for first-semester mathematics students. In this course, mathematics is 

presented as a scientific discipline with a strong focus on formal concept definitions 

and deductive proofs. The students were enrolled in the bachelor’s programmes 

“mathematics” (n = 90), “business mathematics” (n = 91), or a mathematics teacher 

education programme for the highest attaining secondary school track in Germany 

(n = 104) – for the remaining students, we have no information about their study 

programme. The participation in the study was voluntary. 

Instruments 

The mathematical tasks were arranged in a fixed, random order. The questionnaire 

was submitted to the students with the following instructions: “Imagine how you 

solve these tasks. Do not solve the tasks, but report your agreement to the following 

statements”. Students rated each statement on a four-point likert scale from 

0 (disagree) to 3 (agree). The individual mean value of a single student on a scale was 

computed if this student had answered at least half of the items of the scale. 

RESULTS 

Table 2 shows the means, standard deviations, and Cronbach’s Alpha of the six scales 

at the first and second measurement point. 

 Beginning of the first semester (T1) Middle of the first semester (T2) 

 N M (SD) α N M (SD) α 

Feel Apply 323 2.22 (0.61) .73 226 2.02 (0.67) .76 

Feel Calc 323 2.16 (0.71) .79 230 2.01 (0.74) .80 

Feel Proof 331 2.18 (0.61) .77 237 2.00 (0.61) .82 

Value Apply 323 2.25 (0.64) .82 224 2.04 (0.71) .82 

Value Calc 325 2.26 (0.70) .86 232 2.00 (0.76) .86 

Value Proof 331 2.31 (0.61) .88 237 2.06 (0.67) .86 

Table 2: Means, standard deviations, and Cronbach’s Alpha of the interest scales. 

Likert scale from 0 (disagree) to 3 (agree). 
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Concerning all 24 items (3 practices, 4 tasks, 2 components), there are no floor or 

ceiling effects. Reliability analyses underpin the internal consistency of the six 

subscales. For T1 (N = 323–331), Cronbach’s alpha of each scale ranges from .73 to 

.88, for T2 (N = 224–237), from .76 to .86. Indeed, students reported higher value and 

feeling ratings concerning all practices in the first as compared to the second 

measurement (cf. table 2; t(194–197) = 5.42–6.83; p < .001; d = 0.39–0.49; measured 

with students who were present at both measurements). Levels of value- and feeling-

related interest were relatively similar between the three practices. 

Correlation analyses (see table 3) show that, as expected, the feeling-related and 

value-related scales concerning each practice strongly relate to each other (Solving 

real-world problems: T1: r = .55, T2: r = .65, Performing complex calculations: T1: 

r = .49, T2: r = .53, Proving: T1: r = .53, T2: r = .60). Moreover, the three feeling-

related scales (r = .43–.60) resp. value-related scales (r = .59–.79) correlate strongly. 

The correlations of feeling-related scales with value-related scales for different 

practices are moderate (T1: r = .28–.44, T2: r = .31–.39). 

 Feel 

Apply 

Feel 

Calc 

Feel 

Proof 

Value 

Apply 

Value 

Calc 

Value 

Proof 

Feel Apply  .47 .43 .55 .31 .31 

Feel Calc .47  .60 .28 .49 .32 

Feel Proof .44 .54  .38 .44 .53 

Value Apply .65 .31 .31  .66 .68 

Value Calc .30 .53 .39 .59  .79 

Value Proof .37 .37 .60 .66 .79  

Table 3: Correlations between the interest scales. Over the diagonal T1 (N = 334–339), 

under the diagonal T2 (N = 239–243). All correlations significant with p < .01. 

As some of the situational interest scales correlate strongly, we investigated whether 

our expected scale structure would be replicated by exploratory factor analyses. The 

results of Principal Component Analysis with Varimax rotation for every 

measurement point partially support our expected structure of our scales. For T1, 

results indicate four factors that explain nearly 63% of the variance. Table 4 shows 

the factor loadings of the items on the four identified factors. 

As expected, the feeling-related items concerning each of the three practices load 

strongly on one of the factors two to four each. Contrary to the theoretical 

construction of our questionnaire, the first factor includes the value items for all three 

practices. Some value-related items have cross-loadings on the feeling-related scales 

for the same practice. For T2, the factor analysis shows similar results, with the four 

factors explaining 65% of the variance. Thus, it also seems to be possible to combine 

all value items into one value scale. This value-related scale with twelve items has an 

excellent reliability of α = .93 (N = 317, T1) resp. α = .92 (N = 223, T2). 
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 Factor 1 Factor 2 Factor 3 Factor 4 

Feel Apply 1  .35 .36 .42 

Feel Apply 2  .31  .72 

Feel Apply 3   .44 .64 

Feel Apply 4    .81 

Feel Calc 1  .50 .41  

Feel Calc 2  .38 .67  

Feel Calc 3   .78  

Feel Calc 4  .35 .74  

Feel Proof 1  .71   

Feel Proof 2  .62   

Feel Proof 3  .65   

Feel Proof 4  .70   

Value Apply 1 .70   .44 

Value Apply 2 .61   .50 

Value Apply 3 .60   .56 

Value Apply 4 .55    

Value Calc 1 .75    

Value Calc 2 .75  .32  

Value Calc 3 .69  .46  

Value Calc 4 .76  .35  

Value Proof 1 .73 .35   

Value Proof 2 .82    

Value Proof 3 .71 .32   

Value Proof 4 .76 .35   

Table 4: Factor loading on the four extracted factors (T1, N = 313). Loadings under .30 

not shown. The expected loadings on a factor are bolded.  

DISCUSSION 

Students’ interest is an important variable in successful learning processes, including 

the transition to university mathematics. Based on prior research, we argue that to 

measure students’ interest validly, one requires situated, e.g. task-related, measures, 

to cover feeling- and value-related components of interest and to take into account the 
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changing role of different mathematical practices during this transition (Rach & 

Heinze, 2017). Contrary to the findings of Schukajlow et al. (2012), the results of our 

empirical study show that the relations between the feeling-related components for 

different practices are relatively low as compared to the respective correlations 

between the value-related components. This partially supports the expected six-factor 

model (c. f. Schiefele, 2009), and underpins the different roles the three practices play 

during the transition in the educational context in Germany. Beyond this, factor 

analyses indicate that the value-appraisals seem to be fairly consistent over all three 

practices and the exploratory factor analyses also allow a model assuming only one 

value factor over all practices. This observation applies to data from the first day of 

university study, but also to data collected after six weeks into the semester. After six 

weeks, students report across all scales lower approvals. Interestingly, even though 

students seem to differentiate their interest reports by practices, we find almost no 

differences in their mean levels of interest between the different interest scales.  

Of course, the results of our study rely on students’ self-reports about their 

anticipated situational interest in a set of specific tasks. Even though the differences 

between school and university mathematics have been described internationally, it 

might be interesting to replicate the studies in other educational systems. In future 

studies, the relation between the anticipated situational interest and the actual 

engagement in learning situations should be considered. However, Schukajlow and 

Krug (2014) found only slight differences in prospective and retrospective ratings of 

interest in working with mathematical tasks. In sum, the newly developed instrument 

may provide more differentiated insights into students’ interest concerning different 

mathematical practices. Further research should investigate which facets of 

situational interest indeed go along with learning gain in the study entry phase. In 

particular, it is an open question if interest in practices that are typical for university 

mathematics, such as proving, are more important for learning gain than other interest 

facets. In the future, this instrument may help to evaluate support courses in the study 

entrance phase, to analyse the development of students’ interest (c. f. Hidi & 

Renninger, 2006), and to investigate the impact of different interest facets on study 

success.  
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In our poster, we report on students’ perceptions on self-assessment in large undergraduate 

course context taught with the DISA model (Digital Self-Assessment) in which the final exam 

is replaced by self-assessment. The students found that practising self-assessment skills was 

valuable and encouraged them to study for themselves. At the same time, self-assessment 

was considered unfamiliar and therefore difficult. We argue that the DISA model 

encouraged students to take more responsibility on their own learning. 

Keywords: Assessment practices in university mathematics education, Novel approaches to 

teaching, Self-assessment, Student perceptions, Ownership of learning. 

INTRODUCTION AND THEORETICAL BACKGROUND 

Self-assessment skills are often mentioned as an important ingredient in becoming an 

effective life-long learner (Boud, 2000). Good self-assessment skills are vital also 

during studies, as they form a key part of self-regulation (Zimmerman, 2002). In 

university mathematics, self-assessment practices have been shown to promote 

learner autonomy and mathematical communication skills (Stallings & Tascione, 

1996). In a study for engineering students, self-assessment was linked to better time 

management and more effective learning (Friess and Davis, 2016). In earlier studies, 

the use of self-assessment is usually limited to low-stakes training exercises or 

controlled self-grading of the final exam. We, however, do not want merely to 

introduce a reflection tool, but instead question thoroughly the traditional concept of 

external assessment in mathematics. The aim of our study is to develop the theory of 

self-assessment in the specific field of mathematics. 

In the DISA model, the traditional end exam is removed, and final course grades are 

awarded by students' self-assessment based on a learning objectives matrix. We use 

Yan and Brown’s (2017) model of cyclical self-assessment process as our theoretical 

framework. In the DISA model, the development of self-assessment skills is 

supported with various feedback methods throughout the course. The students’ 

reflective skills are formatively practised with several self- and peer-assessment 

exercises. In an earlier study (Nieminen, Rämö, Häsä, & Tuohilampi, 2017), we 

found that mathematics students connected the self-assessment training and the lack 

of exam with deep learning approach. The purpose of this poster is to present 

students’ perceptions on self-assessment in the DISA model. 

DATA COLLECTION AND ANALYSIS 

The participants of the study were students of a linear algebra course taught with the 

DISA model in a Finnish university in autumn 2017. Data was collected after the 
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course with a questionnaire with open ended questions (n=113). A qualitative 

content analysis was conducted to study the student perceptions on self-assessment.  

RESULTS 

Data analysis of qualitative survey data resulted in two main categories. One 

category was “Ownership of learning”, containing a theme of positive perceptions on 

the self-assessment method and another theme concerning developing one’s own 

reflection skills. The other category was “New kind of learning culture”. Students’ 

comments in this category were either “micro level“ comments concerning the course 

arrangements or “macro level” comments concerning self-assessment as part of a 

new kind of learning culture. Our results indicate that the theory of cyclical self-

assessment can be applied to the field of mathematics. Furthermore, we argue that 

digital learning environments can be used in large mathematics courses to practice 

self-assessment skills. 
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In this study, the learning encouraged by teaching activities in a small-group setting 
was investigated through the analysis of students’ responses to survey and interview 
questions. The results indicate that the students perceived an increased ability to 
communicate mathematics in written form, but to a lesser extent developed their ability 
to discuss mathematics and build conceptual understanding. 

Keywords: Teachers’ and students’ practices at university level, teaching and learning 
of specific topics in university mathematics, communication, small-group teaching. 

Empirical research on mathematics teaching at tertiary level is an area of sustained 
growth and interest (Biza, Giraldo, Hochmuth, Khakbaz, & Rasmussen, 2016). Besides 
studies on the discourse of mathematics teaching in lectures (e.g. Viirman, 2015), there 
are studies focusing on small-group tutorial sessions (e.g. Mali, Biza, & Jaworski, 
2014). Inquiry-based small-group activities were found to have reasonable effect in a 
project aiming to improve the conceptual understanding of engineering students 
(Jaworski, Robinson, Matthews, & Croft, 2012). However, there is still a need for 
research on the use of small-group teaching as a complement to lectures across 
different national and institutional practices. In the study presented here, we analysed 
students’ experiences of learning from teaching activities in a small-group setting at a 
large Swedish university. Our research question is: How do the students perceive their 
mathematical abilities to have developed through the small-group seminars? 

In the first-semester mathematics course, besides whole-class lectures, students once a 
week took part in so-called seminars with 10–15 students in each group. The stated aim 
of the seminars was “to learn to discuss mathematics, and to present mathematics orally 
and in written form”, but also to “support the learning of algebra and calculus”. Each 
seminar group was led by a lecturer. Before each seminar, students handed in a written 
solution to one or two tasks. During the seminars, they presented the solutions orally 
and received comments from the seminar leader on both their oral and their written 
presentations. Furthermore, the students discussed conceptual tasks given by the 
seminar leader or discussed questions posed by the students themselves. 

A survey was conducted in a lecture after 10 of the 13 seminars had been held. Of the 
49 students present, 42 completed the questionnaire. Students were asked to indicate 
on a Likert scale the extent to which the seminars had facilitated their learning of 
presenting and discussing mathematics, solving problems, and understanding concepts. 

Seven students volunteered for individual interviews undertaken three weeks after the 
survey. The focus was on students’ experiences from the seminars and questions were 
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posed about their learning. In the analysis, we searched for utterances where students’ 
perceived learning was pronounced. These utterances were then grouped together in 
categories due to the abilities mentioned. This was a deductive analysis drawing on the 
notion of competencies (e.g. Niss & Jensen, 2002). For each category we then 
interpreted how the students perceived that their mathematical abilities had developed. 

The analysis of data is ongoing. However, the preliminary analyses indicate that 
students perceived that they developed their ability to communicate mathematics in 
written form, but to a lesser extent developed their ability to solve problems and discuss 
mathematics. In the survey, students marked high on the Likert scale for learning to 
make written presentations (mean 3.5, scale 1–4 with 4 as ‘a lot’), a little lower on 
solving problems (3.1), understanding concepts (3.0), oral presentations (2.9) and 
discussions (2.9). 

The categories revealed by the interviews were: understanding of concepts, communi-
cation, solving problems, procedural knowledge, and reasoning. Analyses of the inter-
views confirmed the results from the survey; the perceived learning from the seminars 
largely concerned the written presentations. While some students talked about their 
aim to build conceptual understanding, they mentioned also how the focus on details 
and technical aspects in the written communication distracted them from this aim, a 
finding in line with the distracting role of aspects such as examination forms found by 
Jaworski et al. (2012). In the interviews, we also met descriptions of different ways in 
which seminar leaders had chosen to use representations and problem solving (cf. Mali 
et al., 2014). Further data collection is planned to answer questions on the role of these 
characteristics and the seminar leaders’ mathematical discourse (cf. Viirman, 2015).  
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It is customary for some universities to offer recordings of live lectures to 

students. Whether this improves learning and academic performance is debated 

in the literature. As with most technology, correct usage can lead to increased 

academic performance, but there are also usage patterns that can be considered 

counter productive, especially for learning mathematics. In order to investigate 

patterns in students' usage of such online recorded live lectures, we analyze log 

files from a server holding the recordings of an undergraduate mathematics 

course. This poster presents results from the statistical analysis and discusses 

some of the usage patterns found in light of Moore's theory of transactional 

distance. 

Keywords: teachers' and students' practices at university level, the role of 

digital and other resources in university mathematics education, video recorded 

lectures, streaming media. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

It is becoming customary for some universities to stream lectures and make 

recordings of lectures available online, in particular for large enrolment courses. 

Students appreciate the flexibility that access to recorded live lectures give 

(Yoon & Sneddon, 2011), but it is unclear whether it improves learning and 

academic achievement, particularly in subjects such as mathematics where 

conceptual understanding is more important than rote learning. Several studies 

indicate a weak association between frequent use of online recorded lectures and 

poorer performance (Brooks, Erickson, Greer, Gutwin, 2014; Howard, Mehan, 

& Parnell, 2017; Inglis, Palipana, Trenholm, & Ward, 2011,  Trenholm, Alcock, 

& Robinson, 2012 and references therein). Yoon & Sneddon (2011) suggests 

that easy accessibility of recorded lectures may give some students a false sense 

of security, resulting in procrastination and missing the lecture completely in the 

end. One of the three variables in Moore's theory of transactional distance 

(Moore, 1993) is autonomy, the ability a student has to manage their own 

learning (the other two variables are structure and dialogue). Within this theory, 

students with a high degree of autonomy would be able to utilize recorded 

lectures better than students on the other end of the autonomy-spectrum.  

RESEARCH TOPIC AND RESEARCH QUESTIONS 

The research topic of this poster is students' usage patterns of online recorded 

lectures in an undergraduate mathematics course. Data are collected from log 
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files of viewings of recorded lectures in a first year (second semester) course in 

linear algebra and differential equations at the Department of Engineering 

Sciences at the University of Agder held in spring 2016, with a total of 381 

enroled students. We analyze the data to answer the following research 

questions: How many students watch the recordings? Do students watch the 

recordings regularly or in a more random fashion? How much of each recorded 

lecture is watched? When do students watch the recorded lectures? What is the 

delay between when the lecture was given and when the recording is watched?  

RESULTS 

We present the results of the analysis in this poster in terms of histograms and 

bar plots with accompanying texts. In short, our results are as follows: Out of 

381 enroled students, approximately 80 students (21%) use the recordings on a 

regular basis, with a marked increase in viewings around sports- and Easter 

holiday. Closer analysis shows that typically all lecture content in the videos are 

watched, suggesting that most students watch the whole recording instead of just 

smaller parts of it. The maximum number of viewings on a day happens on the 

same day as the live lecture, and the viewings then drop during the following 

two-three weeks after a lecture. There are relatively few viewings before the 

exam suggesting that students do not use the recordings for exam preparations.   
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In this paper we present an exploratory study on the kind of questions or difficulties 

lecturers point out at the beginning of an educational course – to be addressed in it. 

These questions happen to be very general and are poorly connected to the 

knowledge to be taught. We suggest a twofold interpretation of this phenomenon. On 

the one hand, and in the line of the didactic transposition theory, teachers do not 

allow themselves to raise questions about the knowledge that is supposed to be their 

main field of expertise. On the other hand, the prevailing institutional pedagogy does 

not provide teachers with a fruitful enough conceptual frame to formulate this kind of 

questions. From the experience of several lecturer education courses, we postulate 

that didactics can help university teachers better interpret their practice and question 

it in a more productive way. 

Key-words: university teacher education, pedagogy, knowledge to be taught, scale of 

levels of codeterminacy, teacher problems.  

INTRODUCTION: THE PROBLEMS TEACHERS FACE 

Since 2009, our research group has designed and implemented two different courses 

to provide university lecturers and research assistants with educational tools enabling 

them to better design, implement and analyse teaching and learning processes. The 

first course took place at IQS – Universitat Ramon Llull in Barcelona, an institution 

offering degrees and master programmes in engineering and management. This first 

course was addressed to PhD students teaching at the institution or planning to teach 

soon. The PhD students’ research domains and subjects taught were diverse and 

included econometry, finance, mathematics and engineering, among others. The 

course was structured into thirteen 2-hour sessions and lasted 4 academic years. In 

the first session, the participants were asked to raise teaching questions they would 

like to address in the course. The collected questions were then classified according 

to the level of co-determinacy they affected (Chevallard, 2002, we will come back to 

this notion later). The subsequent sessions were each devoted to addressing the 

questions that belonged to one of the levels, starting from the general ones 

(Civilisation, Society) and finishing with the content-specific ones (Domain, Sector, 

Theme, Question). At the end of the course students were asked to design a teaching 

project for a subject of their specialty, including a syllabus, the planning of learning 

goals and a detailed description of three teaching activities: a lecture, a student-

centred task and an autonomous out-of-class activity.  
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The second course was held at EUSS-UAB in Barcelona, an engineering school 

offering Mechanical, Electronic, Electrical and Management engineering degrees. 

The participants were in-service teachers with different educational backgrounds and 

research fields. The course was organised in six 2-hour sessions. It was based on a 

study and research path for teacher education, an inquiry-based teaching format 

focused on the study of a professional teaching question (Florensa, Bosch, & Gascón, 

2017). The question addressed was “Could modelling be the main motivation of my 

subject?” It was approached through different phases where participants experienced 

an inquiry study process in the position of the students, then analysed the process 

experienced and finished by designing an inquiry study process for their subjects. 

Both courses started by asking the participants to provide a list of questions or 

difficulties they would like to address with the help of the educators. In all the cases, 

we were surprised to find there was only a small number of questions that dealt 

specifically with the knowledge to be taught. Teachers mainly mentioned general 

issues related to assessment, class management, coordination or student 

characteristics (diversity, lack of motivation, the role of mathematics in their subject, 

etc.). They rarely included their subjects in the questions and, when they did, the 

problems formulated were very general.  

We compared this result with an investigation research carried out by Cirade (2006) 

in pre-service teacher education in France within the anthropological theory of the 

didactic (ATD). In this research, during 3 editions of a 25-week course in 3 academic 

years, the participants who were doing an internship in secondary schools were asked 

to formulate a question every week. These “questions of the week” constituted the 

basis of the course, despite the fact that only a small sample of them could be 

addressed – all in all, more than 7,000 questions were collected. Cirade provides a 

systematic gathering and analysis of the teacher-students’ spontaneous questions and 

uses them to identify the mathematical difficulties teachers encountered and their 

trouble in making them explicit. The kind of questions raised at the beginning of the 

course – which coincided with the beginning of the academic year – were initially 

very general, and were related to how to behave in class, how to manage the students’ 

behaviour, what to do in a meeting with parents, etc. Then, as the teacher education 

course progressed and certain tools coming from the field of didactics of mathematics 

were introduced, teacher-students became more and more able to state questions 

related to the knowledge to be taught. In a sense, we can say that they stopped taking 

the knowledge to be taught as a given and dared to state questions about their own 

field of expertise. For instance, they ended up asking questions such as “How to 

justify the need of sketching functions given their analytical expression?”, or “Why 

do we need to measure angles in radians in addition to degrees?”, etc.  

Following Cirade (Chevallard & Cirade, 2010; Cirade, 2006), we postulate that 

educational courses for university teachers cannot ignore the way teachers 

problematize their professional practice and teachers should take their concerns and 
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difficulties as the starting point of educational processes. Besides, as researchers in 

mathematics education, we also agree with the importance of approaching these 

questions from a discipline-based level. As stated by Berthiaume (2009, p. 215): 

For some time now, educational researchers have investigated the idea that, in order to be 

effective, higher education teaching may have to be ‘discipline-specific’. In other words, 

teaching in higher education has to take into account the specific characteristics of the 

discipline being taught. This means that developing an understanding of teaching and 

learning is not sufficient to become an effective teacher in higher education. Rather, one 

must also develop an understanding of the teaching and learning requirements of one’s 

own discipline. This has been termed ‘discipline-specific pedagogical knowledge’. 

We consider essential for university teachers to be able to formulate their difficulties, 

not only as general issues concerning students and class management, but also 

including the knowledge to be taught as a key element. Even if teaching problems are 

initially perceived as general in their manifestation, the way to address them will 

necessarily involve knowledge-based activities. From the perspective of the ATD, 

taking the knowledge to be taught into account means more than simply including it 

as a variable or parameter of the problem formulation. It also means considering it as 

an institutional construction, questioning its current shape and searching for possible 

new reorganisations, taking into account – without assuming – the epistemologies 

and pedagogies prevailing at the university (Barquero, Bosch, & Gascón, 2013). 

The aim of our study, which is still at an exploratory stage, is to analyse the kind of 

questions university teachers are able to state at the beginning of an educational 

course – as the ones we implemented – and locate their questions at different levels of 

specificity/generality regarding the knowledge to be taught. We postulate that 

knowledge in didactics is important to provide university teachers with conceptual 

and methodological tools not only to improve their professional practice, but also to 

describe, interpret, conceive and question it in a more productive way. The first step 

to make progress in this direction is to start understanding how lecturers 

spontaneously formulate the challenges faced during their daily practice. 

WHAT PROBLEMS DO LECTURERS SET FORTH? 

We collected a total of 143 questions from the 4 courses, 35-40 per course, each of 

which was attended by 10-15 participants. In all of the cases, teachers attending 

the course were asked the following: “Write down two or three problems, 

difficulties or doubts that you find, or you think you may find during your 

teaching practice.” There was a lot of redundancy in the questions, so we 

eliminated repetitions even if the phrasing was different. We are presenting this 

selection according to the questions’ generality, using the scale of levels of 

didactic co-determinacy. This tool was introduced by Chevallard (2002) in the 

didactic analysis to include aspects of the institutional organisation of teaching 

and learning processes that are usually taken for granted (Artigue & Winsløw 

375 sciencesconf.org:indrum2018:174767



 

 

2010; Chevallard & Sensevy, 2014). It helps distinguish the conditions and 

constraints affecting teaching and learning processes that are originated within 

the discipline, and the generic levels common to the teaching of any discipline: 

 
Upper levels   Lower levels 

Humanity         

         Discipline 

Civilisation         

         Domain 

Society         

         Sector 

School          

         Theme  

Pedagogy         

         Question     

Figure 1. Scale of levels of didactic co-determinacy 

Civilisation and Society 

The upper levels of the scale refer to the conditions that are set up by our society or, 

when these are common to several societies, by the civilisation they belong to. We 

identified the following questions at this level: 

- What to do in a culture in which effort and reward are no longer related? 

- How does a social situation influence the effectiveness of a course or a teaching 

format? For example, the students’ attitude seems different in times of crisis… 

- To what extent should study plans be aligned with the labour market? 

- What is “academic freedom” and what are its limits? 

- Where do competencies come from? How are they established? 

- Clashing of (generational or social?) values: sometimes it is difficult to act as a 

teacher, a guide or a referent when our own values seem to be obsolete (or to strongly 

contrast with those of our students). For example: the value of effort, the gratification 

of work well done, the fact that money cannot buy everything or that not everything 

is on the web, the importance of culture, of thinking, that there are things that are 

“right” and others that are “wrong” (e.g. cheating in an exam is “wrong”), etc. 

- What to do with students who act as “clients”? 

- The application of Bologna is an adaptation of the learning process and an evolution 

or change: more participative students, more teacher-student interaction, etc. 

Adaptability is therefore considered a consequence of an evolution, but if we analyse 

it, we are giving the same classes, in the same environment, with the same student 

profile. Can we do anything to make the context change? 

- How is the knowledge of the different subjects selected and what criteria are used? 

- How far should we, as teachers, arrive in our role in and out of class? What are 

teachers educated for? 
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As we can see, all these questions refer to dimensions or difficulties related to 

university teaching that do not depend on the specific institution considered – many 

of them can be extended to any kind of teaching and to other educational levels. What 

is questioned is the way our societies – more or less explicitly – conceive, organise, 

and manage the dissemination of knowledge, and the general roles assigned to 

teachers as guides, leaders or knowledge disseminators.  

School (here University) 

The School level includes the conditions and constraints that depend on the specific 

teaching institution considered, in our case, the University with its own specificities:  

- Is the number of students per class important in terms of effectiveness of the 

teaching? Is there an optimal number? Are there exceptions? 

- How are decisions regarding time-schedule, session duration, etc. taken?  

- To what extent are university facilities important? Are there optimal premises? How 

to adapt to the ones available? 

- How to respond to the pressure of introducing ICT in the classroom? Is it used 

because of real educational reasons or is it cost saving? Is it just a trend? 

- How to ensure a good coordination between teachers of the same subject? What 

happens when they have a different conception of the subject to teach? 

- How to establish more synergies between colleagues, sharing methodologies? 

- How to ensure a coherent programme? What relationships exist between subjects? 

- How to integrate the different subjects to obtain a more global education? 

These questions also reveal the aspects teachers think can be changed and the ones 

they take for granted, not even considering them questionable. For instance, in the 

fifth question, only the coordination with teachers of the same subject is considered, 

according to the traditional compartmentalization of knowledge in higher education. 

Together with the sixth question, they reveal the lack of a professional culture that 

might include coordination between teachers. However, the sixth question seems to 

consider that this coordination only affects “methodologies”, which again appears to 

be a vague and general dimension of teaching. The last two questions are content-

related, but only with respect to the relationships between subjects, as these are 

considered to be previously determined – and, therefore, untouchable. 

Pedagogy 

The level of pedagogy is common to the different subjects or disciplines that can be 

taught. It includes all the resources, formats, and strategies teachers and students 

activate – many times without even noticing it – for teaching and learning processes 

to take place. We gathered numerous questions that can be located at this level of the 

scale and organised them into two main blocks: students and lecturers.  

Students 
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- How to manage long projects, where students slack off and decrease their work 

intensity? How to reach a balance between establishing milestones and letting 

students work independently? 

- What to do with the students that chat, are unfocused, use their mobile phone, do 

other things than what is requested of them? 

- How to deal with student diversity? 

- How to arouse the students’ interest in subjects that are not at the core of the degree? 

- How to motivate students beyond the minimum required “pass” grade? 

- How to encourage students to participate in a large group? 

- Should students be monitored closely or should they work more independently? 

- How to motivate students to behave in class? 

- How to encourage students to be more competitive through the intrinsic values of the 

subject that is taught? 

- Students are not previously taught how “to learn”. How will this affect our job?  

- How to teach students to listen and maintain their attention? 

Lecturers 

- How to improve oral and body expression? 

- How to organise assessment in a fair and impartial way? 

- How to assess core (non-disciplinary) competencies?  

- Is it better to use final examinations or continuous assessment? How to measure 

long-term student learning outcomes? 

- How to design contents, planning and methodologies of the subject that take into 

account the student diversity? 

- How to reach all the students and not only those who have more knowledge, 

excluding the ones that got lost? How to find the balance between maximising 

student learning and the amount of information provided?  

- How to ensure an individualised methodology considering the time limitations? 

- How to become the best teacher for each student? 

- How to deal with the so-called “decline in student knowledge”? 

- Does the decline in student knowledge correspond to something real or is it just what 

each generation says about the previous one? 

- Does it make sense to give lectures nowadays? 

- How to improve teaching resources and methodologies using ICT?  

- What to do after the class? How to analyse what happened and what the teacher did? 

How to assess teacher performance? 

As can be seen from the questions above, most of them focus on specific teaching 

practices, but they do not refer to the difficulties of the corresponding subjects. The 

questions are mainly related to what the teachers can or might do, and they are very 

general. Only two of them refer to specific teaching formats: projects and lectures. 

There is no mention of the activities organised (labs, tutorials, problem solving or 

case study sessions, outdoor activities, etc.) and the way to better implement them. 
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The need to implement new kinds of activities is not mentioned. The questions 

mainly have to do with the teacher and the teacher’s actions. For instance: assessment 

is always considered as a lecturer’s task; “motivation” is assumed to be generated 

(only) by the teacher. The questions thus reveal many features of the traditional 

pedagogical contract, which seems to be fully assumed by the lecturers. 

Discipline  

As said before, we were astonished to find so few questions at this level, which 

corresponds to the conditions and constraints directly linked to the content taught and 

learned. They can be related to the general discipline the content belongs to 

(Mathematics, Engineering, Economics, Management, etc.) or to the different 

components of the discipline, according to the way it is structured or delimitated in 

the considered institution. The general terms used to specify these levels are: 

domains, sectors, themes, tasks or questions. The divisions and boundaries 

established in a discipline or field of knowledge are institutional constructions. They 

vary from one institution to another and from one historical moment to another. The 

collected questions at this level remain very general; none of them specifies the 

difficulties related to the teaching or learning of a given piece of content. The first 

one, for instance, is very similar to those located at the School level: it depends on 

whether we interpret the question as affecting the design of an entire programme or 

the possible actions in one discipline:  

- How to better connect the different subjects of the programme? 

- How to highlight the multi-disciplinary nature of the subjects? 

- How to select the learning goals of the subject? What content should be included? 

- What should the level of the learning goals be? 

- How to relate the subject with the real world? 

- How to balance learning goals between specialisation and generalization? 

WHY THESE QUESTIONS? AN INTERPRETATION FROM THE ATD 

The assumed educational contract between lecturers and educators 

The first reason that came to our mind when trying to understand why lecturers did 

not ask any content-related question is the kind of implicit didactic contract that was 

assumed by them at the beginning of the course. Given the fact that the course was 

about university teaching, they might have expected to learn certain generic tools to 

help them in their teaching practice; not something related to their specific subject. 

The educators were seen as specialists in teaching processes and the questions were 

stated at this general level. Either way, this shows a first important phenomenon: 

lecturers expect to receive help with general teaching practices that are only a part of 

their daily practice. A lot of their teaching work (elaboration of the syllabus; choice 

of textbooks, reference books and other kind of resources or materials; selection, 

design and organisation of activities, cases or problems; decisions about the kind of 

379 sciencesconf.org:indrum2018:174767



 

 

in-class and out-of-class activities students should carry out; renewal of the subject 

matter; etc.) does not seem to have been included in the objectives of the course. 

A problem of legitimacy 

The second reason we put forward is related to what we call a problem of legitimacy. 

University teachers are often also researchers or at least experts in the subject they 

teach. Therefore, they may be reluctant to accept the idea that their teaching 

difficulties might come from problems with the subject matter they are supposed to 

master. Their lack of expertise can only be attributable to what is external to the 

discipline they teach. This reinforces the previous reason about their expectations 

from the educational course. 

The divide between pedagogy and didactics 

There is another important and more general factor that may explain the lack of 

content-related questions. It corresponds to the dominant interpretation of teaching 

and learning phenomena that has been called “pedagogical generalism” (Gascón & 

Bosch, 2007) or the “didactic divide” between pedagogical and subject-matter 

knowledge (Bergsten & Grevholm, 2004). It tends to introduce a strict separation 

between instructional processes and the “content” of these processes, that is, using 

the scale of didactic co-determinacy, between the level of Discipline and the level of 

Pedagogy. The main point in crossing the boundary between the two levels is the way 

knowledge is conceived in the considered teaching process or, in other words, which 

aspects of the subject-matter are questioned and which ones are assumed as a given.  

When a teacher – or a lecturer – is asked to teach a given piece of knowledge k, the 

first question she will first ask herself is “what should I do to teach k?”, not “what is 

this k I should teach?” What the theory of the didactic transposition (Chevallard, 

1985; Chevallard & Bosch, 2014) states is that instructional processes rely on the 

fiction that there is only one way to define k and that this is the k that is taught and 

learned. Questioning the knowledge to be taught, asking about its origin, selecting 

and applying a given instructional process rarely occur. This is why it is normal the 

participants of the course did not set forth questions of that kind. In the questions 

stated, knowledge always appears as a given, not as a variable. 

The “pedagogical generalism” that is found in the teachers’ questions is not an 

isolated fact. If we look at the teaching support some universities offer their (new) 

faculty, we see that only the Pedagogical level is addressed, and possibly some 

aspects of the School level. For instance, in the Teacher Training in Higher 

Education (FDES)
1
 programme proposed by the Autonomous University of 

Barcelona, the structure of the programme is presented as follows: 

                                           
1
http://www.uab.cat/web/personal-uab/personal-uab/personal-academic-i-investigador/formacio-i-innovacio-

docent/programa-fdes/estructura-1345703511726.html 
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Activity 1. Teaching in the new context of learning and teaching 

Activity 2. Practicing oral discourse 

Activity 3. How to assess university students’ learning? 

Activity 4. Experiences in educational innovation 

Activity 5. Observation in the classroom 

Activity 6. Teaching planning: from study programmes to syllabus 

Activity 7. Teacher’s portfolio 

Similar programmes can be found at other universities. For example, some years ago, 

the Teaching Engagement Program of the University of Oregon posted a list of 

frequently asked questions (FAQs) organised according to the following headings: 

“Getting ready to teach; Presenting and facilitating information; Motivating students; 

Questions of respect; Assessment; Managing the classroom climate”. None of the 

questions was content-related. It seemed as if, once certain answers were provided to 

the pedagogical issues, their specification to the subject-matter was considered 

evident or, at least, non-problematic. 

CONCLUSION: A LACK OF TOOLS AND NOTIONS 

One of the consequences of “pedagogical generalism”, that can partially be seen in 

the questions stated by university teachers, is the lack of terms and concepts to go 

below the level of Pedagogy and start questioning the levels of Discipline. University 

teachers develop their professional activity at institutions where little is said about the 

way knowledge should be selected, arranged, updated, organised, “elementarised”, 

put-into-practice, problematized, etc. in order to teach it or to help students to learn it. 

This is a crucial aspect in which the results obtained from research in Didactics of 

Mathematics, both practical and theoretical, can assume an important function.  

From the experience of the courses here presented, we have seen how introducing 

certain elements of the ATD (the notions of praxeology, didactic contract, didactic 

moments, Herbartian schema, media-milieu dialectics, didactic ecology, etc.) 

provides lecturers with a productive enough framework to talk about and start 

questioning a larger part of their teaching activities (Florensa, Bosch, Gascón, & 

Ruiz-Munzon, 2017). The more is said about didactic processes, the more dimensions 

of these processes can be questioned and tentatively changed. Our hope is that the 

education of lecturers, as is the case with primary and secondary school teacher 

education, will have the power to make this state of things evolve. Our experience 

with the courses presented lets us be moderately optimistic in this respect. 
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We analyse accounts written by three mathematics lecturers on their practice using 

the Knowledge Quartet framework. This framework has been used to study how a 

teacher’s knowledge of mathematics and mathematics pedagogy influences his/her 

actions in the classroom at both the primary and secondary level. We consider how 

the framework could be used to study university level teaching, and we report on the 

dimensions of teacher knowledge that were made visible by this framework. 

Keywords: Knowledge Quartet, teacher knowledge, university mathematics teaching. 

INTRODUCTION 

The first three authors of this paper are mathematics lecturers at three universities in 

Ireland, who also engage in mathematics education research. Over the course of two 

years, they wrote accounts of incidents which occurred during their teaching as part 

of a professional development project using the Discipline of Noticing (Mason, 

2002). In this paper, we report on our more recent use of a different theoretical 

framework, the Knowledge Quartet framework (Rowland, Huckstep & Thwaites, 

2005), to analyse these accounts. The Knowledge Quartet categorizes situations from 

classrooms where mathematical knowledge surfaces in teaching. There has been one 

previous attempt to use the framework to analyse university mathematics teaching 

(Rowland, 2009). The focus of that paper was the knowledge-grounded foundation 

beliefs of the university lecturer, about mathematics and about teaching and learning. 

The purpose of our current study is twofold. Firstly, we are interested in whether the 

Knowledge Quartet framework could be applied to study teaching at university level. 

Secondly, we would like to know what features of university teaching are highlighted 

when our set of accounts are analysed using the Knowledge Quartet. Previously, the 

first three authors had analysed their accounts to study the many decision points that 

arose while teaching and in O’Shea, Breen and Meehan (2017) these decision points 

and their triggers were categorised. We were interested to see if using the Knowledge 

Quartet framework would draw attention to other aspects of teaching in the accounts. 

In this article, we will first of all consider the literature on teacher knowledge, 

especially at university level. We will then expand on the Knowledge Quartet 

framework, and give some results from our analysis using this lens. Finally, we will 

discuss our findings and suggest some future avenues for research. 
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LITERATURE REVIEW 

The Knowledge Quartet is a theoretical tool for observing, analysing and reflecting 

on actual mathematics teaching. Ball, Thames and Phelps (2008) also studied 

mathematics classrooms to develop a theory of mathematical knowledge for teaching 

that built on the work of Shulman (1987). This resulted in the identification of an 

important subdomain of content knowledge - ‘specialized content knowledge’. This is 

distinct from ‘common content knowledge’ and is unique to the work of teaching.  

Independently, Ainley and Luntley (2007) suggested that experienced teachers draw 

on ‘attention-dependent knowledge’ in addition to subject knowledge and 

pedagogical knowledge (both general and subject-specific). Few research studies 

have been concerned with the knowledge employed in university mathematics 

teaching. McAlpine and Weston (2000) conducted a research study with six 

professors considered exemplary in their teaching and found that all the professors 

drew on pedagogical knowledge, pedagogical content knowledge, content knowledge 

and knowledge of learners (following Shulman (1987)) while monitoring their own 

actions and making decisions during lectures. This was despite the fact that three of 

the professors were mathematicians who had no pedagogical training (while the 

remaining three were mathematics educators or trained teachers). McAlpine and 

Weston (2000) hypothesised that the mathematicians constructed this knowledge 

largely through experience and reflection, and that their lack of training led them to 

depend more on their experience than the mathematics educators did. 

On the other hand, Wagner, Speer and Rossa (2007) examined the knowledge, other 

than content knowledge, required by a mathematician teaching an undergraduate 

course. They reported that he was unable to anticipate how students would respond to 

particular activities and how the content or sequence of individual classes contributed 

to the instructional goals of the entire course. The authors claim these findings lend 

support to the assertion that there is knowledge particular to teaching that is distinct 

from, and not easily constructed from, knowledge of content. 

Speer and Wagner (2009) focussed on whole-class discussions and examined the 

nature of the knowledge that a mathematician could employ to make effective use of 

undergraduates' mathematical contributions in a way that furthered the goals for the 

class. Their analysis focussed on the role of (a lack of) pedagogical content 

knowledge and specialized content knowledge in the difficulties experienced by the 

instructor in scaffolding student learning while orchestrating such discussions.  

THEORETICAL FRAMEWORK 

The Knowledge Quartet 

The Knowledge Quartet is a ‘theory’ in the sense that it proposes a way of thinking 

about mathematics teaching in the usual institutional settings (lessons/classes), with a 

focus on the disciplinary content (mathematics) of the lesson.  
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The Knowledge Quartet (KQ) was the outcome of empirical research at the 

University of Cambridge, UK (Rowland et al., 2005), in which 24 mathematics 

lessons were videotaped and scrutinised. The research team identified aspects of the 

teachers’ actions in the classroom that could be construed as being informed by their 

mathematics subject matter knowledge or pedagogical content knowledge. This 

inductive process initially generated a set of 18 codes (later expanded to 21), 

subsequently grouped into four broad, super-ordinate categories or dimensions. 

The first dimension of the KQ, foundation, consists of teachers’ mathematics-related 

knowledge, beliefs and understanding. The second dimension, transformation, 

concerns knowledge-in-action as demonstrated both in planning to teach and in the 

act of teaching itself. The third dimension, connection, concerns the ways by which 

the teacher achieves coherence within and between sessions. The final dimension, 

contingency, is witnessed in classroom events that were not envisaged in the teachers’ 

planning. Essentially, it is the ability to “think on one’s feet”.  

Conceptualising the Knowledge Quartet 

The concise conceptualisation of the KQ which now follows is a synthesis of the 

characteristics of its four dimensions.  

Foundation  

The first member of the KQ is rooted in the foundation of the teacher’s theoretical 

background and beliefs. It concerns their knowledge, understanding and ready 

recourse to what was learned in preparation (intentionally or otherwise) for their role 

in the classroom. The key components of this theoretical background are: knowledge 

and understanding of mathematics per se; knowledge of significant tracts of the 

literature and thinking which has resulted from systematic enquiry into the teaching 

and learning of mathematics; and espoused beliefs about mathematics, including 

beliefs about why and how it is learnt. The remaining three categories focus on 

knowledge-in-action as demonstrated both in planning to teach and in the act of 

teaching itself. 

Transformation 

At the heart of the second member of the KQ is Shulman’s observation that the 

knowledge base for teaching is distinguished by “ … the capacity of a teacher to 

transform the content knowledge he or she possesses into forms that are 

pedagogically powerful” (Shulman, 1987, p. 15, emphasis added). This dimension 

picks out behaviour that is directed towards a student (or a group of students), and 

which follows from deliberation and judgement informed by foundation knowledge. 

The choice and use of examples has emerged as a rich vein for reflection and critique, 

and one of the most prevalent codes observed in practice (Rowland, 2008).  

Connection 

The next dimension concerns the coherence of the planning or teaching displayed 

across an episode, lesson or series of lessons. Our conception of connection includes 
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the sequencing of topics of instruction within and between lessons, including the 

ordering of tasks and exercises. To a significant extent, these reflect deliberations and 

choices entailing not only knowledge of structural connections within mathematics, 

but also awareness of the relative cognitive demands of different topics and tasks, and 

the implementation of strategies to remove (or lessen) obstacles to learning. 

Contingency 

Our final dimension concerns the teacher’s response to classroom events that were 

not anticipated in the planning. This dimension of the KQ is about the ability to 

‘think on one’s feet’: it is about contingent action. Whilst the teacher’s intended 

actions can be planned, the students’ responses cannot. The teachers’ response to 

students’ unexpected contributions is one of the most low-inference codes of the KQ.  

Many moments or episodes within a session can be understood in terms of two or 

more of the four units; for example, a contingent response to a student’s suggestion 

might helpfully connect with ideas considered earlier. Furthermore, the application 

of content knowledge in the classroom always rests on foundational knowledge. 

The KQ is a lens through which the observer ‘sees’ classroom mathematics 

instruction. It offers a four-dimensional framework against which mathematics 

lessons can be discussed, with a focus on their subject-matter content, and the 

teacher’s related knowledge and beliefs.  

This framework has been used in different contexts and for different purposes. For 

instance, Rowland (2012) used the KQ to examine situations in which mathematical 

knowledge surfaces in primary and secondary mathematics. He concludes that 

elementary mathematics teaching poses challenges which are qualitatively different 

from those confronting secondary mathematics teachers. However, the mathematics 

knowledge primary mathematics teachers must possess is neither less profound nor 

easier to acquire than that of secondary teachers. Turner and Rowland (2011) 

describe a project in which the framework was used to guide pre-service teachers in a 

process of personal reflection on their teaching. The participants found that the KQ 

helped them to focus more effectively on the mathematical content of their lessons 

and its enhancement. The authors reported that this enhanced focus on mathematical 

content knowledge had a positive influence on its further development. There was 

also evidence that the KQ helped the participants to develop a more learner-centred 

view of teaching and one in which conceptual understanding rather than procedural 

fluency was emphasised. Other recent studies using the KQ have focussed on 

contingent moments in the classroom (e.g. Rowland & Zazkis, 2013). 

METHODOLOGY 

The accounts which form the data for this study were written using the Discipline of 

Noticing (Mason, 2002). This advocates that practitioners write ‘brief-but-vivid’ 

accounts of incidents that they have noticed in their practice. Mason (2002) defines a 

brief-but-vivid account as  
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one which readers readily find relates to their experience. Brevity is obtained by omitting 

details which divert attention away from the main issue. The aim is to locate a 

phenomenon, so the less particular the description, the easier this is, without becoming so 

general as to be of no value….Thus description is as factual as possible. (p.57)  

He advises that these accounts should also avoid justification of incidents or actions, 

and should therefore be ‘accounts of’ rather than ‘accounting for’ a particular 

situation. The first three authors of this paper had written brief-but-vivid accounts of 

their teaching over a two-year period. These focused on notable incidents that 

occurred while they were teaching, but are not reflections or descriptions of a whole 

lecture. For more details, see O’Shea, Breen and Meehan (2017). 

For this paper each of the three lecturers chose one of their modules; only the 

accounts relating to that module which contained references to mathematical 

knowledge were analysed (20 accounts for Lecturer 1, 29 for Lecturer 2, and 38 for 

Lecturer 3).  Lecturer 1 chose a one-semester Introduction to Analysis module for 27 

second-year students (this module was delivered separately to 7 Pure Maths students 

and 20 Science students), Lecturer 2 also chose a one-semester Introduction to 

Analysis module for a group of 75 second-year students, while Lecturer 3 chose a 

year-long Differential Calculus module for a group of 49 first-year students. All three 

lecturers aimed to foster dialogue in their classrooms, perhaps because of their 

interest in educational research and the relatively small class sizes in these modules. 

When coding the data we compared our accounts with the descriptions of each of the 

21 codes associated to the KQ framework, with reference to the examples available at 

www.knowledgequartet.org. We began the coding process by first coding a small set 

of accounts together. Then each lecturer coded her own set of accounts and passed on 

her analysis to the other two lecturers in turn. They coded the accounts independently 

before comparing their analysis with that of the original instructor. All three 

discussed any discrepancies and agreed on the final coding.  

During the coding process, we felt that the names of a few of the codes did not fully 

reflect the terminology used in teaching mathematics at the university level. We 

interpreted the code Teacher Demonstration (to explain a procedure) to also 

encompass teacher demonstration to explain a proof. We chose to use the code 

Choice of Example (CE) to include particular instances of an abstract concept or a 

general procedure; and, as the rehearsal of a procedure or ‘exercise’ (Rowland, 2008), 

and also for non-routine tasks. We also applied the code Responding to Students’ 

Ideas (RSI) from the Contingency Dimension to encompass instances where the 

lecturer had to respond to a lack of students’ ideas.  

RESULTS  

A summary of the number and percentage of codes found in each of the four 

categories of the KQ for each author is given in Table 1 below. While a number of 

codes could be applied to some events, the one which we judged to be predominant 

was what was counted in this table. 

387 sciencesconf.org:indrum2018:174552



  

KQ Dimension Lecturer 1 Lecturer 2 Lecturer 3 

Foundation  10 (20.83%) 4 (11.11%) 41 (34.74%) 

Transformation  14 (29.17%) 17 (47.22%) 32 (27.12%) 

Connection 7 (14.58%) 8 (22.22%) 24 (20.34%) 

Contingency 17 (35.42%) 7 (19.45%) 21 (17.8%) 

Total 48 (100%) 36 (100%) 118 (100%) 

Table 1. Number and percentage of codes in each KQ dimension for each lecturer 

On coding the accounts it became apparent that all three lecturers frequently wrote 

accounts about giving a task to the class or instigating a whole class discussion 

around a task, recording some students’ responses (or lack of responses) in relation to 

the task, and noting what the lecturer thought or learned about student thinking. 

Therefore it is not surprising that the code Choice of Example (CE) in the 

Transformation Dimension was the most frequently occurring code for all three 

lecturers, while Responding to Students’ Ideas in the Contingency Dimension was in 

each of their top three most frequently occurring codes. In many accounts, the 

lecturer contrasted student learning on a task with learning on the same task the 

previous year or with students in a different class, often noting what students found 

easy or difficult. The tasks were usually designed and planned by the lecturer with 

specific aims for student learning in mind, thus the codes Anticipation of Complexity 

(AC) in the Connection Dimension and Awareness of Purpose (AP) in the 

Foundation Dimension frequently appear for all three lecturers. Lecturer 3, who was 

simultaneously conducting a research project on mathematical tasks, was often 

explicit about the pedagogical rationale behind a given task. Consequently, another 

significant code for her accounts was Theoretical Underpinning of Pedagogy (TUP) 

in the Foundation Dimension. 

By way of example, the following is an account from Lecturer 1, coded as RSI. She 

struggles to understand what the student is asking but still feels she has to respond: 

A student asked a question in the middle of a complicated proof. I didn't understand the 

question and asked him to ask it again. He tried but I still couldn't understand. So I 

explained the proof again as best I could paying attention to what I thought he had had 

problems with. However I realised I had made a choice. I could have continued probing 

until I figured out what he was asking. I decided not to do that so as not to embarrass him, 

but maybe I didn't really answer his question in the end. 

While the majority of accounts were on incidents during lectures, some relate to 

preparation of tasks and lessons, or conversations with students outside of class. The 

following is an example of an account by Lecturer 2 coded as CE, which describes a 

task given to students to work on during the second lecture of the semester. 

I handed out the first Inclass Exercise of the module. It contained the following statement: 

There exists a university in the world, where every Analysis student achieves a final mark of 
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at least 90% in the module. The instructions were as follows: Write down what you would 

need to do to prove that Statement B is false. At the end of the class, a student came up to 

me and said that suppose there were infinitely many universities in the world, then you 

couldn’t actually disprove the statement because you wouldn’t be able to get around to all of 

them to check the Analysis grades. I was impressed with how he extended the statement. 

Given that CE was the most frequently occurring code for all three lecturers, the 

following account provides another example of a task given, this time by Lecturer 1, 

to help students propose conjectures about the relationship between bounded and 

convergent sequences.  

I was talking about bounded sequences with the class today. I got them to come up with some 

bounded and some unbounded sequences. I tried to get the class to make conjectures by asking them 

to guess what the next theorem would be, or what it definitely wouldn't be. They immediately 

realised that there would be no theorem that said that every bounded sequence converges and then 

conjectured that every convergent sequence is bounded. They seemed to enjoy the process.  

Next we present an account from Lecturer 3, coded as AP. She is explicit in her 

intentions to engage students in mathematical sense-making and on challenging 

students’ views of mathematics as a set of rules to be learned and applied. 

Today I continued with sketching graphs of functions and asked the students to draw the 

graph of f(x)=1/x on its natural domain, among others. I circulated the room as they were 

doing this and noticed that a number of what I had considered to be the more able students 

were drawing the graph incorrectly (possibly confusing f(x)=1/x and g(x)=1/x^2). I have 

been trying to put across the idea of Calculus as a ‘science’ from the point of view that 

‘experiments/trials’ can be undertaken to check ‘hypotheses’, results can be ‘replicated’ and 

so on, but it appears some students are disregarding this and still regard it as a collection of 

facts to be learnt and remembered.  

Finally, we present an account from Lecturer 3. Her pedagogy is underpinned by 

having students take a guided-discovery approach as a classroom community (TUP).  

I tried to use a ‘guided-discovery’ approach to facilitate students’ realization that the graph 

of a function and its inverse are mirror images of each other in the line y=x. However, each 

step of this took a lot longer than I envisaged. Moreover, I wasn’t convinced at the end that 

the students would retain this particular piece of information longer or understand it better 

for having discovered it themselves as a class community.  

DISCUSSION 

In this paper we have used the KQ to analyse a set of accounts written as part of a 

professional development project that involved engaging with the Discipline of 

Noticing (Mason 2002). This is not the usual type of data that has been used in 

previous KQ studies. Typically, the researchers in those studies had access to 

classrooms (of either pre-service or experienced teachers), and have been able to 

record and analyse entire lessons. Our data is different in two key ways. Firstly we do 

not have recordings of entire lessons but the brief-but-vivid accounts of the instructor 
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herself on some aspect of the class, which was memorable to her. This is a limitation 

because we may have chosen not to include some relevant aspects of our classes, or 

of our students’ experience and reactions, but the accounts do shed some light on the 

‘attention-dependent knowledge’ of the instructor (Ainley & Luntley, 2007). We did 

not write our accounts in order to give a representative view of our teaching, rather 

we concentrated on aspects which were troublesome to us. However, we do have 

accounts from almost every lecture in the modules considered whereas previous 

studies have data only from a very small number of classes with a given teacher.  

In his KQ analysis of university mathematics teaching, Rowland (2009) refers to only 

one lecture. The analysis homes in on the foundation dimension and in particular on 

the beliefs of the lecturer (about mathematics and pedagogy), but does not explore the 

other three dimensions. Our analysis has shown that all four dimensions were present 

in our data. It should be noted that all three lecturers pursued an interactive approach 

in their classes, and perhaps the same spread of codes would not be present in an 

analysis of a more stereotypical university lecture.  

On the other hand, the prevalence of the use of the responding to student ideas code 

for the accounts discussed here suggests that the traditional image of a lecture (in 

which a lecturer delivers from a pre-prepared script, rarely deviating from it, and 

interacts minimally with students) is not always accurate and highlighted this element 

of our practice for us.   

In addition, given our previous focus on decision points in these accounts (O’Shea, 

Breen & Meehan, 2017), we may have expected the contingency dimension to be 

dominant but this was not the case. The KQ highlighted the importance of the other 

three categories in our accounts, especially the transformation dimension in the 

choice of examples. We found the framework provided a lens through which the 

knowledge brought to bear in the preparation and teaching of lessons could be viewed 

in a coherent and comprehensive manner.  

Each of the first three authors is a mathematician and while none has any formal 

pedagogical training, all three conduct research in mathematics education. Many of 

the accounts suggested an awareness of purpose on the lecturers’ behalf or a 

theoretical underpinning to the pedagogy used when teaching. Perhaps this is a 

consequence of their familiarity with the research literature. However, the fact that 

the instructors often contrasted student learning in the lectures for which accounts 

were written with that of other cohorts lends some support to the hypothesis of 

McAlpine and Weston (2000) that a teaching mathematician can construct knowledge 

of learners and pedagogy through experience and reflection.  

In several accounts the three lecturers highlighted what they noticed about student 

thinking on a given task and reflected on this after the lecture. These reflections could 

be said to inform their knowledge about mathematics pedagogy, particularly their 

knowledge of content and students and knowledge of content and teaching (Ball et 

al., 2008), which is a component of the Foundation Dimension. Although we chose 
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not to code these reflections since they occurred after lectures, they point to a growth 

of knowledge as a consequence of reflection on teaching. It seems that use of the KQ 

as a reflection tool could afford mathematicians (with no formal pedagogical training) 

an opportunity to develop pedagogical knowledge. It is interesting to compare this 

with Turner and Rowland’s (2011) finding that the KQ afforded preservice primary 

teachers (typically non-specialists in mathematics) an opportunity to develop 

mathematical content knowledge, illustrating the usefulness of KQ to mathematics 

teachers of a variety of backgrounds. 

Some KQ codes did not appear in our analysis. For example there were no accounts 

coded as displaying behaviour such as adherence to a textbook or concentration on 

procedures. This may be because of the nature of the mathematics taught in the given 

modules. We also found very few references to use of mathematical terminology and 

overt display of subject knowledge, which is not to say that the lecturers did not use 

terminology or show their subject knowledge during classes but that they did not talk 

about it in their accounts (perhaps because it was normal and not problematic).  We 

used the code identifying student errors sparingly, even though many accounts 

contained instances of a lecturer noticing a problem with student understanding. In 

our accounts the lecturers seemed to focus more on how to respond to a student rather 

than being able to tell when a piece of mathematics was wrong, and so we coded 

these episodes using the responding to student ideas code. We also used this code 

when the lecturer was faced with a lack of student ideas, for instance when she asked 

a question but received no replies. It may be that this is a situation that occurs more 

frequently in university than in school, where the size of classes can result in 

unwillingness to take part in discussions. We found that the type of specialist 

knowledge required to teach abstract mathematics at university was accounted for in 

the KQ with many of the codes mentioned earlier as well as others such as choice of 

representation, recognition of conceptual appropriateness and making connections 

between concepts or representations. 

Even though there are some differences in the prevalence of codes at school and 

university level, we believe that the KQ offers a useful lens with which to study 

undergraduate teaching. It has drawn our attention to the importance of different 

facets of lecturers’ mathematical knowledge which we may otherwise have 

overlooked. It would be interesting to explore the relationships between the four 

dimensions of the Quartet, for example how the underpinning dimension of 

foundation knowledge influences the lecturers’ choices made in the other three 

dimensions, and how it is in turn influenced by knowledge generated by the lecturer 

in a contingent moment. We used the KQ to code reflective accounts written by 

mathematics lecturers as they reflected on their teaching. However, we suggest it 

could also be used to guide the reflective process and the writing of the accounts. It 

would be interesting to explore whether such an approach would lead to a change in 

the lecturers' perspectives on teaching similar to those described by Turner and 

Rowland (2011).  
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This research is part of the study of university teachers’ knowledge that has emerged as 
a new line of research, which aims to understand the components of this knowledge, its 
development, and how it is reflected in university teachers’ teaching practice. This study, 
using the Mathematics Teacher’s Specialized Knowledge model, seeks to characterize a 
university teacher’s knowledge of practice in mathematics in the content area of 
mathematical analysis. Based on an instrumental case study, through classroom 
observation, we provide indicators of the teacher’s knowledge of ways of reasoning, 
validating, and proceeding in mathematics, contributing to the understanding of the 
nature of this teacher knowledge. 
Keywords: teachers’ and students’ practices at university level, teaching and learning of 
analysis and calculus, university teachers’ knowledge, knowledge of the practices in 
mathematics, Mathematics Teacher’s Specialized Knowledge model. 
INTRODUCTION 
Research on mathematics teachers’ knowledge began to be carried out in the nineties (e.g. 
Fennema & Franke, 1992; Broome, 1994) and currently continues to be developed with 
great force. Studies in this line of research have focused on teachers’ knowledge of various 
concepts, such as fractions (Llinares & Sanchez, 1991) and functions (Even & Markovits, 
1991), and in different mathematical domains, such as algebra (McCrory, Floden, Ferrini-
Mundy, Reckase, & Senk, 2012) and geometry (Herbst & Kosko, 2012). We also find 
proposals of models of teacher knowledge such as the Knowledge Quartet (Rowland, 
Huckstep, & Thwaites, 2005), Mathematical Knowledge for Teaching (Ball, Thames, & 
Phelps, 2008) and, more recently, Mathematics Teacher’s Specialized Knowledge 
(Carrillo, Climent, Contreras, & Muñoz-Catalan, 2013). These models have been used for 
studying mathematics teachers’ knowledge, principally in primary and secondary 
education, with scarce accounts of studies of university teachers, as noted by Speer, King, 
& Howell (2014).   
Currently, it can be said that research in higher education has gone from being centered 
on students to having a more balanced interest in both, students and teachers (Artigue, 
2016), to the point that research on university teachers’ knowledge has emerged as a new 
line of research from which it is asked what is understood as knowledge, how this 
knowledge is developed, and how it is reflected in the teaching practice of university 
teachers (Biza, Giraldo, Hochmuth, Khakbaz, & Rasmussen, 2016).   
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In agreement with the above and taking into account that the Mathematics Teacher’s 
Specialized Knowledge model (MTSK) has been shown to be useful for studying 
university teachers’ knowledge (e.g. Vasco, 2015), we carry out our research based on the 
MTSK with the aim of characterizing the knowledge of a university mathematics teacher 
who teaches content in the area of mathematical analysis. In this text, some results are 
presented in relation to knowledge of the practice in mathematics, one of the sub-domains 
of knowledge considered in the model. 
MATHEMATICS TEACHER’S SPECIALIZED KNOWLEDGE  
Mathematics Teacher’s Specialized Knowledge (MTSK) is an analytical model for 
understanding mathematics teachers’ knowledge and at the same time a methodological 
tool that allows analyzing teachers’ teaching practices (Carrillo et al., 2013). The model 
was developed based on a theoretical, empirical, and reflective work proposed by 
Shulman (1986) regarding foundational knowledge for teaching and the refining of 
Mathematical Knowledge for Teaching (Ball et al., 2008).  
In MTSK, two domains of teacher knowledge are distinguished, mathematical knowledge 
(MK) and pedagogical content knowledge (PCK), considering that all of this knowledge 
is specialized, that is, it derives from the teaching profession and is conditioned by 
mathematics itself. Consequently, MTSK does not include, for example, general psycho-
pedagogical knowledge included in Shulman’s works. Also, the model takes into account 
that teacher’s beliefs and conceptions about mathematics, its teaching, and its learning 
permeate the organization and the use of knowledge (Carrillo et al., 2013).  

 
Figure 1: Mathematics Teacher’s Specialized Knowledge (Carrillo et al., 2013).  
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Mathematical Knowledge comprises three sub-domains, knowledge of topics (KoT), 
knowledge of the structure of mathematics (KSM), and knowledge of the practice in 
mathematics (KPM).  
KoT includes knowledge of concepts, properties, procedures, classifications, formulas, 
and algorithms, with their respective meanings and foundations. For example, knowing 
the topological property, density of the rational numbers in R, lies in this sub-domain. 
KSM includes knowledge of the interconceptual connections that can be established 
among mathematical concepts. So, knowledge of relationships between infinity and the 
Archimedean property of the real numbers belongs to this sub-domain. KPM includes 
knowledge of how to proceed, reason, and establish validity in mathematics. Knowledge 
of how proofs are made using different methods is part of teachers’ KPM.  
Pedagogical Content Knowledge contains three sub-domains: knowledge of mathematics 
teaching (KMT), knowledge of features of learning mathematics (KFLM), and knowledge 
of mathematics learning standards (KMLS).  
KMT includes knowledge about didactic resources, strategies, tasks, and examples for 
making mathematical contents understandable. A teacher using an example to illustrate 
the meaning of a necessary condition forms part of his or her KMT. KFLM addresses the 
teacher’s knowledge about mathematical contents as an object of learning, for example, 
teacher’s knowledge about students’ difficulties in understanding proofs belongs to this 
sub-domain. KMLS describes what students should achieve in a given course, conceptual 
and procedural capacities and mathematical reasoning that are promoted in given 
educational moments. The sequencing of the topics completeness theorem, 
characterization of the greatest element, and the Archimedean property of the real 
numbers is an example of KMLS.  
KNOWLEDGE OF THE PRACTICE IN MATHEMATICS 
The idea of knowledge of the practice in mathematics (KPM) comes from the works of 
Schwab (1978), Ball (1990), and Ball & Bass (2009) regarding syntactic knowledge of 
mathematics, which implies that the teacher should know how to reason mathematically, 
know different kinds of reasoning, and know in which mathematical contexts a particular 
kind of reasoning is more adequate than others. In this regard, within KPM, the importance 
of the teacher not only knowing established mathematical results, but also how to proceed 
and think in mathematics to arrive at these results is highlighted.  
Knowledge that makes up part of this sub-domain is propositional logic, mathematical 
language and its precision, how definitions are made and used in the construction of 
mathematical knowledge, knowledge about different kinds of proof and their internal 
logics, the role that examples and counterexamples play in proofs, different kinds of 
heuristic reasoning, how knowledge is created in mathematics, how it is validated, 
reasoned, and generalized, and the role of mathematical conventions and symbols. 
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Although this knowledge is important, research carried out in MTSK with teachers at 
different educational levels reports scarce evidence of KPM in their mathematics classes 
(e.g. Montes, 2014; Vasco, 2015). In this regard, this investigation contributes to the 
understanding of the nature of this knowledge in university teachers. 
METHODOLOGY 
In this investigation, based on an interpretive paradigm and a qualitative methodology 
(e.g. Denzin & Lincoln, 2000), we carry out an exploratory study such that our results 
correspond to a first approximation for characterizing a university teacher’s knowledge of 
the practice in mathematics (KPM). Our work is supported by an instrumental case study 
(Stake, 1995) for which we chose as an informant a teacher who taught a real analysis 
course for prospective teachers of mathematics during one semester in a Chilean 
university.  
The teacher, who we will call Diego, is a mathematics researcher with a Ph.D., with more 
than 20 years of teaching experience, and this is the sixth time in recent years that he has 
taught the real analysis course. These academic characteristics of Diego make it likely that 
he possesses plentiful knowledge in elements of KPM. 
The data was obtained through video recording while Diego taught the system of real 
numbers. The video recordings were transcribed and later subjected to content analysis 
(Bardin, 1997), identifying the units of analysis associated with the KPM sub-domain and 
considering the differentiation between evidence and indication of knowledge (Moriel-
Junior & Carrillo, 2014). An evidence is an element that supports the presence of teacher 
knowledge, while an indication provides suspicion of the existence of knowledge but 
requires additional information in order to be confirmed as evidence.   
RESULTS  
In this section, we present episodes from one of Diego’s classes on the properties of real 
numbers that allow us to observe his knowledge of the practice in mathematics (KPM).  
Diego begins the class enunciating the property of the density of Q and R\Q in R. For the 
proof of this property, Diego takes an interval [𝑎, 𝑏] with 𝑎 and 𝑏 in R and considers the 
case 𝑎 = 0, then he generalizes it for any positive a. In fact, he takes 𝑎 and 𝑏 positive 
numbers and indicates that with this supposition there is no loss of generality.  

Teacher: We are going to assume that 𝑎 and 𝑏 are two positive numbers, which 
is not a great assumption. If they were negative, for example, I work 
with 	−𝑎 and −𝑏.	  
If I have 𝑎	and 𝑏 here [indicating on the number line], If I take −𝑎 and 
−𝑏 then they are on the other side of the zero.  
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 And if I find a rational number here [indicating on the number line 
between 𝑎 and 𝑏], then its opposite, will also be rational.  
And if I find an irrational number, its opposite will be irrational. 
And if one number is positive and the other is negative, then zero is 
rational, and it is between them, and the irrational will come from a 
proposition. 

 
 

In the previous episode, Diego’s knowledge of the different cases that should be taken 
into account to make a proof whose hypothesis possesses an implicit or explicit 
disjunction is observed, as is his knowledge that a particular case can be sufficient for 
showing the behavior of other cases in the proposition. Following this, the teacher’s 
knowledge about the consideration of cases to particularize or generalize, is a way of 
proceeding in mathematics and can be considered as an indicator of KPM. The teacher’s 
knowledge that the proof goes beyond the example of a concrete case and addresses all 
the possible cases the statement can include (e.g. Brodie, 2010; Montes, 2014) is part of 
his KPM.  
Additionally, Diego emphasizes that in mathematics for a fact to be considered valid it 
must be proven:  

Teacher: Now, a question, do I know of any irrational number that is less than 1 
and greater than 0?  

Student: The square root of square root of 2. 
Teacher: Ah! Why is it less than 1? We have to prove that it exists, and, wait, we 

have to prove that the root exists and that it is a number less than 1. And 
prove something else, because they didn’t ask us for a number between 
0 and 1, but rather for an irrational number between 0 and 1.  
So, you can take a real number, prove that its root exits, but you still 
don’t know if it is irrational or not. 

 
 
 
 
 

In the prior episode, Diego’s knowledge of proof as a way of validating in mathematics is 
shown. As Brodie (2010) maintains, in addition to knowing that a kind of proof exists that 
confirms the truth of a statement, it is necessary to know how this type of proof works. 
Furthermore, Diego points out the importance of this role of proofs (de Villiers, 1990), as 
he is in front of a course for prospective mathematics teachers and after proving the 
density property he says:  

Teacher: So, now you can say to your students with certainty that between any 
two rational numbers there is always an irrational number.  

The comment above shows as indicator of KPM, the teacher´s knowledge of the necessity 
and importance of proofs as a way of validating in mathematics (e.g. Balacheff, 2000).  
Continuing with the density proof, Diego discusses with the students about taking the 
maximum or minimum of a set of natural numbers. In the following episode, we observe 
Diego’s knowledge about the convenience of selecting a certain element to develop an 
argument in a proof. 
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Teacher: The issue is that if I take either of the two [the maximum or 
minimum] I can argue that there is a rational number in between 
them.  
What I have to guarantee before choosing one of the two is that in 
fact there is something to choose, so, which is easier to guarantee?  
The smallest or the largest? 

 
 
 

Student: The smallest. 
Teacher: Why? 
Student: Because of the well-ordered principle. 
Teacher: Of course, the minimum exists by the well-order principle.  

Nevertheless, on occasions, rather than choose, is necessary construct an element that 
allows developing an argument. Diego also gives evidence of this knowledge when 
discusses with the students about irrationality of a number that belongs to the interval they 
are working on. He uses √2 to construct √2 𝑚⁄  as shown below.   

Teacher: I know that √2 does not belong to the rational numbers. We proved it. 
 It is real, it exists, and it is not rational.  
 If I now divide this number by a whole number 𝑚, will it continue to be 

not rational?  will it become a rational number? 
 That is, this is not rational, but is this [pointing to √2 𝑚⁄  ] not rational 

either? 
According to above episodes, an indicator of KPM is the teacher´s knowledge of the 
construction or selection of elements for developing an argument in a proof as a way of 
proceeding in mathematics. 

Regarding to √2 𝑚⁄ , Diego prove its irrationality and establishes this affirmation as a 
lemma that he uses in different moments in the proof of the density property:  

Teacher: So, if I take the Archimedean property for 𝛿 = 𝜀 √2⁄ , then exists an 𝑚 ∈
𝑁 such that 0 < 1 𝑚⁄ < 	𝛿, and this implies that, √2 𝑚⁄  is smaller than 
𝜀 and does not belong to the rational numbers. 

 So, between 0 and 𝜀, no matter how small 𝜀 is, there is always a rational 
number, and there is always an irrational number. 

 Ok, so this affirmation that I just wrote, we’re going to write it as a 
lemma. 

This episode gives us evidence that the teacher knows that establishing preliminary results 
is a way of proceeding in mathematics that facilitates the development and the 
communication of a long and/or complex proof. 
On the other hand, regarding the existential quantifier present in the Archimedean 
property and the well-ordered principle, Diego expresses that the existential quantifier 
only gives information about the characteristics or properties of an element, but does not 
say what the element is like or which element it is, only that it exists 
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Teacher: When the for all quantifier is given, I can always choose an element that 
works best for me, but when it is existence, it’s “whatever you’ve gotten”, no 
more. Then as exists gives you “whatever you’ve gotten”, you have to do 
some work so that what you get, is what you need. 

 
 
 

An indicator of KPM in this episode is the teacher’s knowledge of the role and the 
meaning of the quantifiers when they are found in the hypothesis or in the conclusion of 
a proposition.  
Summarizing, indicators of the teacher’s knowledge of the practice in mathematics related 
to ways of reasoning, validating, and proceeding in mathematics has been evidenced. In 
the exposed episodes, the teacher teaches mathematical reasoning in order to give meaning 
to the mathematical activity (e.g. Brodie, 2010), not only for students to understand and 
acquire sensibility regarding how to establish truth in mathematics, but also, they find 
meaning in the need to do so (Montes, 2014).  
CONCLUSIONS  
A mathematics teacher is a professional whose knowledge of the discipline he or she 
teaches has a level of deepening, organization, and structure that is greater than what the 
students are going to receive (Ma, 1999). In this regard, KPM is necessary knowledge for 
the teacher, as it provides logical thinking structures that help to understand the function 
of diverse aspects of mathematics (Flores-Medrano, Escudero-Avila, Montes, Aguilar, & 
Carrillo, 2014). As observed in the case studied, the teacher’s knowledge of processes of 
particularization-generalization, of the necessity and importance of proof for validation, 
and the knowledge of different ways of proceeding in mathematics are closely linked to 
the transition to advanced knowledge (e.g. Pino-Fan, Godino, Castro, & Font, 2012) and 
are related to the particular way of mathematical work. 
In line with the ideas above, we consider that KPM allows the teacher to promote in 
students the construction of mathematical knowledge and the acquisition of abilities for 
reasoning, proof, and problem solving that are considered important for learning 
mathematics at all levels of education (e.g. Flores-Medrano et al., 2014).  
With reference to the indicators of KPM obtained in this investigation regarding ways of 
reasoning, validating, and proceeding in mathematics, we agree with Sosa, Flores-
Medrano, & Carrillo (2015) that indicators shown directly in empirical data can contribute 
to identifying, understanding, and analyzing teachers’ knowledge in their discipline. 
Given that teacher knowledge is a complex and multidimensional construct, more studies 
are necessary to deepen the understanding of its different components, in order to advance 
in interrogations proposed regarding how this knowledge is developed and how it is 
reflected in the teaching practice of university teachers (e.g. Biza, Giraldo, Hochmuth, 
Khakbaz, & Rasmussen, 2016). 
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This paper reports on a pilot study that has taken place during the winter semester of 
2017, in the context of a larger project whose goal is to contribute to studying the 
transitions from being a university mathematics student to becoming a post-
secondary mathematics teacher. With very scarce literature on these transitions at 
this specific level, this pilot study acts as an exploration into new teachers’ 
significant experiences that may be involved in shaping their relationships with 
mathematics, and its teaching and learning. We conducted a narrative inquiry with 
three new post-secondary mathematics teachers who were interviewed on a regular 
basis during a semester. Those interviews provided an insight into the new teachers’ 
experiences by pointing out themes that are relevant to them. We conclude with a 
discussion on what remains to be achieved to conduct this research. 
Keywords: Teachers’ and students’ practices at university level, Preparation and 
training of university mathematics teachers, Narrative Inquiry, Becoming a teacher. 
INTRODUCTION 
This paper presents a pilot study that took place during the winter semester of 2017. 
It addresses the transition from being a university mathematics student to 
becoming/being a post-secondary mathematics teacher. More precisely, the context is 
set in cegep institutions (general and vocational colleges), the first step in post-
secondary education in the province of Quebec, Canada. The focus of this study is on 
new cegep mathematics teachers who, with an education mainly – sometimes 
exclusively – in mathematics, negotiate the transition from being a mathematics 
student (undergraduate or graduate) to teaching at post-secondary level. We start with 
a brief description of cegep institutions, followed by a discussion on the literature on 
becoming a teacher at post-secondary level. The theoretical framework and the object 
of study are then described followed by the methodology and the main results. We 
conclude with the next steps in the study and our expectations for the results. 
A Few Words on the Context of Study 
Cegeps are general and vocational colleges. Two-year pre-university programs are 
offered in sciences, arts or social sciences; three-year technical programs, such as 
nursing, computer science, building engineering technology, etc., are also offered. All 
programs include compulsory general courses, such as philosophy, French, English 
and physical education and multiple programs offer mathematics courses. Some 
technical programs include mathematics courses that are specific to the field of study. 
Those courses are offered mostly by mathematics instructors, even if they are not 
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very familiar with the profession their students are aspiring to do. Pre-university 
programs in sciences and social sciences offer two calculus courses (differential and 
integral calculus) and one linear algebra course, slightly different from one program 
to the other, depending on the institution. Social science students are required to take 
a quantitative methods course. Some institutions also offer optional mathematics 
courses for science students, such as multivariable calculus, probability and statistics 
or discrete mathematics. Therefore, from advanced calculus for science students to 
quantitative methods for social science students, as well as mathematics applied to 
computer science, cegep mathematics teachers are required to teach a wide array of 
courses, to a wide range of programs and students.  
To teach in a cegep institution, individuals are (officially) required a 3-year 
undergraduate degree in mathematics or connected field (Conseil Supérieur de 
l’Éducation, CSÉ, 2000). However, each institution can add other requirements, such 
as a master or a doctorate in mathematics. A handful of universities in the province 
offer a one-year graduate certificate in cegep teaching, unique for all disciplines 
taught in cegep. Institutions will sometimes see it as an asset when hiring although 
cegep instructors who have completed one of these certificates qualify them as far 
from the reality of cegep teaching (CSÉ, 2000).  
This context is quite different than that of elementary and secondary institutions. To 
teach at these institutions individuals are officially required a 4-year degree in 
education, which sometimes include minimal formal mathematics training. Also, 
cegep institutions are often a place of transition from secondary to university 
education; students are introduced to more formal mathematics and some level of 
autonomy is expected from them (schedule less structured, no mandatory attendance 
to classes).  
 
Teaching at Post-Secondary Level 
Little is known about becoming a mathematics teacher at post-secondary level (e.g. 
Speer & Hald, 2008). More and more research about post-secondary mathematics 
education is being conducted, arguing this level is key to the training not only of 
future teachers but also scientists, engineers and mathematicians (Hodgson, 2001). 
However, many recognize the need for change in the way the mathematics are taught 
at this level. Most research emphasizes the mistakes and negative traits of university 
teaching and claim the inadequacy of the existing training programs on creating 
change and improving post-secondary teaching, while only few seem to offer 
concrete solutions (e.g. Beisiegel, 2009; Belnap, 2005; Speer, 2001; Speer, Gutmann 
& Murphy, 2005). About this, Beisiegel’s work (2009) focused on how graduate 
students “developed a sense of themselves […] as post-secondary teachers of 
mathematics” (p. 2) during a teaching assistantship. The author looks closely into the 
graduate students’ lives and their journey into becoming teachers. She concludes that 
existing training is inadequate and puts forward the need to investigate closely the 
experiences of these students becoming new teachers in order to effectively study 
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post-secondary teaching and training (2009, p. 25). This recommendation is the 
starting point for our work with new cegep teachers who were not so long-ago 
university mathematics students. Our goal is to better understand their experiences in 
their life as new mathematics teachers and in the transition from being a mathematics 
student to becoming a post-secondary teacher. 
The challenge – and partially the trigger for our pilot study – is that the literature on 
post-secondary teaching in general, and in cegep in particular, is very scarce. Looking 
at research on elementary and high school teachers, we see that it is heavily based on 
the education they received, namely a degree that aims at training them as teachers 
(e.g. Ambrose, 2004; Ensor, 2001; Franke & al., 1998). However, post-secondary 
mathematics teachers are mainly, if not solely, trained to become mathematicians. 
Therefore, we cannot transpose or extend the results encountered in the literature 
about teachers’ training for elementary and secondary levels to the group we are 
interested in. With this lack of background on the transition under study, we chose to 
conduct a pilot study to inform our main research project.  

THEORETICAL FRAMEWORK AND OBJECT OF STUDY 
The focus on experience of this study led us to consider Dewey’s philosophy (1938) 
to frame it. For Dewey, one learns through experience and experiences shape how 
one goes about the world and about new experiences (1938, p. 35). Dewey also sees 
being faced with challenging experiences as a key aspect of life, growth and change: 
“growth depends upon the presence of difficulty to be overcome by the exercise of 
intelligence” (1938, p. 79). Indeed, faced with a familiar context, one can have an 
idea of how to act, and the consequences of those actions, based on knowledge 
acquired through past experiences. However, more reflection is needed in an 
unfamiliar context, where one could have to connect many different, apparently 
unrelated, experiences in order to know how to act and the related consequences 
(1938, p. 68). This results in new knowledge that could be applied to one’s action per 
respect to future experiences.  
Because of the importance of new and challenging experiences in life, growth and 
change, we chose them to be the focus of our study. In the context of our research, 
becoming a mathematics teacher at post-secondary level is seen as a trigger for new 
and possibly challenging experiences. And because a situation may be new and 
challenging for some but not for others depending on one’s past experiences, it is 
important to put the focus on the experiences lived by the new teachers that are 
challenging and educational for them, and not all experiences that are lived or that 
might be assumed challenging and educational by others. We call those significant 
experiences. 
However, this approach opens the door to a broad and varied spectrum of experiences 
that may be significant in the transition under study. In our project, we focus on 
significant experiences that may shape new teachers’ relationships with mathematics 
and its teaching and learning. We will use the abbreviation RWMTL for the 
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remaining of this paper to refer to the relationships under study. These RWMTL 
entail the visions, opinions, beliefs, attitudes and feelings about mathematics, and its 
teaching and learning.  
In this sense, we hypothesize that new teachers possess a RWMTL, developed 
through years of doing, learning, being taught, and sometimes teaching mathematics, 
and that these RWMTL play an important role in their becoming post-secondary 
mathematics teachers. This hypothesis is supported by the work of Speer (2001) and 
Beisiegel (2009). Speer’s work emphasizes that graduate mathematics students have 
beliefs about mathematics and mathematics education, and that their RWMTL play a 
role on how new teachers will act in their new profession, how they will deal with, 
interpret and react to what happens to them. In particular, she claims that teaching 
assistants’ beliefs, especially about mathematics and undergraduate students, have a 
significant impact on how they teach and interact with students. These RWMTL are 
influenced by the education they received in university and by the implicit teacher 
training they received during their time as students (Beisiegel, 2009, p. 42). It creates 
a relationship, conscious or not, with education through their experiences as students. 
Indeed, Beisiegel (2009) claims that graduate mathematics students’ life experiences 
in a mathematics department, shape their “views of the discipline and teaching” 
(p. 43), as well as how they view what and how they should become. She argues that 
the experiences those students have can play an important role into how they define 
their role as mathematics teachers: “it appears that in the lives of mathematics 
graduate students there exists a complex and intricate interplay between the structures 
that they encounter, their feelings about mathematics and themselves and their ideas 
of their future role as mathematics instructors or professors” (p. 43). This last quote 
reinforces our hypothesis that the RWMTL play an important role in individuals 
becoming postsecondary mathematics teachers. In general terms, the goal of our main 
study is to investigate these RWMTL; in particular, our goal is to identify the nature 
of the significant experiences that shaped new teachers’ RWMTL. Incidentally, the 
goals of the pilot study this paper is reporting on were to come up with a list of 
themes relevant to, or in relation with, the significant experiences of the new 
mathematics cegep teachers, in order to support and guide the main study later on. 

METHODOLOGY 
Our methodology is based on ideas brought forward by narrative inquiry (“NI”, 
Clandinin & Connelly, 2000). NI argues that the essence of human experience 
happens narratively and choosing this method means acknowledging that people 
make sense and give meaning to their lives narratively – they lead storied lives 
(Clandinin, 2013, p. 13). Furthermore, NI takes into account the wholeness of 
someone’s life while allowing the researcher and the subject to collaboratively 
investigate and distinguish what makes it unique and specific.  

NI was developed specifically to understand and inquire into experiences, in relation 
to the people who have them and the physical and social context where they are 
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(Clandinin, 2013). This is to emphasize how past experiences and social and 
individual matters influence how someone lives an experience. In our case and for the 
research project, we use NI to determine what significant experiences shape new 
teachers’ RWMTL. In the context of the pilot study we are reporting on, we use NI to 
shed a first light into these significant experiences; collaboratively working with the 
subjects in thematising them, their nature and their shaping role.  

With this in mind, we built open and semi-structured interviews with broad questions, 
so teachers would account for what is actually relevant or important in their journey 
of becoming teachers. This gives a chance for the unexpected to arise.  
 
The Process of Investigation 
Weekly meetings were planned with three cegep teachers during a whole semester 
(January to May 2017), but we ended up meeting with each of them 15, 10 and 4 
times respectively over the whole semester. The meetings, which lasted between 30 
minutes and 90 minutes, were audio-recorded. The first teacher was starting his third 
year as a teacher, had completed a master in mathematics and a one-year certificate in 
pedagogy. The second participant was starting his second year of teaching, had 
completed a master in mathematics and had also completed a one-year certificate in 
pedagogy. The third participant was teaching his second course while pursuing their 
second year of Ph.D. in mathematics. They were asked to share stories of events they 
lived in the week prior to the meeting, which they identified as significant for their 
RWMTL, and of reflections they made about these events. After each meeting, an 
account was written in the form of a story of the meeting, using as much as possible 
the words of the teacher, with only slight changes for clarity purposes. Those 
accounts constitute the data that was analyzed. 

RESULTS 
Emerging themes 
The pilot study served as a way for us to learn about significant experiences of new 
teachers in relation with mathematics, teaching and learning. Our goal was to 
circumscribe areas, contexts or topics, we call them themes to be concise, which 
seemed to play an important part into their lives, thoughts and reflections. We wanted 
to find themes that seemed to foster experiences that were significant for them. This 
list is not meant as “a list of understandings” but rather as a list of words to help us 
think to understand the stories (Clandinin, 2013, p. 39). Of course, those ideas will 
not be final as we do want to stay open to what will come up as we meet new people 
next year, for the main study, and learn about their experiences. 
First, as we considered the teachers’ relationship with teaching, two categories arose: 
“being a teacher” (1) and “teaching to students” (2). The former (1) addresses the 
very personal aspects of the journey into becoming a teacher. It includes themes such 
as the new teachers’ expectations of the profession of teaching mathematics in a 
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cegep institution. This unfolds in reflections in relation to whether or not they 
attended cegep as students, the lifestyle they expect to have while holding such a 
position and the expectations arising from their memories of their own teachers. 
Another theme that came up is about being part of an institution and being part of a 
community of teaching, who respectively involves reflection on the role of cegeps in 
the society, and integrating in a team of established teachers. Finally, the ability to 
teach, which includes their reflections in relation to their own and others’ abilities, 
and the initial training they should have or want to have, were topics that played a 
role in their everyday life and reflections.  
The latter subdivision (2) of the themes in relation with teaching that we found 
addresses themselves as teachers in relation with their students. This includes the role 
they (should, can) have in their classroom, whether it is to pass on knowledge, make 
it interesting or getting them prepared for a job or university. They also reflected on 
the assessment of the level of difficulty of concepts or problems as very central in 
their daily life, whether it comes from their own judgment or from a formal source 
such as ministerial specifications. In the same line of thought, reflections on the 
assessments were playing a huge role in their experiences with questions such as how 
many, when, weight of each, and also how to prepare the students for them and how 
to assess exactly what needs to be assessed. Finally, their teaching method, using 
technology for example, and the ability to adjust to the students, to their ways of 
thinking and being, were present in the reflections expressed.  
As we considered the teachers’ relationship with learning, the following themes 
emerged. First, the expectations of the level of the students, as far as what they should 
know from high school or from previous cegep courses, and the expectations in 
relation to the students fulfilling their role in the classroom, such as participating in 
class and doing their homework, were central topics for the teachers. On another 
note, the teachers found challenging to manage the students’ expectations in regard 
of their teacher, as far as the act of teaching and the level of the material they were 
expecting. Finally, the teachers mentioned choosing the attitude towards the students 
as being a challenge, especially when it comes to differences between countries and 
provinces, since many teachers are not from Quebec, where the relationship between 
a teacher and its students might be different according to different cultural norms.  
As far as the teacher’s relationship with mathematics, we did not come up with a list 
of themes as we found that our data did not allow us to do so. Indeed, as we met the 
participants over and over, we realized that it was not spontaneous for the new 
teachers to talk about mathematics when asked about their daily lives. They favoured 
talking about teaching and their students. We conjecture that they have a number of 
things to think about other than the mathematics, such as the themes mentioned 
above, which seem to take much more work to be mastered or managed than to 
master the mathematics they are teaching. In other words, it made us realize that for 
(these) new teachers, it is difficult to talk about mathematics spontaneously when 
questioned about their experiences as new teachers; considerations in relation to 
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teaching and learning seem to take all their time. Among the three participants, only 
one would address mathematics when discussing their everyday activities; the 
individual still in the midst of completing their Ph.D. in mathematics. This made us 
think that the new teachers that were full-time, not actively conducting research in 
mathematics nor taking mathematics courses, seemed to have in the front of their 
mind matters that were farther from mathematics and closer to teaching and (their 
students’) learning. The two other participants, when asked directly, struggled to talk 
about mathematics for more than a few moments.  
Finally, we found multiple themes what were present across mathematics, teaching 
and learning. Indeed, it seemed that some institutional aspects specific to cegep were 
having an impact on the teachers experience at multiple levels. First, as mentioned in 
the introduction of this paper, cegep institutions offer science, social science and 
technical programs. The teachers expressed multiple times that there were challenges 
on multiple levels to teaching to different audiences. For example, in a differential 
calculus class for science, a teacher has to teach to future engineers and future 
doctors, two groups who do not have the same interests and goals. Also, this same 
teacher may teach in the same semester differential calculus for social science 
students (the course covers almost the same material), who have again very different 
interests, goals and aspiration, to study psychology or economics for example, in 
relation with mathematics and, for some of our participants, very different ways of 
thinking. Finally, that same teacher may have to teach mathematics to technical 
programs, where the goal is for the students to learn the mathematics they would need 
to apply in their field. Therefore, the teachers we met expressed how difficult it was 
to navigate teaching to those different audiences: how to teach them according to 
their expectations and aspirations, how they learn best, and to determine what kind of 
mathematics, and what in the mathematics, they really needed. 
Another key aspect across mathematics, teaching and learning is the fact that cegeps 
offer courses during the day and courses at night as part of continuing education. 
Indeed, teaching in continuous education meant that the teacher was not assigned an 
office space, and was not active in the department (they were not necessarily invited 
to department meetings). This also meant that they were often left on their own to 
discover the ways of the institution, would rarely come across other instructors and 
seemed to lack opportunities for asking advice. It is also important to mention that 
new cegep teachers often have to teach at multiple institutions during the first few 
years, sometimes even during a semester, before they can be guaranteed work at one 
place. This isolation and constant change seemed to be heavy for teachers who enjoy 
working with others, reflect through discussions on teaching, get advice from more 
experienced colleagues or just be active in their workplace. The students are also 
different, as most day-students are young adults who go to school full-time and, 
night-students are older and work full-time during the day. And again, to try to adapt 
to all those aspects turned out to foster a number of significant experiences for our 
participants.  
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CONCLUSION: WHAT’S NEXT 
This pilot study helped us understand and circumscribe themes that were at the heart 
of becoming a teacher in cegep institutions.  
However, through the 29 interviews we conducted, very few experiences were 
complete enough to be talked about in terms of how they played a role in the new 
teachers’ lives, mainly because the reflection in relation to an experience was often 
missing or incomplete. Indeed, from our data, we found that the reflective experience 
can take a long time, longer than the academic term in which the experience 
happened. This made us realize that our goal of understanding changes in the 
RWMTL could not be tracked over this short period of time. Indeed, our pilot left us 
believing that reflection on recent experiences is often not mature enough for teachers 
to be comfortable verbalizing it and sharing it with us. Also, we were unable to know 
if the recent experiences would play a significant role in the transition under study on 
a longer term. Therefore, to be able to hear about significant experiences, we need to 
go another route. Our conjecture is that by introducing a theme first and asking 
participants to share past experiences in relation to this theme, we could be able to 
grasp some of these significant experiences and the role they play in shaping new 
teachers’ RWMTL.  
Indeed, by asking the participants to talk about experiences that have shaped their 
RWMTL in relation to a specific area, context or topic, we hope to hear about the 
experience and the reflection associated to it. As Dewey (1938) would say, the 
quality of an experience comes mostly from what it opens to, i.e. the resulting tools 
and how they help understanding and acting towards new experiences (p. 27). This 
takes time, since we think about our past experiences differently with time, reflection 
and probably other experiences. We therefore want to understand how the new 
teachers evolved in this transition, how their way of living and acting towards new 
experiences evolved with time and new experiences. As Clandinin (2013) said, we, 
the participants and the researchers, “are always interpreting [our] pasts from [our] 
present vantage points” (p. 46). 
The pilot interviews also revealed that the participants had a hard time focusing on 
experiences specifically related to mathematics and often tended to discuss 
experiences related to class management, institutional constraints, etc. This lead us to 
design new protocols with the hope of instilling the norm that the goal is to talk about 
experiences with mathematics, and its teaching and learning.  
To conclude, the pilot study helped us in creating protocols for the main study that 
would guide our endeavour to understanding some of the experiences that shape new 
cegep teachers’ RWMTL, and more precisely, what kinds of experiences are 
significant as they transition from being mathematics students to cegep teachers, all 
while staying open to the new lives we will meet as the main data collection unfolds.  
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INQUIRY-BASED LEARNING 
Inquiry-based learning (IBL), roughly conceived as a teaching method in which stu-
dents are invited to learn in a way similar to that of a scientist or a mathematician,  
has been suggested, with different levels of precision, by several researchers, institu-
tions and pedagogical and didactic approaches. Artigue and Blomhøj (2013) include 
as instances of IBL the teaching proposals made from the following approaches in 
Mathematics Education: problem-solving, theory of didactical situations, realistic 
mathematics education, modelling perspectives, anthropological theory of the didac-
tic, and dialogical and critical approaches. For its part, European Union, through re-
ports prepared by experts (see, for instance, (Rocard, Csermely, Jorde, Lenzen, Wal-
berg-Henriksson, & Hemmo, 2007)) and projects (see, for instance, PRIMAS, http://
www.primas-project.eu), has supported also the implementation of IBL in educative 
european institutions.  
It would be incorrect to believe that these IBL proposals have been suggested as a 
means to reach the very same educational end. Let us mention some proposal aiming 
different ends. The Theory of Didactical Situations proposes the IBL, embodied in 
the notion of situation, as a means to achieve a real knowledge of mathematics 
(Brousseau, 1997, p. 22). For its part, the Anthropological Theory of the Didactic 
proposes the IBL, via the notion of Study and Research Path, as a means to transform 
the cognitive ethos of our society, that is to say, to provide new attitudes and habits 
with respect to the acquisition of knowledge (Chevallard, 2015). European Union, in 
reports and projects like the ones mentioned above, stands up for IBL as a means to 
remedy the declining interest of youth in science, confirmed by some OECD reports, 
and the subsequent lack of technological innovation in Europe. According to this 
point of view, IBL would contribute to change science and mathematics learning into 
a motivating activity. On the other hand, Europen Union also promotes IBL, for ins-
tance in the PRIMAS project, as a means to prepare students for a future in which “it 
is no longer sufficient (…) to learn facts” but “to be able to solve non-routine pro-
blems, to analyse data, to discuss with colleagues, to communicate their result and to 
work autonomously” (Maaß & Reitz-Koncebovski, 2013, p. 10). Therefore, the ends 
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to which different proposers aim to arrive through IBL are as varied as the very ends 
of regulated education: the acquisition of knowledge, habits, attitudes, values, etc. 
KINDS OF KNOWLEDGE 
To analyse possible uses of IBL in the acquisition of knowledge we have to wonder: 
are there different kinds of knowledge? In Epistemology it is customary to distin-
guish between three kinds of knowledge (Ichikawa, Steup, 2017; Fantl, 2017): know-
ledge by acquaintance, knowledge how and propositional knowledge. Knowledge by 
acquaintance is the kind of knowledge you have when you can identify something or 
someone (for instance, the label criterion of divisibility by 3) and the corresponding 
name, description, formulation, etc. (in this case: a natural number is divisible by 3 if 
and only if the result of adding all its digits is divisible by 3). Knowledge-how is the 
kind of knowledge you have when you carry out a series of intentional actions (for 
example, to apply the criterion of divisibility by 3) towards  the attainment of an end 
(to know whether a given number is divisible by 3, in this case). Finally, propositio-
nal knowledge is the kind of knowledge you have when you know why a certain pro-
position is true (for example, when you know why it is true the criterion of divisibilty 
by 3). Notice that in the knowledge by acquaintance you also seem to know the truth 
of a proposition (for instance, the proposition asserted by the statement “The criterion 
of divisibility by 3 is the statement A natural number is divisible by 3 if and only if 
the result of adding all its digits is divisible by 3”). But in this case this is just a con-
tingent truth, existing by convention. 
INQUIRY AND PROPOSITIONAL KNOWLEDGE 
In order to analyse possible obstacles to the implementation of IBL, we shall use a 
theoretical model of the notion of inquiry, namely, the one developed by the logician 
and philosopher Jakko Hintikka and collaborators in several works. Of course, one 
can also find other theoretical models of the notion of inquiry in some approaches to 
Mathematics Education. Anyway, here we choose the one provided by Hintikka due 
to its enlightening use of Logic, which seems to be an essential ingredient for a true 
comprehension of an inquiry process.  
Interrogative Model of Inquiry 
To get a better understanding of the concept inquiry, as claimed by Hintikka (1982),  

is not enough to study individual acts instantiating (…) whatever the concept in question 
may be. We also have to study the more complicated rule-governed behavioral complexes 
in which their “logical home” is. 

For this, Hintikka has developed a game-theoretical model, the so-called Interrogati-
ve Model of Inquiry (IMI), which presents a formal approach to inquiry. A good refe-
rence for this model, which has been explained here and there, is (Hintikka,   Halo-
nen, & Mutanenet, 2002). In few words, inquiry is regarded as a game with two pla-
yers: Inquirer and Nature. The game starts with a pair, (T, Q), where T is a given 
theoretical premise, and Q is a question. The game finishes when the Inquirer finds 
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an answer to Q. Along the game the Inquirer is allowed to make two kinds of moves: 
questions to Nature, and deductions. The only moves of Nature are answers to Inqui-
rer’s questions. We will not explain here all the details of Hintikka’s IMI, but at least 
we will point out two of its main features:  
1) The principal goal of an inquiry is the acquisition of propositional knowledge. 
2) Inquiry is a process in which a complex dialectics between deductions and ques-

tions takes place. 
We emphasize here these two aspects because, as we hope to show below, they seem 
to be crucial for practical didactic considerations about IBL.  
The goal of inquiry is to acquire propositional knowledge 
The inquiry finishes if we can deduce (based on the premise and on Nature’s answers 
to our questions) an answer A to the initial question Q (Hintikka et al., 2002, Theo-
rem 1). Of course, the deduction procedure, which is carried out through a series of 
familiar rules (Hintikka et al., 2002, § 2), has to do with semantics. Indeed, these ru-
les are such that if the premise T and Nature’s answers are true in a given model M, 
then the answer A is also true in this model M. This is why we can read in (Hintikka, 
1996, p. 38) that what the winning of an “interrogative game” shows is “knowledge 
of truths”.  
Later, we will speak of the implications of the presence of the model M in the use of 
IBL for teaching. For the moment, I would like to stress the fact that, according to 
Hintikka’s IMI, the result of an inquiry is a proposition. Inquiry is a quest for propo-
sitional knowledge, which is the kind of knowledge linked to non-contingent truth 
and falsehood. This does not prevent, in the course of an inquiry, the acquisition of 
knowledge-how and knowledge by acquaintance. But we would not consider an in-
quiry finished if, along this inquiry, we would have found a successful technique 
(knowledge-how), whose success remains unexplained. In other words, in the course 
of an inquiry we can get knowledge-how, but we then would pursue the correspon-
ding propositional knowledge able to explain the success (and even its limitations, 
portability to other contexts, etc.) of this knowledge-how. 
Dialectics between deductions and questions 
In a game of inquiry not all the questions can be asked at any moment. On the con-
trary, one is forced to pay attention to the presuppositions of that questions. As ex-
plained by Cross and Roelofsen (2016), there are different logical kinds of questions: 
whether-questions, which-questions, why-questions, etc. Each kind of questions de-
termines its own kind of presuppositions. For example, the presuppositions of which-
questions (e.g., “Which is the smallest prime number bigger than 7?”) are existential 
statements (e.g., “There exists a smallest prime number bigger than 7”). 
According to Genot and Gulz (2015), based in turn on (Hintikka & Hintikka, 1989), 
the Inquirer’s range of attention, at a given moment of inquiry, is the set of questions 
such that: 
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- The corresponding presuppositions are already available or can be obtained by a 
deduction move. 

- Inquirer is aware of those presuppositions. 
The main problem of interrogative inquiry is the mismatch between Inquirer’s range 
of attention and available Nature’s answers, since sometimes Inquirer might ask a 
question which has no answer, or fails to ask a relevant question whose answer is 
available.  
In the literature on IBL it is usual to distinguish between several kinds of inquiries 
depending on two parameters: how open is the initial question Q, and how guided is 
the inquiry (PRIMAS, 2011, pp. 11-12). 
Concerning the first parameter, a serious study of types of questions and degrees of 
openness in relation to the development of the subsequent inquiry is still to be done. 
Our point is that IMI provides a suitable theoretical framework to carry out such a 
study.  
Concerning the second parameter, we refer to (Hintikka, 1982) in order to learn about 
all the possible moves the teacher can do in a game broader than an inquiry-game, in 
which the Student-Inquirer and Nature are but two players among many others (the 
Teacher being one of them). In particular, a kind of move the Teacher can do in order 
to guide the inquiry is to manipulate Inquirer’s range of attention so that to avoid the 
mentioned mismatch. Among the possible kinds of manipulation one finds: to ask 
whether we can deduce a certain proposition from the available information (in order 
to use it further as a presupposition of a question), to attract attention to a certain (al-
ready proved) proposition and to incite to consider it as a presupposition of a ques-
tion, etc. One might wonder to what extent the Teacher can avoid this manipulation in 
a IBL process channeled to the acquisition of some propositional knowledge. Con-
cerning this, Genot and Gulz (2015) proved that “a trade-off between success [of the 
inquiry] and autonomy is unavoidable” (p. 1). Indeed, in one hand, with no manipula-
tion of Inquirer’s range of attention success might not be achieved. On the other hand  

The IMI [Interrogative Model of Inquiry] does however warrant the following conclu-
sion: a guaranty that an inquiry learner will be able to solve interrogatively a problem can 
always be obtained by manipulating the learner’s range of attention. (Genot & Gulz, 
2015, p. 18) 

OBSTACLES TO IBL 
Admittidly, to plan for and support IBL is difficult due to the presence of obstacles of 
different nature: political, cultural, concerning teacher’s view of her own profession, 
concerning teacher’s training, epistemological, etc. Let us use the IMI as a microsco-
pe to inspect here two of them. 
Propositional knowledge and models 
According to (PRIMAS, 2011, p. 22): 
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(…) many teachers find that IBL comes into conflict with the way they learnt science and 
mathematics in school and at the university, and even with the way they have been tea-
ching science and mathematics for many years. That is, with their beliefs about the nature 
of mathematics/science and/or their beliefs about teaching of mathematics/science. Pro-
bably this will be one of major obstacle you will find. 

This is strongly related to the fact that content taught in formal education is, typically, 
knowledge by acquaintance and knowledge-how, with a bleak lack of genuine propo-
sitional knowledge. Therefore, in agreement with the analysis of inquiry previously 
exposed, this content, not being propositional knowledge, can not be learnt through a 
proper inquiry. This is the case of the knowledge by acquaintance consisting in kno-
wing the statement of theorems (Pythagorean theorem, Thales theorem, etc.) without 
proof. It is also the case of the following examples of knowledge-how, which lives 
just in the realm of syntax, of manipulation of symbols, without being supported by 
meanings: all kind of algorithms of addition, subtraction, multiplication and division 
of several kind of numbers, algorithms to calculate the greatest common divisor and 
least common multiple, divisibility criteria for natural numbers, etc. Summarizing, for 
a piece of mathematics to be learnt in an inquiry-based fashion, it must be presented 
as propositional knowledge and, insofar as this kind of knowledge is concerned with 
true propositions, the presence of models fixing meanings and guiding the inquiry is 
unavoidable. In other words, without models there are no meanings, without mea-
nings there are no truths, without truths there is no propositional knowledge, and so 
there is no inquiry. 
One might argue that, after all, these mathematical objects do have a meaning. For 
instance, the fraction 2/3, applied to an object, refers to any portion of this object 
equivalent (with respect to a certain, previously fixed, magnitude: volume, mass, 
area, etc.) to the one obtained after performing the following steps: 
i) Split this object into three parts so that they were equivalent with respect to the 

fixed magnitude. 
ii) Take any two of these three parts. 
We would eventually agree that some objects, like natural numbers, positive frac-
tions, etc., are attached to a meaning in regular teaching. But I claim that this mea-
ning is not used later to support techniques. This makes the difference: whereas an 
unexplained technique (for example, to multiply fractions) is just mechanical know-
ledge-how, a justified one becomes propositional knowledge. Let us illustrate my 
claim with the case of the product of fractions. 
Typically, we say that the product of two fractions, a/b and c/d, is the fraction (a·c)/
(b·d), whose numerator (respectively, denominator) is the product of the two numera-
tors (respectively, denominators). Notice that this mirrors the common definition in 
formal mathematics, where a fraction is defined as an ordered pair (a, b) of integers, 
with b different from zero, and the product of two fractions, (a, b) and (c, d), is (a·c, 
b·d). This formal definition, taking part in the praiseworthy human enterprise of 
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founding Mathematics in Set Theory, does not need any further proof. Actually, being 
a definition, it can not be proved. But, for the existence of a proof, there is a more 
important obstacle other than the fact that it is a definition: there is no model-inter-
pretation neither of the term fraction nor of the term product referring to fractions. 
Concerning this we would like to underly two points:  
- Once you have a model-interpretation of these terms you can (at least) try ‘to prove 

your definition’, namely, you can try to ask the question “Is it true that, according 
to the fixed meaning of the terms fraction and product, the product of two fractions 
is calculated by following the former procedure?” 

- The way you answer the question strongly relies on the model-interpretation of the 
terms. 

Imagine, for instance, that your interpretation of the term fraction is the one above: 
the denominator indicates the number of equivalent (according to a fixed magnitude) 
parts into which a given object has been split, and the numerator indicates the number 
of these parts you are considering. You still have to give an interpretation of the term 
product. This is a hard task. To beging with, we can say that a product is the result of 
a multiplication. Now, what is a multiplication? In natural numbers, a multiplication 
is what we do to calculate an amount of magnitude which has been expressed as a 
whole amount of a whole amount, for instance, to calculate the cardinal of a set which 
results from the union of 27 sets, each of which has 63 elements. Similarly, we can 
say that the multiplication of fractions is what we do to calculate an amount of mag-
nitude which has been expressed as a fraction amount of a fraction amount. For ins-
tance, to know which is the total fraction we are considering when we calculate 2/3 of 
4/5 of some amount of a given magnitude? I would know how to answer it if I knew 
how to answer in the case of 1/3 of 4/5. Similarly, this will not be a problem if I knew 
how to calculate 1/3 of 1/5. But it is not difficult to calculate that if each of the 5 
fifths were divided into 3 parts, then the initial amount would be divided into 15 
parts. Thus, 1/3 of 1/5 is 1/15. Now, since 1/3 of 4/5 is 1/3 of 4 times 1/5, we get 4 
times 1/15, which is 4/15. And 2/3 of 4/5 is 2 times 1/3 of 4/5, that is to say, 2 times 
4/15, which is 8/15. One can see, in this and other examples, that the numerator (res-
pectively, the denominator) of the final fraction can be directly obtained from the first 
two fractions just by multiplying their numerators (respectively, denominators). 
These considerations show that only after having an interpretation of the term product 
(again, it is the result of a multiplication, and a multiplication is what you do to calcu-
late an amount of magnitude which has been expressed as a fraction amount of a 
fraction amount) you can prove the truth of the following proposition: “the product of 
the fractions a/b and c/d is (a·c)/(b·d)”. The good news is that models allow to go 
from knowledge-how to propositional knowledge. The bad news is that the acquisi-
tion of this propositional knowledge strongly relies on the chosen model. This is not a 
minor issue. What to do if we have many possible interpretations of our theoretical 
terms? Which of them should be considered? Is there any didactic criterion (for ins-
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tance, to overcome some learning obstacle) to choose among the different possible 
interpretations? For instance, the interpretation given above to the term fraction is the 
most usual, but it is not the only one. Should we also consider the others interpreta-
tions of the term fraction? If so, how to prove the multiplication formula for these in-
terpretations? We face the problem to choose criteria for attaching meanings such 
that: 1) they help us to fight against undesirable didactic phenomena specific to the 
usual teaching of fractions; 2) they are compatible with the meanings attached to ot-
her numerical fields, like negative or real numbers. 
How to plan and support inquiries for students? 
Even if all the questions raised in the previous paragraph about the implementation of 
semantics in mathematics syntax are answered, we still have to deal with further dif-
ficult problems. 
A very first one is: what could be the initial question Q of the inquiry? This question 
seems to be very difficult to find as it is intended to initiate an inquiry through which 
many kinds of mathematic entities would appear. Among them, notably, concepts. In 
this direction, we find the following teacher’s claim which figures in (Maaß & Reitz-
Koncebovski, 2013, p. 12): 

What about conceptual knowledge -surely students cannot be expected to reinvent mat-
hematical or scientific concepts for themselves? 

In terms of Hintikka’s IMI, to search for Q amounts to looking for a question such 
that, together with the premises T (student’s previous knowledge) and Nature’s ans-
wers (derived from mathematical examples possibly examined by students), allows to 
deduce (as a final product but also as something obtained in the course of inquiry) the 
aimed mathematical propositions. 
But still, even if Q is already clear, as it is said in Anderson’s study (as cited in PRI-
MAS, 2011, p. 20), teachers have difficulties with managing “the challenges of new 
teacher roles and new student roles”. According to Walker’s work (cited in PRIMAS, 
2011, pp. 20 - 22),  

Teacher loses control: although it depends on the degree of freedom teacher gives to stu-
dents, it is clear that in IBL students should take control of the lesson.  

Also, although the next quotation refers to IBL of science, it is perfectly translatable 
to mathematics: 

Inquiry based lessons might not “work”: there is the risk that experiments do not work, 
that students collect wrong data and that they will get a wrong idea. In the classical use of 
experiments, these are carefully planned so that they always work and offer the right 
exemplification of the phenomena that is at stake.  

Therefore, teachers have questions concerning their role in and control of students’ 
inquiries. In terms of Hintikka’s IMI, the question is: which would be the dialectics 
between deductions and questions in the expected inquiry? To have this dialectics re-
latively planned contributes to prepare the teacher in her duty of manipulating stu-
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dent’s range of attention, which, in turn, grants the success of the inquiry in order to 
provide the acquisition of the aimed propositional knowledge. 
PROPOSAL FOR TEACHING IBL TO PRE-SERVICE TEACHERS 
In order to solve the problem of finding, given a piece of mathematics to be taught, a 
good model for the theoretical terms of this content, a good initial question Q and a 
way to handle the corresponding inquiry, PRIMAS has the so-called professional de-
velopment modules [1]. There is, for instance, a module with examples of questions 
to initiate an inquiry. There is a module with strategies to promote students’ questio-
ning. There is, also, a module with examples of ways of acquiring concepts. But still 
there is a need of complete examples, including all together an initial question, the 
relevant moves students should do in the corresponding inquiry game, and moments 
in which the teacher could manipulate well enough student’s range of attention in this 
very game. 
As we said at the beginning of this work, the Anthropological Theory of the Didactic  
(ATD) is one of the proposers of IBL. ATD suggests the implementation of the so-ca-
lled paradigm of questioning the world (Chevallard, 2015). According to it, formal 
education would be carried out by means of study and research paths (SRP). Succin-
ctly, a SRP is the process you follow to find the answer A to a question Q. ATD emp-
hasizes that, along this process, you are involved in different kinds of activities: stud-
ying possible (perhaps partial) answers to Q, formulating new auxiliar questions, etc. 
Although less philosophically informed, ATD’s analysis of the notion of inquiry, via 
the notion of SRP, runs almost parallel with that of Hintikka, via the IMI. 
There is a continuous spectrum of types of SRP, the extremes of which are what we 
could call open and closed SRP. The open ones are those in which the teacher is not 
specially interested in leading the students towards a particular piece of knowledge 
O. In contrast, the closed ones are those in which the question has been selected with 
the intention of leading to the natural emergence, in the course of the SRP, of a cer-
tain piece of knowledge O previously selected. 
In formal mathematics this knowledge O is not expressed as the output of an inquiry, 
but as a series of axioms, definitions, theorems, examples and standard techniques. 
Therefore, closed SRP demand, at least, to reorganise the piece of knowledge O to be 
found along the inquiry. The corresponding reorganisations are what ATD calls Refe-
rence Epistemological Models (REM) (see, for instance, Sierra, 2006). 
Typically a REM is expressed in terms of praxeologies (Chevallard, 2006), that is to 
say, in terms of: types of tasks, techniques devoted to face these types of tasks, a te-
chno-logical considerations about each technique (a detailed description, a justifica-
tion, a study of its scope and reliability, possible enhacements) and, possibly, also 
some theoretical considerations about the situations under study (our metaphysical 
description of them: basic entities, basic properties, etc.). It is a key feature of a REM 
that essentially everything in it appears motivated by the study of the types of tasks.    
It is worth mentioning that normally the construction of a REM on a piece of know-
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ledge O is not only guided by the aim of using it as a basis of a SRP, but also by the 
intention of counteracting some undesirable didactic phenomena specific to the usual 
teaching of O (Gascón, Nicolás, in press). 
It is still an open question, but our point is that each REM [2] implicitly provides a 
complete example of a possible inquiry, and so a solution to the obstacles to the im-
plemenation of the IBL previously mentioned, namely, the need of interpretations-
meanings, the need of a good initial question and the need of knowledge about when 
and how to guide the students in their inquiry. More precisely, we think each REM 
implicitly proposes: a model for the theoretical terms and syntax appearing in the 
mathematical content O to be studied, a question Q to initiate an inquiry, a proof (ba-
sed on Logic and Game Theory) of the fact that the corresponding inquiry would fu-
lly cover O, and a set of moments of the inquiry at which teacher should evaluate, and 
possibly manipulate, Inquirer’s range of attention. In future works we will try to pro-
vide evidences for this point via a logical analysis (IMI-like, in terms of deductions, 
questions and answers) of some of the published REM.  
NOTES 
1. Available at http://www.primas-project.eu/artikel/en/1221/Professional+development+modules/

view.do 

2. For the moment, there are, among others, published REM on natural numbers, integer numbers, 
decimal numbers, proportionality, algebra and differential calculus. See http://www.atd-tad.org/
grupo-tad/ 
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This paper presents a model for instructional design in mathematics and reports from 

student teachers’ experimentation with it in secondary school. The model is framed 

within the theory of didactical situations in mathematics. It contributes to the 

research field through the notion of an epistemological model, which provides an

enhanced understanding of the stage of ‘conception and a priori analysis’ of 

didactical engineering. Findings show how the model is instrumental in creating

student teachers’ awareness of the impact of the milieu on the nature of the 

knowledge developed by the pupils.  

Keywords: teachers’ and students’ practices at university level, novel teaching

approaches, epistemological model, adidactical situation, milieu.  

INTRODUCTION 

The mathematical performances that represent the ambitions of the mathematics 

classroom and curriculum are constituted through teacher and student participation in 

activities stimulated by mathematical tasks designed (or selected) by the teacher for 

the realisation of an instructional purpose (Clarke, Strømskag, Johnson, Bikner-

Ahsbahs, & Gardner, 2014). The centrality of tasks as instruments in mathematics 

classrooms is reported in the TIMSS 1999 Video Study: in the eighth-grade 

classrooms that were investigated (in seven countries), at least 80% of lesson time, on

average, was spent on solving mathematical tasks (Hiebert et al. 2003). In this paper, 

I present a model for instructional design in mathematics, where tasks are embedded

in situations that preserve meaning for the target knowledge. Further, I report from 

student teachers’ utilising the model to teach an optional piece of mathematical 

knowledge in secondary school. The research question addressed in the paper is:

What do student teachers learn from using the model for instructional design?  

The model for instructional design is applicable when there is an intention of teaching

someone some particular mathematical knowledge. It is rooted in the theory of 

didactical situations in mathematics, TDS (Brousseau, 1997), the main concepts of 

which I present briefly in the next section.  

A BRIEF INTRODUCTION TO TDS 

TDS provides a systemic framework for investigating teaching and learning

processes and for supporting didactical design in mathematics, where the particularity

of the knowledge taught plays a significant role. In the following I explain concepts 

of TDS (based on Brousseau, 1997) that are central to the model for instructional 

design. 
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The milieu represents the elements of the material and intellectual reality with which 

the students interact when solving a problem. An adidactical situation is a situation

in which the students as a group try to solve the problem given to them on the basis 

of features of the milieu, without significant help from the teacher. The milieu of an 

adidactical situation is called an adidactical milieu. An appropriate adidactical milieu 

provides feedback to the students, whether their responses are adequate with respect 

to the knowledge at stake. The teacher has three main roles in the broader didactical 

situation: first is the devolution of an adidactical situation to the students, which 

means to present the adidactical situation and the problem to be solved and make the 

students accept this transfer of ownership; a second role is the regulation, which 

means to handle the evolution of the adidactical situation and its milieu; and, a third 

role is the institutionalisation of the knowledge developed in the adidactical situation,

which means to transform the contextualised responses produced by the students into 

scholarly knowledge aimed at by the institution.  

The didactical contract refers to the phenomenon that the interaction between the

teacher and students in a didactical situation is regulated by rules related to the 

knowledge at stake. These rules form a set of implicit reciprocal obligations and 

mutual expectations. In devolution, the teacher (implicitly) negotiates a contract that 

involves a temporary transfer of responsibility for the knowledge at stake, from the

teacher to the students.  

After devolution, four situations follow where the role of the teacher and the status of 

knowledge change: Situations of action, formulation, and validation are

(intentionally) adidactical, whereas the situation of institutionalisation is didactical. 

The adidactical situations are designed with milieus that are supposed to give 

feedback to the students, as mentioned above. The situation of action is where the

students engage in the situation on the basis of its milieu without the teacher’s 

involvement—that is, they construct an implicit solution (a strategy) that guides them 

in their decisions. The situation of formulation is where the students’ formulations are

useful in order to indirectly solve the problem—that is, formulation of an explicit 

solution that enables somebody else to operate on the material milieu. Here, the

teacher’s role is to make different formulations “visible” in the classroom. The

situation of validation is where the students try to explain a phenomenon or verify a 

conjecture. Here, the teacher’s role is to lead a whole-class discussion and trying to 

make the students use precise mathematical notions. The situation of 

institutionalisation is where the teacher’s role is to connect the contextualised

knowledge built by the students with scholarly forms of knowledge.  

A MODEL FOR INSTRUCTIONAL DESIGN IN MATHEMATICS 

The model for instructional design introduced here is based on the theoretical 

analysis presented in (Strømskag, 2017). It contains four phases: epistemological 

analysis; development of an epistemological model; implementation; and, 

institutionalisation. They correspond to design and implementation phases of 

didactical engineering (Artigue, 2015): epistemological analysis corresponds to 
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‘preliminary analyses’; development of an epistemological model corresponds to

‘conception and a priori analysis’; and implementation followed by

institutionalisation corresponds to ‘realization’. The model contributes to the research 

field through the notion of an epistemological model, which provides an enhanced

understanding of the phase of ‘conception and a priori analysis’ of didactical 

engineering. Its elements are illustrated in Figure 1 (the dotted curve signifies that the 

epistemological analysis informs the institutionalisation).  

Figure 1. A model for instructional design (reproduced from Strømskag, 2017, p. 912) 

Figure 1 shows how TDS concepts are constituents in design and implementation of a

didactical situation that aims at some particular mathematical knowledge. For an 

account of its methodology, see (Strømskag, 2017). The phases of the model are

described briefly in the following sections. 

Epistemological analysis 

Epistemological analysis of the knowledge at stake involves two components: an 

analysis of the knowledge itself, and a didactical analysis. The aim of analysing the

knowledge is to identify possible epistemological obstacles, to find out what this 

knowledge is for, what questions that motivated its genesis, and how its validity can 

be justified. A didactical analysis aims at surveying research on teaching and learning 
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of the knowledge at stake. The purpose of the epistemological analysis is to figure out 

what conditions must be fulfilled for a situation to implement the target knowledge 

(i.e., what problem would have the target knowledge as its solution), and by this 

inform the next phase, development of an epistemological model. 

An epistemological model 

An epistemological model of the knowledge at stake is a construct that consists of 

three components: first, a model of the target knowledge—possibly an iconic 

representation; second, a situation that preserves meaning—involving a problem that 

can be solved in an optimal manner using the target knowledge; and, third, milieus of 

situations of action, formulation and validation—designed so as to make students’ 

knowledge progress towards gradually more explicit and mathematical forms, based 

on an image of students’ adaptations to the milieus. The second and third component 

together can be considered a model of the generic and epistemic student’s intended 

learning—it is developed according to the conditions that must be fulfilled for a 

situation to implement the knowledge it defines. The point is to design milieus so that 

the responses produced by the students will become gradually more explicit and 

mathematical, and ultimately can be institutionalised to become the scholarly

knowledge aimed at by the teacher.  

Implementation 

The third phase involves implementation in the classroom, where the epistemological 

model is the basis for the teacher’s devolution and regulation of an adidactical 

situation (including a problem) aiming at students’ interaction with the milieus of 

situations of action, formulation and validation. Students’ learning during

implementation is understood as independent adaptation.  

Institutionalisation 

The fourth phase involves institutionalisation of the solution to the problem into 

scholarly and decontextualised forms of knowledge. Students’ learning in this phase 

is understood as acculturation, which is intended to enable them to know the place,

importance, and future of the mathematical knowledge reached.  

The two processes of learning—adaptation and acculturation—are governed by the 

didactical contract, and the relationship between them is understood as devolution 

and institutionalisation. The model presented in Figure 1 displays the teacher’s roles 

in the design and realization of a didactical situation: the process of didactical 

transposition (Chevallard, 1989) transforms the knowledge at stake into an

epistemological model; the process of devolution transforms the epistemological 

model into a problem embedded in a situation; and, the process of institutionalisation 

transforms the situated knowledge used to solve the problem into scholarly forms of 

knowledge aimed at by the institution. 
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AN EPISTEMOLOGICAL MODEL EXEMPLIFIED 

I give here a brief presentation of an epistemological model, where the target 

knowledge is the general numerical statement expressing that the sum of the first n 

odd numbers is equivalent to the square of n, possibly represented by 

. I have implemented the epistemological model exemplified here 

in a teacher education programme, a detailed account of which is given in 

(Strømskag, 2017).  

A model of the theorem 

A model of the target knowledge is created using a dissection of a square into L-

forms consisting of consecutive odd numbers of unit squares (where 1 is represented 

by one unit square, hence a degenerated L). A generic example is given in Figure 2,

illustrating that . It is made of a dissection of the fourth square 

into the first four odd numbers. The model of the target knowledge is not to be shown 

to the students. It is a tool for developing a model of the students’ intended learning, 

parts of which I describe below. 

Figure 2. A model of the target knowledge 

A situation that preserves meaning of the target knowledge 

I invented a situation based on an imaginary company called TILEL selling a special 

kind of tile formations that can be used to cover squares. The tile formations have 

shapes as L-forms, and consist of an odd number of unit squares. The idea of this 

situation is derived from the model of the target knowledge, shown in Figure 2.  

The task has two main parts: 

- Finding a method for building a square of side length a natural number, using L-

forms from TILEL.  

- Explaining why the method will work for any natural number. 

The milieu 

The milieu of action is the material milieu on which the students are supposed to 

operate. The material milieu consists of ten paper cut-outs with unit 

squares that represent the first ten odd numbers, as illustrated in Figure 3. The task in 

the situation of action is to find a method of building a square of side length a natural 

number up to ten, using L-forms of different sizes. The features of the milieu 

(common for action, formulation, and validation) are the following:   

- The material milieu does provide feedback: it is visible for the students whether or 

not they succeed in building a square of the intended size, using the L-forms. 
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- There is an obligation to use L-forms of different sizes. This is part of the 

didactical contract, and is to ensure that the students engage with odd numbers. 

- It is only the size of the resulting square that matters. This is part of the didactical 

contract, and means that different configurations of L-forms should not be 

distinguished (i.e., it is not a combinatorial task). 

Figure 3. The material milieu for the intended theorem (paper cut-outs) 

For an account of the milieus of formulation and validation, and the intended

knowledge progress based on the TILEL-situation, see (Strømskag, 2017). 

STUDENT TEACHERS’ EXPERIMENTS IN SECONDARY SCHOOL 

Methodical approach 

In 2017, within a master’s course in mathematics education, I gave a group of 13 

student teachers (hereafter ‘students’) the task of using the presented model to design 

and implement (with pupils in secondary school) a situation that preserved meaning

for a chosen piece of mathematical knowledge. The students were in the 4th or 5th 

year in a 5-year teacher education programme in mathematics and natural sciences. 

The preparation at campus for the experiment (spanning 4 lessons, á 90 minutes) 

entailed first, my introduction of necessary concepts from TDS and presentation of 

the model itself. Then the students worked on a task on percentages that I had

designed (using the design principles of the model) to let them experience and solve a

problem embedded in a TDS situation. The next step was my comparison of the a

priori and a posteriori analyses of the TILEL-situation, implemented with 20 

students in a teacher education programme (this experiment is reported in Strømskag, 

2017). This was followed by a brief presentation of two other models of

mathematical knowledge: models of convergent geometric series, shown in Figures 4 

and 5. The students discussed what series they were models of, and what the limit of 

each of them was.  

The last lesson comprised students’ work in four groups on an assignment that 

involved using the model for instructional design to design and implement a teaching

situation aiming at some particular mathematical knowledge (suitable for the class in 

which they were to do the experiment). I was present for guidance during the initial 

design part, where they created an adidactical situation with a milieu and a problem.
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Figure 5.

Data used to explore the utility of the proposed model consist of students’ reports 

from the experiments, which I received their consent to use (texts from the reports are 

translated into English by H. S.). Even if the students worked in groups to plan and 

conduct the experiment, they wrote individual reports. A demand was that the report 

contained a comparison between a priori and a posteriori analyses of the

implemented situation—that is, how the situation was suitable to develop the target 

knowledge.  

Results 

A general finding from the 13 reports is that the implemented situations did not have 

a satisfactory adidactical potential. The students described how they—contrary to the 

ideal roles of the teacher in TDS situations—had to intervene during the pupils’ 

work. This was explained by too little attention or effort to create an appropriate 

milieu for the intended knowledge. In the following, I present how three students’—

through their comparison of a priori and a posteriori analyses—in each case,

reflected on limitations of the milieu of the implemented situation, and suggested

improvements that might possibly strengthen its adidactical functioning. In the last 

case, the strength of the designed situation is also accounted for. 

The target knowledge for Uma’s pupils (upper secondary first year) was a formula for 

the number of components of the n-th element of a shape pattern,

. This knowledge was the solution to a problem embedded in a

situation with a barbeque area of variable size with fixed shape, covered by tiles as 

illustrated by the shape pattern in Figure 6.  

Figure 6. The material milieu for Uma’s barbeque area problem (iconic representations) 

Uma described how emphasising the structure of the elements of the pattern by, for 

example, using different colours, might have made it easier for the pupils to

implement the knowledge aimed, without the teacher’s guidance and help. This idea 

of Uma can be seen as stimulating algebraic thinking. She also commented on the 

importance of the devolution for the adidactical functioning of the milieu.  
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The target knowledge for Tracy’s pupils (upper secondary second year) was the

theorem expressing that the sum of two consecutive triangular numbers is equivalent 

to the square number of rank the same as the largest of the triangular numbers. The

theorem was symbolised as , where 

Tracey presented a model of the theorem, a generic example illustrating that 

, as shown in Figure 7. The target knowledge was the solution to a

problem embedded in a situation with production of quadratic birthday cards, made 

by two staircase figures (representing triangular numbers) as shown in Figure 8.    

Figure 7. Tracey’s model of the target

knowledge 

Figure 8. The material milieu for the 

birthday card problem (paper cut-outs) 

Tracey explained that the colours of the material milieu were an obstacle to pupils’ 

engagement with the knowledge at stake; the pupils referred to staircase figures by

their colours instead of by their structure (sum of natural numbers) and rank. Further, 

generalisation of the birthday card problem was supposed to be brought into effect by

the task: “Formulate a method to make a birthday card of an arbitrary size, and argue 

why the method works”. This part was problematic because the pupils understood the

concept arbitrary (in Norwegian: “vilkårlig”) in the meaning of any birthday card

made by the figures available in the milieu, instead of any birthday card made by

imaginary staircase figures of any size (as intended). 

The target knowledge for Tina’s pupils (grade 8) was an explicit formula for the

number of components of the n-th figure of a shape pattern (shown in Figure 9). This 

knowledge was the solution to a problem at a four-way crossing, where a car in the 

middle blocked the crossing and caused one car at each of the four ways to be stuck

every second. The situation after two seconds is shown in Figure 10 (this was the

material milieu along with a pile of paper cut-outs of cars).  

Figure 9. Tina’s model of the target

knowledge  

Figure 10. Material milieu for the crossing 

situation (paper cut-outs) 

For small numbers of seconds, Tina expected the pupils to use a recursive approach.

Hence, she tried to motivate for an explicit formula by asking for the number of cars 
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after 1 minute. Some pupils, however, used a strategy where they treated the situation 

as a direct proportionality (representing the four cars added each second) and added 1

in the end for the car in the middle. One pupil reasoned that since there were 21 cars 

after 5 seconds, he multiplied 20 by 2, then multiplied 40 by 6, and added 1 in the

end. This gave the right answer, but it was not what Tina was after. She was after a

functional relationship between the seconds that had passed and the total number of 

cars. Tina explained that in planning it was not anticipated that anyone would use the 

mentioned method, so the milieu did not have adequate feedback to handle it.  

In conclusion, Tina wrote: “The results show that the work in advance of 

implementation is very important regarding the knowledge actually developed by the 

pupils […] The results show, however, that feedback from peers has been 

instrumental in helping pupils to correct misunderstandings in adidactical situations.

This I see as a strength of the designed milieu.” Another strength reported by Tina is 

that in institutionalisation, the pupils were exposed to a new shape pattern, the 

relationships of which they were able to represent through algebraic symbols. Tina 

claimed that this was evidence that the knowledge developed through the experiment 

had in fact been generalised beyond the designed situation.   

DISCUSSION 

There were institutional constraints on the study reported here: the time available for 

instruction at campus was only 4 lessons (a modifiable condition); and the students 

had no knowledge of the pupils before the experiment (an unmodifiable condition).

The fact that the students—contrary to their intention—had to intervene during the

pupils’ work is not unique to the model for instructional design. What the 

methodology of the model offers, however, is validation of an implemented teaching

situation based on comparison between a priori and a posteriori analyses; this is 

similar to the methodology of didactical engineering (Artigue, 2015). In the model 

for instructional design, the a priori analysis is constituted by an epistemological 

analysis and development of an epistemological model, whereas the a posteriori 

analysis is an analysis of the realisation of the designed situation.  

The answer to the research question posed—about what the students learned from 

using the model for instructional design—is that the students were able to identify

relationships between the adidactical milieu and the knowledge progress in each case.

The points addressed in the students’ reports were about features of the milieu that 

constituted limitations on generalisation processes: In Uma’s case it was about the 

devolution, and a material milieu that failed to focus on structure and algebraic 

thinking. In Tracey’s case it was about features of the material milieu that suppressed 

focus on structure, and pupils’ not knowing the meaning of the term “arbitrary”. In 

Tina’s case it was about a milieu without feedback for a linear generalisation method 

used by many of the pupils. However, Tina also emphasised a quality of the milieu: 

how pupils’ progress in adidactical situations were enabled by feedback from peers.  
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Such comparisons between a priori and a posteriori analyses will identify 

relationships between the nature of the milieu and the knowledge progress in

adidactical situations, and thereby create awareness of what enables and what 

prevents pupils from reaching the target knowledge. In this way, the model has 

potential to inform future design (aiming at the same knowledge): it might provide 

deeper insight into the nature of the knowledge at stake, and a better understanding of 

necessary conditions on the milieu concerning its adidactical functioning.  

In conclusion, the impact of the study on my practice as a teacher educator is that the

students’ experiments are used as objects of study (with the same or other students),

where the task is to revise the experimented situations and their milieu to better 

match them with their original didactic intention, and subsequently, to implement 

them with pupils to validate them. In this way, the experimented situations are

considered material milieus for instructional design. This represents a meta-level 

perspective on instructional design in mathematics teacher education.  
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Our work is part of a thesis which deals with the teaching practices of university

mathematics professors. Practices of university professors concur specificities: an 

example is the articulation between teaching and research. We seek to characterize

the research impact in the teaching practices at university. We choose discrete

mathematics as an object of study. It is an area whose didactic transposition is not

fully achieved while the links with other mathematical fields remain undefined. These

elements make the choice of resources to be mobilized and conceived quite complex.

Our exploratory study draws on interviews with university professors aiming to 

characterize the interaction with resources; which can help us clarify the research 

activities impact on teaching practices in the case of discrete mathematics. 

Keywords: Teachers’ practices at university level, discrete mathematics,

undergraduate education, impact of research, resources. 

INTRODUCTION

Our work is part of an ongoing thesis which deals with the practices of university

mathematics professors. The study belongs to the growing body of research on 

university professors’ practices (Biza, Giraldo, Hochmuth, Khakbaz, & Rasmussen,

2016). At this level of our study, we designate by “University professors” the

university mathematics teachers who occupy teaching/research positions.  

While we are interested in teaching practices at university, we try to characterize the

different factors that impact them (institutional, didactic and epistemological), in

particular, the impact of the research activity on the teaching practices. Throughout

the text, we will be relying on the following definitions: 

- “Teaching practices” and “university teachers’ practices” to refer to the “teaching”

aspect of the university professors’ work;

- “Research activity” to refer to the research aspect of the profession.

Our study focuses on the place of discrete mathematics in undergraduate level.

Discrete mathematics holds an epistemological importance, and it is a branch whose

topics are not stabilized in mathematics curricula (Heinze, Anderson, & Reiss, 2004;

Hart & Sandefur, in press). Hence, it is particularly interesting to study university

mathematics professors’ practices in the field of discrete mathematics, a choice that

we will justify later in the document.

In a study of ICME [1], Biza et al. (2016) conducted a survey of existing research on

mathematics education at university. Drawing on journal publications and conference

proceedings on university mathematics education published since 2014, Biza et al.
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identified the current trends and the most recent advances in the field. They classified 

the existing work according to the topic of research. Among these, the influence of 

teachers’ research activity on their teaching approaches in particular contexts: the use 

of examples in mathematics tutorials and the use of graphic representations. The 

study highlights the emerging interest in taking into consideration resources in 

teaching at university, in particular, interactions with resources for mathematics 

education and their impact on teachers’ professional development. The study points 

as well the need for further research on practices of university mathematics teachers 

and the possible impact of their research activity on their teaching practices.  

The work that we present in this text is a contribution to the growing body of research 

in mathematics education on the practices of mathematics teachers at university level.  

We will present first the context of the study and the research questions. Then, we 

will describe the first steps in the construction of our theoretical framework and the 

collection of data. Finally, we will present the methodology we used in our study as 

well as some extracts, along with some preliminary results and perspectives.  

CONTEXT AND RESEARCH QUESTIONS 

The study of the practices of university professors is part of a field of research 

currently in development, but still largely unexplored. There are similarities in many 

aspects of the practices of secondary and university teachers: the preparation of the 

courses and tutorials, the design of instruction, the conception of evaluations, the 

classroom management, and the interactions with students. However, the practices of 

university professors conquer specificities, from an institutional point of view and 

given their training and their academic background.  

University professors have some freedom in the design of their courses and the 

choice of contents to be taught, and in the selection and development of resources. 

Moreover, their research activity can impact (or not) different aspects of their 

teaching practices (Biza et al, 2016; Mali, 2015) such as the instructional approach, 

the form of interaction with students, and the choice of new knowledge to be taught.  

University professors, in their teaching practices, maintain a constant interaction with 

various resources (Gueudet, 2017) derived from their teaching practices as well as 

their research activity (old resources, software, online resources, videos and podcasts, 

manuals, research articles, etc.). The interaction with the resources can take place at 

different moments of their teaching practices: in the design of the sessions, the choice 

of contents to be taught, the teaching in the classroom, and the evaluation of learning. 

In the working environment of a university professor, the same resources can be used 

in his teaching practices and his research activity (numerical computation software 

for example). Other interactions between teaching and research can take place, but in 

a less tangible way. The study of the university professors’ interactions with the 

resources could be a first step in clarifying the nature of the relationship between 

their teaching practices and their activity of research: in the choice of contents to be  
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taught, in the teaching mode of different mathematical contents, and in the learning 

they wish to develop with students (reasoning, application of properties, etc.).  

In mathematics education, teaching practices are not considered independently of the 

contents taught. The relationship between university teachers’ practices and their 

research activity may depend on several parameters, including the mathematical 

branches addressed in teaching and research; discrete mathematics, in particular, offer 

an interesting experience. Discrete mathematics have a real epistemological 

importance as they unfold in different mathematical domains; the objects are easy to 

access and can contribute to the understanding of other branches of mathematics 

(Grenier & Payan, 1998, Maurer, 1997). They provide an introduction to modeling, 

optimization, operational research, and experimental mathematics (Grenier & Payan, 

1998, Maurer, 1997). They promote the learning of proof and the development of 

heuristic processes in students (DeBellis & Rosenstein, 2004, Goldin, 2004).  

Discrete mathematics is a field in expansion, with significant achievements in society. 

Attempts to integrate discrete objects in the curricula appear in several countries at 

the international level. In France, the place of discrete mathematics in the curriculum 

is still not sufficiently stabilized and takes various forms depending on the 

educational context (Ouvrier-Buffet, 2014); which makes this branch very interesting 

to study the relationship between research activity and teaching practices of 

university professors. Hence the research questions can be formulated as follows:  

- How do university professors interact with the resources in / for the teaching of

discrete mathematics?

- How can we characterize the relationship between the teaching practices of discrete

mathematics at the tertiary level and research activities in the same field?

Trying to answer these questions requires specific theoretical and methodological 

developments.  

TOWARDS THE CONSTRUCTION OF A THEORETICAL FRAMEWORK 

We conducted a first theoretical choice: the documentational approach (Gueudet & 

Trouche, 2009). We will justify the choice in what follows. We note that the choice 

of the documentational approach constitutes a tool for a first exploration of the field. 

Gueudet (2017) based her work on the documentational approach (Gueudet & 

Trouche, 2009) to analyze the interactions of university professors with resources 

derived from their teaching practices. In the documentational approach, there is a 

distinction between resources and documents. University professors select, mobilize 

and use various resources (contents to be taught in class, written evaluations, old 

resources, etc.). This interaction with the resources generates a document, which is 

the association of resources and a scheme of use of these resources. A scheme is used 

here as it was defined by Vergnaud (2009) as the invariant organization of conduct 
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for a set of situations having the same aim. According to Vergnaud (1998), a scheme 

is a dynamic that has four interacting components:  

- An aim that can be easily identified and that indicates intentionality in the

organization of the activity;

- Rules of actions which are the ways of acting generated by the scheme in order to

achieve a specific aim;

- Operational invariants that influence the rules of action. They can be theorems-in-

action (propositions considered as true by the subject, but may be true or false) or

concepts-in-action (considered as relevant in a given situation);

- Possibilities of inferences, that are the adaptations that the subject can bring to his

activity in order to respond to the specificities of a situation corresponding to an aim.

A scheme developed by a subject is associated with a class of situations (Vergnaud, 

2009). A class of situations includes all situations having the same aim. In her work, 

Gueudet (2017) considered classes of situations for specific aims (for example, 

preparing an assessment in linear algebra) and thus corresponding to a single 

document, and larger classes of situations that are independent of the mathematical 

content (for example, preparing an assessment). She made these choices in order to 

observe the organization of the resources of university mathematics professors 

globally, and to analyze the operational invariants and the rules of actions associated 

to mathematical contents in more restricted classes of situations. Although Gueudet 

(2017) recognizes the impact that university professors’ research activity can have on 

their teaching practices, she did not focus on this aspect in her study.  

We rely on the methodology developed by Gueudet (2017). We seek to analyze the 

choices, of contents and resources, of university professors in their teaching of 

discrete mathematics. Furthermore, we are interested in the impact of the research 

activity on the teaching practices. Therefore, we will adapt and develop Gueudet’s 

methodology (2017) in a way to be able to consider the particular field of discrete 

mathematics and to take into consideration the research activity’s impact on teaching. 

ELABORATION OF INTERVIEW GUIDELINES AND DATA COLLECTION 

The methodology of our exploratory study is based on interviews. We consider 

university professors whose field of research is discrete mathematics in Lebanon and 

in France. The interviews, of approximately 90 minutes, took place in workplaces of 

the Lebanese professors in order to have access to their resources. For French 

professors, the interviews were conducted via Skype.  

We have developed the interview guidelines in order to characterize the interactions 

of university professors with various resources, resulting from their teaching practice 

and activity of research. We asked questions such as “What are the main resources 

you use for your teaching? How do you select the contents of your courses?” these 
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questions intended to give a panoramic view of the resources selected, mobilized and 

used in the different classes of situations (preparation of lectures and tutorials, 

evaluation); We believe that the type and nature of the resources (resources resulting 

from research or teaching) can inform us about the relations between the research 

activity and the teaching practices of university professors; furthermore, the choice of 

contents (lectures, tutorials and evaluations) can give us insight about the different 

rules of action and the operational invariants corresponding to the different classes of 

situations. Another question was “What are the conditions and constraints that guide 

your different choices?” Learning about the institutional conditions and constraints 

(related to the educational institution or to the research institution) can contribute in 

characterizing the research activity’s impact on teaching practices. Other questions 

were about the links with other mathematical fields, the collective work, the 

experimentation in classrooms, etc. 

We conducted pilot interviews with two discrete mathematics university professors, 

one in Lebanon and the other in France, to test the interview guidelines. We recorded 

and transcribed the interviews. To keep the anonymity of the professors interviewed, 

we will call them Michel (Lebanon) and Bertrand (France) throughout the document. 

THE METHODOLOGY OF ANALYSIS  

Our methodology of analysis consists of two steps which we will be presenting next. 

The first step is analyzing the practices of university professors in terms of their 

interactions with resources. For that, we detected the aims, mentioned by the 

university professors in the interviews, related to their teaching practices. In other 

words, we identified possible classes of situations based on statements, such as 

“preparing a lecture” or “preparing an assessment”. For each aim, we identified the 

associated resources (manuals, books, scientific articles, computers, online resources 

etc.) that were explicitly mentioned in the interview. For the rules of action, we relied 

on the university professors’ declarations; they described the ways they behaved in 

order to achieve an aim, and the adaptations they brought to their actions in 

accordance with the peculiarities of each situation. These are the conditions and 

actions that can be expressed in statements of the form “if (condition) ... then (rules of 

action)  ...” or “for (aim)  … I (action)  ...”. The regular ways of acting in specific 

situations reveal the presence of operational invariants that university professors do 

not always express in their discourse. To detect them, we identified in the interviews, 

the statements justifying the rules of actions, the propositions held to be true by the 

university professors (theorems-in-action) and the logical reasoning underlying the 

choice of actions to be conducted according to the specificities of each situation.  

We constructed a table for the documents of each university professor; horizontally, 

in each table, we come across a document associated with a given class of situations 

5
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(the resources used and the scheme of use). Vertically, we find the sets of the 

resources used, the rules of action and the operational invariants. 

The second step consists in studying the impact of the research activity on the 

teaching practices in classes of situations related to teaching. For each class of 

situations, first we choose to detect, in the set of resources used, the presence / 

absence of an impact of the research activity (for example, the choice of contents to 

be taught in class might be influenced by the research activity of the university 

professors or not). Then, we will define a typology of operational invariants; it would 

allow us to classify the reasons behind some rules of actions of the university 

professors and behind the “transfer” (use, selection and modification) of some 

resources from their research activity to their teaching: beliefs developed by the 

activity of research, gestures acquired with professional experience or institutional 

constraints and conditions. We will eventually search for additional tools for a deeper 

study of the impact of research activity on teaching practices, following the results of 

the pilot interviews.  

ANALYSIS OF THE FIRST PILOT INTERVIEW 

Our first interview was with Michel (Lebanon), whose research domain is graph 

theory. Michel teaches graph theory for students in masters’ degree and discrete 

mathematics for students majoring in mathematics in year 2. We detected, in Michel's 

declarations, the resources produced and / or used in his teaching practice.  

Aims Resources Rules of actions Operational invariants 

Prepare a 

course of 

discrete 

mathematics 

in second 

year 

well-known 

books in the 

world 

Scientific 

publications 

 Typical 

texts 

He tries to convey 

the basic ideas in 

discrete 

mathematics.  

He uses many 

examples. 

He chooses contents 

that allow students 

to discover ideas.  

The contents must be aligned 

with the official instructions of 

the major.  

 Definitions in discrete 

mathematics are simple, there is 

a need for applications to 

initiate the work.  

Understanding the ideas is very 

important in discrete 

mathematics.  

Implementing 

a discrete 

mathematics 

course in 

class 

well-known 

books in the 

world 

Typical 

texts 

He engages students 

in writing.  

He encourages 

students to read 

typical texts.  

Before writing the 

proof of a theorem, 

It is important that students 

practice writing.  

It takes examples and 

applications to familiarize 

students with discrete 

mathematics. 

It is very important to illustrate 
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he illustrates the 

ideas.  

the ideas in discrete 

mathematics. 

Table 1- Extract of Michel’s documents table from his teaching practices (aims, resources, 

rules of action and operational invariants)  

The operational invariants that justify the actions of Michel can be classified as 

follows. From a didactical point of view, the importance of understanding and writing 

ideas, as well as illustration; and the importance of examples and applications in 

familiarizing students with the field of discrete mathematics. From an epistemological 

point of view, the characteristics of proofs in discrete mathematics such as the 

accessibility of discrete objects and the simplicity of definitions. From an institutional 

point of view, the alignment of contents to ensure a smooth progressivity.  

In developing the contents of his courses, Michel uses examples and “technical 

proofs”. He believes that students need time to get used to reasoning in discrete 

mathematics. He tries to convey the basic ideas in the theory of graphs such as the 

definitions and characteristics of objects; a condition that guides his choice of 

contents is the compliance with the instructions of the major.  

In teaching, Michel stresses the importance of proof and illustration, and engages his 

students in reading and writing proofs. He teaches discrete mathematics in a 

theoretical way without real life applications; there is a lack of experimentation in his 

courses. He recognizes the importance of computers for research (for expanding the 

empirical space), but he does not use them for teaching in his classes.  

The interview with Michel was set up to test the guidelines. We have identified areas 

for improvement and adapted the guideline before the second interview. 

ANALYSIS OF THE SECOND PILOT INTERVIEW 

The second interview was with Bertrand. Bertrand (France) is a researcher in graph 

theory and a research director at the National Center of Scientific Research. He 

teaches by choice: an optional course of combinatory games and mathematical 

reasoning to students in first and second year and a course of graph theory for 

master’s degree students.  

We are particularly interested in his teaching practices at university. Therefore, we 

will identify the different classes of situations related to his teaching practices. We 

present in Table 2, an extract from the table of documents of Bertrand.  

Aims Resources Rules of actions Operational invariants 

Develop a 

course of 

combinatory 

games and 

Research 

problems 

such as 

hunting the 

He selects problems 

arising from research 

situations.  

It is important that students 

experience research problems.  

Problems in discrete 

mathematics are easily 
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mathematical 

reasoning for 

students in 

first and 

second year 

of university 

beast and 

problems 

issued from 

situations 

proposed in 

workshops. 

He makes choices 

that can put 

emphasis in his 

teaching on proofs. 

accessible. 

Discrete mathematics makes it 

possible to teach mathematical 

knowledge and knowledge 

related to the proof.  

Implement a 

discrete 

mathematics 

course in 

class 

Research 

problems 

such as 

hunting the 

beast and 

problems 

issued from 

situations 

proposed in 

workshops. 

He focuses more on 

proofs than on 

mathematical 

objects.  

He puts the students 

in the position of 

researchers. 

He uses material 

objects for 

experimentation. 

He does not use 

computers in 

teaching. 

Doing mathematics means 

working on proofs.  

It is important that students 

experience research problems 

in mathematics.  

In discrete mathematics, it is 

important to experiment with 

material objects. 

A computer can be interesting 

for research purposes, but does 

not contribute in the teaching 

of discrete mathematics. 

Table 2 - Extract of Bertrand’s documents table from his teaching practices (aims, 

resources, rules of action and operational invariants)  

The operational invariants that justify Bertrand’s actions can be classified as follows. 

From a didactical point of view, the role of discrete mathematics in developing 

reasoning skills, the importance of experiencing research moments for the students. 

From an epistemological point of view, the importance of proofs, the characteristics 

of problems in discrete mathematics (fun and accessible). From an institutional point 

of view, the freedom of a researcher in the choice of contents of his courses.  

To develop a course in discrete mathematics, Bertrand selects research problems and 

problems arising from situations experienced in workshops. The course of discrete 

mathematics to students in first and second year of university is optional and students 

are not all in scientific majors. Bertrand has some freedom in the choice of contents. 

He is convinced that the course should develop students' reasoning and knowledge 

about proofs, as well as knowledge related to discrete mathematics; these convictions 

guide his choice of contents. He focuses in his teaching on the activity of proof.  

Bertrand’s classroom management is based on putting students in situations of 

research. He does not provide the answers, he believes that they must experience 

research situations like real scientists. He engages students in experimentations with 

games such as hunting the beast. He thinks that computers are not useful in class.  

8 
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RESULTS AND DISCUSSION  

First results at the interview grid and difficulties encountered in the analysis 

In the analyses, we realized the impact of the level of education (Bachelor or Master) 

on the interactions of university professors with the resources in their teaching 

practices and on the relationship between teaching practice and research activity. 

We relied on the methodology developed by Gueudet (2017) to study the interactions 

of university professors with resources derived from their teaching practices. It 

seemed to us that the institutional context has a large impact on teaching practices in 

university (distinction between Bachelor/Master, progressivity in certain fields, 

training of non-scientists, etc.). Taking into account the institutional context implies 

new theoretical and methodological choices. 

First results at the research questions 

Our first research question is “How do university professors interact with the 

resources in / for the teaching of discrete mathematics?” There is a big difference 

between Michel and Bertrand. Michel’s course of discrete mathematics in the second 

year of university aims to prepare the students for a Master’s degree in graph theory; 

a constraint on the choice of contents is the compliance with the instructions of the 

major. On the other hand, Bertrand's course is optional, which allows him a larger 

degree of freedom in the selection of contents. Bertrand uses, in teaching, resources 

derived from his research activity, which may be due to his involvement in research.  

Both professors insist on the importance of reasoning and proofs, therefore they 

select contents that contribute to develop students’ ability to write proofs. Bertrand 

uses games and material objects for experimentation while Michel’s approach focuses 

more on theories. Both professors state that the use of software cannot contribute to 

reach the teaching objectives in class, although it can be useful for research purposes.  

The second research question is “How can we characterize the relationship between 

the teaching practices of discrete mathematics at the tertiary level and research 

activities in the same field?” Bertrand holds a position of research. He adopts a 

researcher’s attitude in class; he engages students in research and adapts the plan of 

his course according to their results. On the other hand, Michel follows a stiffer plan 

in his teaching. Quoting Bertrand “A teacher has to have the knowledge and pass it 

on, a researcher does not know everything, seeking answers is part of the research”.  

The analysis of the pilot interviews shows that the choice to consider the interaction 

with the resources is revealing for the study of the relations between teaching 

practices and research activity. The operational invariants identified are based on 

experience in teaching as well as experience in research. It seems interesting to 

define, according to the interviews, a typology of operational invariants (for classes 

of teaching situations). We plan to complete the data collection with a questionnaire 

that will be disseminated in universities in Lebanon and France for an analysis of the 

9 
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institutional context of discrete mathematics education. The results of this 

questionnaire will give us a map that will allow us to better study the case.  

[1] International Congress on Mathematical education
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In this paper, a developmental research project involving offering mathematical 

modelling (MM) activities to university biology students is presented, and a 

particular aspect is studied, namely the project as a collaboration between 

mathematicians and mathematics educators. The aim of the paper is to investigate 

what characterizes their participation in the project, and how the characteristics of 

the project and its development might influence this participation. Interview data as 

well as observation data from the MM sessions are analysed, and findings show that 

the mathematics educator served as a broker influencing the practice of the 

mathematician. It is hoped that the findings of the study can be of use when planning 

future collaboration between mathematicians and mathematics educators. 

Keywords: teaching and learning of mathematics in other fields, teachers’ and 

students practices at university level, cross-disciplinary collaboration, mathematical 

modelling, communities of practice. 

Recent developments in science as well as in higher education have led to a greater 

need for cross-disciplinary collaboration. For instance, the changing needs of a 

biological science more and more dependent on mathematical methods has led 

several authors to suggest a closer integration of mathematics and biology in the 

education of future biologists (e.g. Brewer & Smith, 2011). This was part of the 

motivation for a recent collaborative developmental research project between two 

Norwegian centres of excellence in higher education (The Centre for Research, 

Innovation and Coordination of Mathematics Teaching, MatRIC; and the Centre for 

Excellence in Biology Teaching, bioCEED) in which biology-related mathematical 

modelling (MM) activities were introduced to undergraduate biology students as a 

means to increase their appreciation for, and competence in, mathematics. In this 

paper, however, I will use the project as a case for studying a different kind of cross-

disciplinary collaboration, namely between the mathematicians and mathematics 

educators developing and conducting the project.  

MATHEMATICIANS AND MATHEMATICS EDUCATORS 

There is a close relationship between mathematics and mathematics education – as 

remarked by Kilpatrick (1998, p. 36), “neither can exist without the other”. However, 

collaboration between mathematicians and mathematics educators is still relatively 

rare, although it has received attention in the literature (e.g. Fried & Dreyfus, 2014), 

and its importance and relevance to both communities have been emphasized (e.g. 
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Nardi, 2008). Dörfler (2003) has pointed out several obstacles to collaboration. For 

instance, the communities of mathematics and mathematics education are often quite 

separated: mathematicians and mathematics educators work in different departments, 

teach different subjects and have different educational backgrounds. Furthermore, 

there are few arenas where they can meet professionally: they mostly publish in 

different journals and attend different conferences. Dörfler also highlights prejudices 

about the other field as a possible obstacle to collaboration, something also discussed 

by other researchers (e.g. Ralston, 2004). On a related note, the mathematician in 

Nardi’s (2008) book states the need for mathematics educators to “be able to talk to 

mathematicians about mathematics”, for there to be a basis for collaboration (p. 270). 

At the same time, “there is no such thing as the mathematician, the mathematics 

educator, or the mathematics teacher” (Thompson, 2014, p. 319). What is described 

above is only the general picture – there are numerous examples of functioning 

collaborative relationships. Most of these, however, take place on the individual 

rather than the organizational level. Indeed, the importance of individual 

relationships and trust is pointed out repeatedly in the literature. As Thompson 

(2014) puts it: “successful collaboration requires mutual trust and respect among 

collaborators in the context of a shared commitment to solving a problem” (p. 331). 

UNIVERSITY MATHEMATICS TEACHING AS SOCIAL PRACTICE 

The MM activities forming the basis of the project were developed and conducted by 

a MatRIC team consisting of a mathematician and three mathematics education 

researchers, and in order to study what characterized this collaboration I will adopt a 

Communities of Practice perspective (Wenger, 1998). A community is “a group of 

individuals identifiable by who they are in terms of how they relate to each other, 

their common activities and ways of thinking, and their beliefs and values” (Biza, 

Jaworski & Hemmi, 2014, p. 162), and a community of practice (CoP) is a 

community characterized by mutual engagement, joint enterprise and shared 

repertoire (Wenger, 1998, p. 73). Mutual engagement concerns, for instance, norms 

and social relationships within the community; joint enterprise refers to common 

understandings of the aims and ideals of the practice; and shared repertoire concerns 

what and how various resources are used in the practice (Biza et al., 2014, p. 163). 

Participation in a CoP can vary from the central participation of an experienced “old 

timer” to the more peripheral participation of a newcomer (ibid, p. 162). An 

individual’s sense of belonging to a CoP involves engagement – active involvement 

in mutual negotiation of meaning; imagination – extrapolating from your own 

experiences to form an image of your own place within the CoP; and alignment – 

coordinating your activities to fit within the structures of the CoP and contribute to 

the enterprise (Wenger, 1998, p. 173-174). 

The CoP perspective has been used successfully in research on university 

mathematics teaching (Biza et al., 2014). For example, Jaworski and Matthews 

(2011), in a study of university teachers’ lecturing, found little indication of a joint 
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enterprise of teaching. Also originating in research using elements of social practice 

theory to investigate university mathematics teaching is the Spectrum of Pedagogical 

Awareness (SPA) (Nardi, Jaworski, & Hegedus, 2005). The SPA provides a means 

of describing and reflecting upon university mathematics teachers’ pedagogical 

thinking and practices, and consists of four levels ranging from Naïve and 

Dismissive, through Intuitive and Questioning and Reflective and Analytic to 

Confident and Articulate (ibid, p. 293). There are also several case studies using 

socio-cultural perspectives to investigate university mathematics teachers’ teaching 

practices (e.g. Treffert-Thomas, 2015). However, there is little research on the type 

of situation investigated in the present paper. Here, a team of mathematicians and 

mathematics educators collaborate on developing and conducting teaching activities 

at the university level, not primarily aimed at introducing new mathematics but rather 

at getting students to apply the mathematics they already know in new contexts. Of 

relevance for its focus on the collaborative aspect is the study by Cooper and 

Zaslavsky (2017), investigating a mathematician/mathematics educator co-teacher 

partnership in a course on mathematical proof.  

The present study seeks to answer the following questions: What characterizes the 

participation of the mathematician and mathematics educator in the project? How 

might the characteristics of the project and its development influence this 

participation? 

THE PROJECT – METHODS, DATA AND PARTICIPANTS 

As mentioned above, the project involves MM activities aimed at improving biology 

students’ motivation for, interest in, and perceived relevance of mathematics in 

biological studies. The planning and teaching was carried out by a MatRIC team 

consisting of one mathematician and three mathematics educators. The 

mathematician, Yuriy Rogovchenko, is a professor of mathematics with extensive 

experience of MM both in teaching and in research. He is also coordinator of the 

MatRIC network on MM. Yuriy had the main responsibility for planning the 

mathematical content of the sessions and selecting tasks. The mathematics educators 

were: Simon Goodchild, professor of mathematics education and leader of MatRIC, 

with extensive experience of teaching mathematics in secondary school, but whose 

teaching experience at the university level mostly consists of courses in mathematics 

education; the author, a post-doctoral researcher in mathematics education with a 

background in mathematics, whose role in the project was mostly data collection and 

research support to Yuriy; and a doctoral student in mathematics education who was 

mostly acting as an observer and research assistant in this iteration, in preparation for 

the second iteration which would form a major part of his doctoral project. Since 

writing about their collaboration at the level of detail necessary for this paper would 

make anonymization practically impossible, professors Goodchild and Rogovchenko 

kindly agreed not only to participate in the research, but also to make their identities 

known. For simplicity and brevity, however, in what follows they will be referred to 
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as ME and M, respectively. The project was conducted at a well-regarded Norwegian 

university where biology students take one compulsory mathematics course, taught 

in the first semester, designed not specifically for the biology undergraduate program 

but for students from about twenty different natural science programs. Hence, the 

course provides little opportunity for focusing on issues specific to biology.  

So far, the project has been through two cycles of development; however, in this 

paper only the first iteration is considered. It consisted of a pilot, where the team met 

with 10 volunteer students for one three-hour session, a regular sequence of four 

three-hour sessions with a different group of 11 volunteer students concurrently with 

their compulsory mathematics course, and a follow-up meeting with the second 

group of students the following semester. All sessions were taught in English, but 

student group-work was conducted in Norwegian. The basic structure of the sessions 

was similar throughout, with an introductory lecture conducted by M introducing 

some ideas and tools of MM, followed by small-group work on various MM tasks set 

in a biological context, with whole-group follow-up, led by M but with some input 

from ME. Examples of tasks included estimating the density of a rabbit population 

based on the number of roadkill rabbits, and investigating the growth of a yeast 

culture in a petri dish. All sessions were video recorded. Data analysis is still 

ongoing, but initial results have been presented elsewhere (Viirman & Nardi, 2017). 

The analysis presented in the present paper draws on the video-recorded data from 

the four regular sessions in the first cycle of the project. To provide further insight 

into the collaborative process involved in developing the project, after the conclusion 

of the second iteration of the project the author of the present paper conducted an 

audio-recorded, semi-structured group interview with the two principal members of 

the team, M and ME. It was decided not to include the fourth member of the team 

(the doctoral student) in the interview, since his involvement in the first iteration of 

the project was peripheral. A thematic content analysis was then conducted, of the 

interview data and the video data from the whole-class sessions, using the CoP 

framework as a tool for structuring themes, focusing on signs of mutual engagement, 

shared enterprise and joint repertoire, central and peripheral participation, and 

possible obstacles to a CoP developing. For instance, concerning shared enterprise, I 

looked at what M and ME said about their aims when developing the project, and 

then examined the video-recordings of the sessions looking at how these aims 

translated into what was emphasised in their teaching practice, comparing and 

contrasting the practices of M and ME. Some consideration of my own role in the 

project is appropriate. Although I was involved in the project from an early stage, 

and am well acquainted with its aims, my role has been that of the researcher. I did 

not participate in the planning of the content of the sessions, and my involvement in 

the sessions was for the most part restricted to data collection. 
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RESULTS 

Looking at the video recordings from the sessions, certain patterns in the behavior of 

M and ME could be discerned, where M often had a very clear focus on the 

mathematics and the tasks, while ME assumed responsibility for the students’ 

wellbeing and the nature of their learning. For instance, in the second session work 

on the first task had taken longer than expected. Still, M, enthusiastic about the 

mathematics and eager to get through all that he had planned for the session, begins 

introducing the next task: 

M: You will be solving an important medical problem. You are 

ME: Yuriy? 

M: Yes? 

ME: Are you aware of the time? 

(…) 

ME: I’m talking to our student friends. Are you ready to go on and have a look at 

this task, or are you saying “Hey, hang on a minute, it’s five o’clock?” 

Similar situations occurred on several occasions during the sessions, with M getting 

carried away by the mathematics, and ME intervening on the students’ behalf. At the 

same time, this pattern was not entirely consistent. There were occasions where M 

showed a clear concern about the students’ wellbeing and enjoyment, telling jokes 

and striving to make the students feel at ease. Similarly, there were occasions where 

ME got to present his solutions to some of the tasks, displaying an obvious 

enthusiasm for and a deep engagement with the mathematics. Still, the overall 

tendency was relatively clear. 

Another more distinctive difference between M and ME concerned their engagement 

with student contributions to the solution of the MM tasks. Again, M had a strong 

focus on the mathematics, to the extent that he displayed signs of what Ralston 

(2004) calls the One Right Answer Syndrome, clearly having one particular solution 

in mind. This affected the way he lead discussions. For instance, when students came 

up with solutions or suggestions that fit with this expected solution, they were 

received as being the “correct” ones, as in these examples from sessions 1, 2 and 3, 

respectively: 

M: Any other assumptions you were using in your work? 

S: Yeah, that 97 dead rabbits were per 24 hours 

M: OK, that’s a good one 

S: Because it said that they were easily recognizable 

M: Correct, you read exactly what was meant there 

(…) 
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M: I will show you how the reasoning goes 

--- 

M: When we look at the answers, the second group gave the correct one 

--- 

M: This is the perfect one (…) the only thing we need to check is, how far is 

this from my computation 

Particularly the last quote displays how M used his own solution as the yardstick 

against which student solutions were measured. On the other hand, when student 

contributions did not resemble what he had in mind, M often did not comment on 

them at all, or used a different terminology: “Well, that was a very constructive way 

to solve the problem.” This contrasts with how ME talked about the students’ work 

on the tasks, as in this example from session 3: 

ME: We really, really, REALLY would like you to share with us solutions that 

you have worked on within groups on those tasks. Now, it doesn’t matter at 

all whether they are good or wonderful solutions, perfectly correct 

solutions, whatever perfectly correct means, whether they look like his 

[points at M] solutions or look like my solutions, which will be quite 

different – it really doesn’t matter. What matters is the engagement, and the 

thinking processes, and sharing with each other, and with us, the thinking 

processes.  

In line with this, on the few occasions during the sessions where ME conducted 

discussions, he instead let the students lead. He interrupted students’ presentations 

less frequently, and was not so quick to evaluate their contributions. When 

presenting solutions to tasks he emphasized the process of doing mathematics over 

the result, presenting his mistakes and dead-end attempts, seeing these as 

opportunities for students’ learning. 

Still, there were signs of M gaining an increased understanding of students’ needs 

and potential for contribution as the project progressed. Preparing the last session, he 

decided to involve the other team members more in the session, providing support to 

the groups in their work, stating: “We should have done this in the first session”. He 

also expressed this willingness to reflect on his own practice in the interview: 

M: Feedback was essential, so it was like my teaching was shaped during those 

four sessions towards some goals – I was experimenting, I was changing – 

partly I was listening to what you [ME and the author] were saying, partly I 

was trying to do what I felt was appropriate (…) I had very useful advice 

which might have affected my way of teaching. 

Interviewer: In what way? 

M: I probably more often look at what I’m doing from the other side. From the 

students’ perspective. 
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At this point, ME commented that this was “very much the didactician’s view”, and 

that it showed “a readiness to reflect” upon his own teaching. This readiness to 

reflect and change was further emphasized by how M later in the interview talked 

about his plans for a new course he would be teaching, where he intended to 

incorporate more student-centred teaching methods. 

In the interview, when discussing the collaboration M emphasized the particular 

qualities of himself and ME: “We are both weird people”. When asked what this 

“weirdness” consisted in, he alluded to the stereotypical views mentioned by Dörfler 

(2003), saying that he has a (for mathematicians) uncommon interest in teaching, 

partly due to the influence of ME, while ME is (for a mathematics educator) 

uncommonly knowledgeable in mathematics. Furthermore, both M and ME strongly 

emphasized the value they place on their professional relationship – that two people 

from adjacent, but still different fields can work so productively together. M added 

that in no department where he had worked (and he has worked in numerous places, 

in many different countries) had educational matters been on the agenda. The 

collaboration was always on the individual level, never on the departmental, and as 

ME added, this holds true even at their current university, where mathematicians and 

mathematics educators work in the same department. At the same time, M expressed 

the view that the differences between mathematicians and mathematics educators had 

helped improve teamwork within the current project, but emphasized how this was 

dependent upon all participants being able to engage with the mathematics. 

Concerning other aspects of successful collaboration, ME highlighted the need for 

mutual motivation: “Maybe this interdepartmental work has worked so well because 

bioCEED wants something, and we [MatRIC] want something, and those two wants 

coincided.” When asked what the mutual motivation was that enabled M and ME to 

work together, ME highlighted the will to see MatRIC succeed, and how this success 

was in part dependent on the collaboration between ME and M. M struggled with 

formulating an answer, but emphasized interest in and curiosity about mathematics. 

The main obstacle to collaboration mentioned in the interview was lack of time for 

preparation: 

ME: In terms of preparation, one of the things that I (…) found a bit frustrating, 

was that the preparation was very often done between three and four o’clock 

in the morning on the day of the session, and therefore there was very little 

opportunity for discussion between the three of us [M, ME and the author] 

about what was going to happen in that session.  

ME attributed this to differences in individual styles of working, but still pointed out 

that because of this and other time constraints, discussions about the mathematical 

and didactical aspects of the sessions rarely managed to go below the surface level. 

In response to this, M stated that his initial plan was to have the whole sequence of 

activities pre-planned, but that the feedback he got while conducting the sessions led 

to continuous refinement and change. Still, he agreed that providing the rest of the 
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team with the tasks further in advance would have been preferable. Generally, both 

M and ME stated that the main difficulty with the project was the lack of time – 

everyone involved were so busy with other things that they found it difficult to 

engage with the project as deeply as should have been needed. 

CONCLUSIONS AND DISCUSSION 

In the findings from the actual teaching sessions, M was seen to a large extent 

emphasising the mathematics and ME showing more concern with the students, their 

wellbeing and learning experiences. These characteristics of the participation of M 

and ME in the sessions align well with observations made by Cooper and Zaslavsky 

(2017), where a similar pattern could be seen. At the same time, these characteristics 

were not uniform throughout the sessions, and the overall picture of their 

engagement with the content and the students is not quite as simplistic as that. Still, 

the differences are discernible and should not be downplayed.  

Furthermore, one might ask whether a CoP developed around the project. From what 

M and ME expressed in the interview there are definite signs of mutual engagement 

– they both emphasize the close professional relationship, and there is a dedicated 

support between the members of the project in making it work. There is however, 

less evidence when it comes to the joint enterprise and shared repertoire. In 

particular, practical circumstances regarding the project – the late preparation, the 

lack of time for discussion and reflection – made the development of a shared 

repertoire difficult. The responsibility for developing activities and tasks fell mainly 

on M, and the ways of interacting with students differed quite substantially, as the 

findings above show. It is also difficult to find evidence of joint enterprise. On a 

surface level, this could of course be said to be the project itself, but looking at what 

M and ME say about the aims and motivations behind the project, the existence of a 

joint enterprise is less clear. For ME, as leader of MatRIC, it is about the success of 

the centre, whereas for M it has more to do with engagement in mathematics at a 

personal level. Hence, it is difficult to claim that a CoP has developed.  

Rather, what happened was that ME, occupying a more central position within the 

mathematics education community, acted as a broker (Wenger, 1998, p. 105), 

introducing elements of mathematics education practice and thereby contributing to 

changing M’s practice. In this way, M displays the beginnings of a trajectory from a 

peripheral position towards a more central. In the interview, M clearly states how 

participation in the project has changed the way he views teaching – he talks about 

“seeing things through students’ eyes”, described by ME as “a didactician’s view”. 

These changes are perhaps less clearly visible in the video recordings from the 

sessions, but as mentioned above there are signs of an increased awareness of 

students’ needs as the project progressed. This could also be understood in terms of 

the Spectrum of Pedagogical Awareness. When M talked about reflecting about his 

own practice, and “seeing through students’ eyes”, this fits well with the Reflective 
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and Analytic level of the spectrum, which is characterized in part by “awareness in 

starting to articulate pedagogical approaches and of reflection enabling making 

strategies explicit” (Nardi, Jaworski & Hegedus, 2005, p. 293). At the same time, 

much of what M did in the sessions would rather fit with the Intuitive and 

Questioning level of the spectrum, with a less explicitly articulated pedagogical 

thinking and a more intuitive recognition of students’ difficulties and needs (ibid, p. 

293). Hence, a movement along the spectrum could be discerned as the project 

progressed, and there is some support for claiming that M’s pedagogical awareness 

has increased as a consequence of the project. 

Regarding what factors contribute to functioning collaboration between 

mathematicians and mathematics educators, what has been reported here is only a 

single case, and one should be wary of drawing strong conclusions. Still, it is worthy 

of note how well findings from literature, about mathematicians demanding that 

mathematics educators know the mathematics (Nardi, 2008) and the need for 

individual relationships and trust (Thompson, 2014) resonate with what M and ME 

say in the interview. Both point out these factors as crucial to their collaboration, 

while lack of time for joint preparation and reflection is pointed out as the main 

obstacle. An awareness of the importance of these factors will be highly useful when 

planning and conducting further collaborative efforts involving mathematicians and 

mathematics educators. Indeed, providing institutional means and resources for 

preparing and developing projects of the kind discussed in this paper might be one 

way of moving parts of the responsibility for establishing collaboration from the 

individual to the institutional level, something which is necessary if such 

collaboration is to be sustainable. 
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This case study of a university teacher of calculus1, based on data from a 

questionnaire, semi-structured interview, and observation, illustrates how the

teacher used their knowledge of calculus teaching to sequence the building blocks of 

mathematical theories (BBMT) of the concepts of calculus. 

Keywords: teachers’ practices, university level, teaching calculus. 

INTRODUCTION 

Calculus is important at the university level because understanding calculus is an 

essential step in understanding how the world works. It is a foundation on which 

other skills can be built and is often a requirement or prerequisite for STEM

programmes. Nevertheless, it is a challenging area regardless of which educational 

institution is offering the instruction (Petropoulou et al, 2016). As such, while there

is much research on calculus learning and teaching, Rasmussen et al (2014) identify 

teacher knowledge as an under-developed topic. In this study our research questions 

are; how does a calculus teacher demonstrate their pedagogical content knowledge

(PCK), to achieve their aims, to develop instructional strategies (ISs), and to assess 

students’ understanding? Here we present elements of a single case study. 

RESEARCH ON PCK OF UNIVERSITY TEACHERS 

Numerous studies, from Shulman (1987) to Khakbaz (2015), have indicated that 

teachers require different types of knowledge in the classroom. PCK was proposed 

by Shulman (1987) as an essential component of teacher knowledge, defined as a

“special amalgam of content and pedagogy that is … understanding” (p.8). Later

work by, for example, Khakbaz (2015), confirms that it is necessary to go beyond the

subject (e.g. Calculus) and examine how the teacher interprets the subject matter

(e.g. the interpretation of calculus) and how this is linked to their role in facilitating 

learning in the classroom. Research on PCK of university teachers remains limited. 

THEORICAL FRAMEWORK AND METHODOLOGY 

For the purpose of this study, we adopted Lessing’s (2016) PCK framework. Based 

on this, we take PCK as a combination of knowledge of purposes of teaching 

calculus, of the building blocks of mathematical theories (BBMT) and of ISs, while

taking into account knowledge of learners’ conceptions and difficulties. 

A mixed methods multiple case study design was adopted for this research.

Qualitative data was gathered by semi-structured interview and observation of eight 

taught sessions of the module from 15 April to 15 July 2017 to explore the ways in 
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which calculus teachers implemented their PCK in the classroom setting. 

Quantitative data was gathered using a questionnaire (multiple choice) on their 

knowledge of ISs, learners’ conceptions in teaching and learning calculus, and 

learning difficulties. The qualitative data was analysed by coding and categorising 

according to the theme in order to identify the ways that the participating teachers 

demonstrated their PCK during their calculus teaching.  

THE CASE OF TEACHER JOHN 

John is a mid-career mathematician with four years of experience of teaching 

calculus1 at a university. The calculus teaching strategies employed by John were a 

pattern of topic-specific ISs based on using the BBMT in teaching calculus. From 

our data, it was clear that John approached each calculus topic through the BBMT 

using axioms, definitions, theorems and proof. Therefore, the lecture structure 

chosen by John often aligned with the mathematical concept used in the topic. Here, 

John often started the lecture with a definition, then theorem, and then sometimes the 

proof and then examples illustrated with graphs. On one occasion, John asked the 

students to read a proof. In an interview, John explained that, in the lectures, students 

are sometimes asked to read a proof because John wants to understand the students’ 

conceptions, and misconceptions, of proofs. On one occasion, in a part of the topic 

‘continuous functions on an interval’, John gave some examples and asked students 

to give a definition. At other times, John used ISs such as diagnostic techniques, 

(through class discussion, etc.), reviewing previous lessons as a way to introduce 

subsequent lessons, and using various mathematical representations. 

CONCLUSION 

The analysis of John illustrates how knowledge of calculus teaching (i.e. calculus 

PCK) was used in sequencing the BBMT of the concepts of calculus. The next stage 

of the research is documenting other cases as part of the multiple case study. 
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The U.S. uses the Praxis® tests to measure academic skills and the subject-specific 

content knowledge needed to be a teacher. This study examined Praxis® 

Mathematics Content Knowledge scores from 2006 to 2016 to describe patterns in 

who are becoming certified to teach mathematics in the country (n=89,693). 

Longitudinal analyses were used to discern patterns in the demographics of 

examinees and trends in exam performance across several demographic 

characteristics. The results reveal substantial differences in performance and pass 

rates between examinees of different genders, races, undergraduate majors, 

undergraduate GPAs, and census regions. From our analyses, we suggest several 

measures for the improvement of mathematics teacher preparation. 

Keywords: assessment practices, longitudinal analysis, mathematical content 

knowledge, teacher preparation. 

DESCRIPTION OF POSTER CONTENT  

This poster will provide information on the U.S. Praxis® (ETS, 2017) tests to an 

international audience. A small section will describe the theoretical perspective (Hill, 

Blunk, Charalambous, Lewis, Phelps, Sleep, & Ball, 2008; Shulman, 1986) and how 

it was used in this study. Our research questions will be included on the poster, as 

well as how data were collected and analyzed to answer these questions. The middle 

portion of the poster will include several graphics depicting the model resulting from 

the analysis, specifically the statistically significant factors in whether test takers 

pass the exam and the demographic characteristics of those who pass. These figures 

will illustrate the substantial differences in performance and pass rates between 

examinees of different genders, races, undergraduate majors, undergraduate GPAs, 

and census regions.  
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We will offer several measures for the improvement of the mathematics teaching 

workforce and establish potential leaks in the teacher pipeline that may impact the 

quality and diversity of U.S. mathematics teachers (Gitomer, Brown, & Bonett, 

2011). Specifically mathematics education faculty would do well to recognize that 

students who have sat in their classrooms and lecture halls are represented in this 

sample and that these scores are at least partially reflective of what they have 

retained from their courses (Kleickmann, 2013). The adoption of instructional 

strategies that promote students’ long-term conceptual understanding over those that 

validate rote memorization may be a critical choice on the part of mathematics 

faculty in improving the preparedness of future mathematics educators. 

NOTES 

1. In full disclosure, the U.S. Educational Testing Service reviewed this paper, though the analyses 

were conducted by our research team. 
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The paper gives a frame for a concept for university maths teacher education, that is 

based on three keynotes: central scientific notions, history and language. Amongst 

other benefits, the keynotes serve as cross-links between the different courses the 

students go through in their studies. 

Curricular and institutional issues concerning the teaching of mathematics at 

university level, Teaching and learning of specific topics in university mathematics, 

teacher education, history of mathematics, language education. 

INITIAL CONDITIONS AND REQUIREMENTS 

Subject-specific content knowledge is an essential component of professional teacher 

knowledge (for the concept of professional knowledge see for example Schwarz 

(2013)). It forms a basis for the ability to judge a specific topic’s significance for an 

entire subject and thus forms an important requisite for didactical reflections. 

Considering this, mathematics teachers’ content knowledge must comprise not only 

advanced insight into singular topics but also a netlike overview of mathematics as 

one, consisting of notions and relations between them as well as methods and basic 

principles. To achieve this, a university curriculum for future teachers demands 

cross-links between the single courses. Basic notions (such as sets, functions, 

algorithms…) that are found in diverse mathematical subdomains seem suitable for 

serving as cross-links between scientific lectures, both, in a horizontal and a vertical 

way. This would transfer Bruner’s (1969) concept of fundamental ideas and a spiral 

curriculum onto teacher education.   

Basic ideas and fundamental notions can be found when one looks into the history of 

a subject as they should appear throughout time (Schweiger, 1982), though maybe in 

different disguises. Apart from that aspect, including the history of mathematics into 

teacher education has been suggested long-since, presumably bearing a whole lot of 

further benefits (Schubring, 2000; Katz, 2000; Jankvist et. al., 2016), for example 

experiencing mathematics as a process conducted by human beings rather than as a 

mere product.  

Generation, clarification and precision of mathematical concepts and notions require 

the use of language (e.g. Morgan et al., 2014). Without language, definitions and 

propositions could not be worded and not be taught either, so language forms another 

essential part of content knowledge, concerning scientific as well as educational 

knowledge. Due to increasing heterogeneity in pupils’ language abilities, it is 
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necessary that future teachers learn to illustrate subject matters on differing language 

levels and that they become able to vary by those levels. 

THE HILDESHEIM CONCEPT OF LEARNING ALONG KEYNOTES 

We believe that integrating the three keynotes – basic notions, history and language 

of mathematics – into a teachers’ curriculum and thus cross-linking the courses 

supports the construction of a professional teacher content knowledge as required. 

Therefore, they should become a constitutional part of all scientific lectures 

throughout studies. Our poster presents a yet draft concept of how the three keynotes 

might constitute a scaffolding for a spiral curriculum, where historical and language 

elements serve as enrichment as well as embedding of basic contentual and 

methodical concepts. The concept seems convenient for linking subdomains as well 

as different levels of challenge throughout a curriculum that is adapted to the specific 

needs of future teachers. A research frame for evaluating efficacy of the concept has 

not yet been developed. 

Examples of implementation by emphasis on basic ideas in the lectures, integration 

of historical tasks in practices as well as inclusion of training of language skills (for 

more details on this see the poster presented by Schmidt-Thieme at INDRUM on the 

project SuM_MaSt) will be presented on the poster. 
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In the Faculty of Mathematics at Bielefeld University, new tutors have to attend the 

further training BiMathTutor, which took place for the first time in the winter term 

2017. At this program, they learn about the essentials of teaching. This program is 

being researched to the effects on tutors and their students. The poster presents the 

theoretical framework, the concept of BiMathTutor, the research design and first 

results. 

Keywords:1. Teacher’s and student’s practices at university level, 7. Preparation 

and training of university teachers, 4. Novel approaches to teaching. 

INTRODUCTION 

In this paper, we focus on the development of a further training for tutors. The main 

aim of a further training for tutors is to improve teaching skills and students’ 

learning. In most cases, the tutors are experienced students who are interested in 

passing down their knowledge and, of course, earning some money to support 

themselves. These teaching skills should be based on a qualification program to 

establish and maintain standards of teaching and learning. 

In the Faculty of Mathematics at Bielefeld University, starting in October 2017, new 

tutors have to attend the program for further training called “BiMathTutor” 

(Bielefeld Mathematics Tutor Program). This program has been reformed over the 

past year and evaluation is happening under different aspects, namely, the change of 

attitude towards teaching, the expectations of the tutors of what is important for the 

tutorials and the effects of “BiMathTutor” on the exam results of the students 

attending the tutorials (see figure 1).  

Figure 1: Time table of BiMathTutor 
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RESEARCH QUESTIONS 

The object of research are the effects of is the tutor program. Hence, the research 

questions for the survey are the following: 

1. How do new tutors assess the further training? 

2. What expectations do students visiting the tutoring class have? 

3. What is the grade of effectiveness of the further training on the students’ exam 

performance? 

The first hypothesis is that new tutors will know the typical process and the 

organisational aspects of a tutoring class, will be able to write and apply a horizon of 

expectation, will execute different methods to engage students in a learning process, 

will establish characteristics of a good tutoring class, will be aware of students’ 

difficulties dealing with university mathematics and will investigate their own 

strengths and weaknesses. On the second research question, one will expect that 

students have the goal to pass the exam. They will not be aware of the learning 

process involved and the possible simplification by a tutor, who attended 

BiMathTutor. The third hypothesis is that the further training has an effect on the 

students’ exam result. 

THEORETICAL FRAMEWORK 

The theoretical framework is still in process of elaboration. The design of 

BiMathTutor was made by Dee Fink’s theory “Designing courses for significant 

learning” (2003). The key components “Learning goals”, “Teaching and Learning 

activities” “Feedback and Assessment” have to be in unison. Additionally, the 

situational factors must be considered. 

DATA COLLECTION 

The flowsheet (see figure 1) shows the different elements of the intended surveys. 

Module 1-3 and the observation session plus feedback conversation is stated on the 

top. The semester week shows a typical semester at Bielefeld University. There are 

two general cohorts, one being the tutors and the other being students visiting the 

tutorials. We have several times of measurement indicated by black bordered boxes. 

The study uses a combination of quantitative and qualitative methods. The sample 

size of the tutor survey is N1=24. The sample size of the student survey is N2= 597. 

The test instruments are in form of questionnaires and exam results.  
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Getting language awareness: A curriculum for language and language
teaching for pre-service studies for teachers of mathematics
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As language is an important medium as well as an aim of mathematics lessons at
school,  teachers  of  mathematics  have  to  achieve  the  required  competencies  in
language and language teaching. Therefore, we designed a curriculum, which offers
students opportunities to get these competencies throughout their academic studies.
Some examples and first results will be shown.

Keywords:  Teaching and learning of  specific  topics,  Curricular issues,  Language
awareness, Special language; Explaining.

LANGUAGE AND LANGUAGE TEACHING COMPETENCIES AS PART OF
TEACHER PROFESSIONAL KNOWLEDGE

Teaching and learning mathematics is based on the use of language: for introducing
and  defining  new mathematical  objects,  discussing  different  ways  of  calculating,
documenting  the  results  of  a  proof  or  explaining  how  to  handle  with  teaching
materials,  different  representations  are  used,  but  almost  always  accompanied  by
language. Language as a medium and an aim of mathematics lessons at school is a
well-known object of didactic research and laid down in several publications (see
Morgan, Craig, Schuette, & Wagner, 2014). But in the last years one can observe a
focus being laid on differentiations and transitions between different languages or
registers of one language used in mathematics (Duval 2006). On the other side, the
professional knowledge of teachers, and questions on how this can be developed in
pre-service and in-service lessons gained considerable interest (Gniffka & Roelcke,
2016; Kunter et al., 2013). This leads to following questions: (1) Which language-
related competencies a teacher has to have? How do they interact with other parts of
his  professional  knowledge?  (2)  When,  where  and  how  can  he  achieve  these
competencies? For this in the last years several universities in Germany designed and
developed exemplary trails in pre-service teacher-studies. In most of the case these
are extra, but obligatory courses on “German as second language”. Another approach
is  followed  for  example  by  a  project  called  “Umbrüche  gestalten”
(http://www.sprachen-bilden-niedersachsen.de/-index.php/projekt.html).

A “LANGUAGE CURRICULUM” (SUM_MAST) 

Following the approach of this project we developed a pre-service “language curri-
culum” for teachers of mathematics (based on experiences out of the implementation
of language studies in teacher studies above mentioned) following four requirements
for the learning opportunities (used to guide the curriculum): they should

(a) be spread from the beginning to the end of the academic studies, like a vertical
spiral curriculum; (b) be integrated – besides explicit language related courses - in
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mathematical lessons, for the technical language of mathematics is best learned by
doing mathematics;  (c)  evoke an  active  and reflective  handling with language in
learning  situations  and  be  applied  and  tested  in  authentic  situations;  (d)  include
individual feedback and allow some comparative measurements. (And in addition: It
should  be  transferable  to  other  designs  of  academic  studies  for  teachers  at  other
universities.)  Our  suggestions  is,  that  a  curriculum  following  these  leads  to  a
connection  of  linguistic  and  mathematical  knowledge  as  a  theoretical  base  for
teaching practise. 

After  some pre-studies the design based research project  SuM_MaSt started fully
2016 at the University of Hildesheim. Besides schemas of linguistic requirements of
mathematics  lessons  (in  multilingual  classrooms)  and  the  language-related
competencies of teachers of mathematics (as a part of PCK), the poster will give an
overview over the types of “linguistic tasks” (theory/practice, real/simulated, ...) and
the curriculum implemented at  the University  of  Hildesheim.  Four  examples  will
clarify the tasks, the type of language competence, which can be achieved, and show
some first results of the evaluation of the above mentioned suggestion :

(a) linguistic tasks in mathematical lectures (examples: geometry, arithmetic, number
theory; evaluation (qual.): correctness of the mathematical content and adequacy of
language),

(b) input and tasks on “Explaining” in the lecture “arithmetic” (evaluation (qual.):
describing the development of linguistic competencies), 

(c) contents and tasks of an explicit course “Language and Mathematics” (evaluation
(qual.): analysis of the products during the lessons),

(d) questionnaire for  reflecting and self-assessment of the competence (evaluation
(quant.): questionnaire). 
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This poster explores the role of the lecturer in a university level mathematics class 

utilizing the flipped classroom approach to teaching. The role of the lecturer is 

investigated using the Systematic Classroom Analysis Notation (SCAN) tool and the 

theoretical framework of instrumental orchestration.  

Keywords: Novel approaches to teaching, lecturers’ practices at university level, 

flipped classrooms, instrumental orchestration, analysis of lecturers’ actions 

NEW RULES OF INTERACTION IN FLIPPED CLASSROOMS 

University lecturers traditionally presents new mathematical topics in class, while 

students work on related tasks at home or in colloquiums arranged by the university. 

The Flipped Classroom approach (FC) flips this around, having the students watch 

pre-recorded videos at home, while working in a more collaborative and student-

centred manner while in class. This flipping of the classroom changes the rules of the 

classroom drastically, as the lecturer now has to prepare videos for the students’ out-

of-class to “prime” them for an in-class active phase of learning (Fredriksen, 

Hadjerrouit, Monaghan & Rensaa, 2017). To explore the new role of the lecturer in a 

FC, I will look at a lecturer’s role using the framework of instrumental orchestration, 

and analysing the in-class interactions of the lecturer using a modified version of the 

Systematic Classroom Analysis Notation (SCAN) (Beeby, Burkhardt & Fraser, 

1979).  

THEORETICAL FRAMEWORK 

To conceptualize the lecturers’ new role as a result of flipping the classroom I use 

the framework of instrumental orchestration (Trouche, 2004). The term is defined as 

the lecturer’s intentional and systematic organization and use of the various available 

artifacts in a learning situation – in this case both out-of-class and in-class – in order 

to facilitate students’ instrumental genesis –  the process during which an artifact or 

object is transformed into the psychological construct of an instrument, the 

combination of artifacts and schemes to be used for different specific types of task.  

Within instrumental orchestration it is possible to distinguish between three 

elements: a didactic configuration, an exploitation mode and a didactical 

performance (Drijvers, 2010). The didactic configuration is the arrangement of the 

teaching setting and the artifacts involved in it. The exploitation mode is the manner 

in which the lecturer uses a given didactic configuration for the benefit of his/her 

didactic intentions. The didactic performance takes into consideration the decisions 

the lecturer must make on the fly while performing in the given didactic 
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configuration with its didactic intentions. Using these three elements of 

orchestration, it should possible to explore the lecturers’ new role as a result of FC.  

RESEARCH QUESTIONS 

The research questions address both the in-class and out-of-class aspects of the 

lecturer’s new role in a FC. 

1. How does the lecturer in a FC interact with the students in the lesson?  

2. How does the lecturer perceive his new role, and how does this compare to 

his observed interactions while in-class? 

METHODOLOGY 

To look into these questions, I have observed and interviewed a lecturer utilizing the 

FC approach in a mathematics course for engineers. During the course of a week, 

four 90 minute in-class sessions were videotaped. These sessions were part of a 

module on mathematical series. Short videos, out-of-class preparation for problem-

solving activities in-class, facilitated the learning of Taylor series and its applications 

and tests of series convergence. The study employs an interpretative research 

paradigm with qualitative research methods. The videotapes of sessions will be 

analyzed utilizing SCAN (Beeby et al., 1979) to code the teacher’s interactions with 

students. SCAN is based on “time-slicing”, and works on three different time-scales 

– “event”, “episode” and “activity”. A prominent feature is a set of qualifiers for each 

activity, which evaluates the depth of demand and level of guidance in lecturer 

interactions. The interview will be analyzed using open coding.   
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The digitalization of modern society is having a major impact on schools and 

schooling, and in recent years, programming and algorithmic thinking is increasingly 

seen as topics to be included in curricula at all levels. In Sweden, for instance, the 

National Agency for Education have instigated a revision of the national curricula to 

emphasize what they denote as “digital competence” (Skolverket, 2017a, b). In 

particular, the mathematics curriculum now includes the use of algorithmic thinking 

and programming as tools for problem solving. Since these topics have not been a 

mandatory part of the education of mathematics teachers in Sweden, this creates a 

need for such courses aimed both at practicing and prospective teachers. Given the 

direction taken in the revised curriculum, these courses will need to take an 

integrated approach, focusing on how programming and algorithmic thinking can be 

used to learn mathematics and to solve mathematical problems. This places particular 

demands on the instructors teaching these courses. Not only do they need to have 

knowledge of programming, but also of mathematics and mathematics education. 

Most probably, courses in programming aimed at practicing mathematics teachers 

will attract teachers from all levels of the educational system, placing additional 

demands on the mathematical competence of the instructors. In the light of these 

challenges, we are considering the idea of collaborative, or team, teaching. Having 

mathematicians and/or mathematics educators collaborating with computer scientists 

can provide different viewpoints on the topics considered and problems posed in the 

course, thus serving to more closely connect the programming to the mathematics. 

Moreover, having two teachers in the classroom naturally leads to discussions, 

showing by example the type of questions experts pose when engaging with a topic, 

and hopefully fostering a classroom climate where students also engage in 

discussion. Before outlining the planned project, we sketch what team teaching is 

about, and exemplify how it has been used in university mathematics education. 

Various forms of collaborative teaching are already used in schools, where teachers 

collaborate on course preparation, implementation, and assessment. There are several 

models for collaborative teaching (Friend, Cook, Hurley-Chamberlain & 

Shamberger, 2010, p. 12), ranging from “one teacher, one assistant” models, via 

parallel and alternative teaching through to team teaching proper, with two teachers 

in the classroom together, taking shared responsibility for content. The research 

literature on team teaching of mathematics at the university level mostly consists of 

case studies in the context of teacher education. For instance, Clarke and Kinuthia 
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(2009) describe a project where two lecturers collaborated on the planning of courses 

on mathematical methods and instructional technology, emphasising the cross-

disciplinary character of the courses. However, one teacher for each course did the 

actual teaching. What we aim to do is slightly different. A team of instructors with 

backgrounds in mathematics/mathematics education and computer science will co-

teach a course on programming in a mathematical context, sharing responsibility for 

content, planning and assessment. For part of the course, two teachers will lecture 

jointly, presenting and discussing content together, providing different perspectives 

on programming in school mathematics. For instance, in the context of probability 

theory, the computer scientist can show how to program simulations of probabilistic 

experiments, with the mathematician pointing out how the underlying mathematical 

ideas influence the design of the simulation. The mathematician can then go deeper 

into the mathematical theory, with the computer scientist highlighting the 

algorithmic aspects. In this way, we aim to provide students with opportunities to 

develop a deeper understanding of how to integrate programming and computational 

methods in their mathematics classes. The programming course is still in its planning 

stages, but we are currently piloting the team teaching approach in the context of a 

first-year calculus course within the engineering programs. 

From a research perspective, taking a discursive view on learning (Sfard, 2008) we 

wish to investigate to what extent the team teaching might support students’ active 

participation in mathematical and computational discourse. We are also interested in 

how the discourse of the students develops through participation in such a course, 

particularly concerning the interplay of mathematical and programming discourse. 

Furthermore, we view team teaching as having great potential for teacher 

development, with participating teachers being able to learn from one another as well 

as jointly developing innovative teaching practices. 
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INTRODUCTION 

The transition from school to university is a big challenge for many students, espe-

cially in mathematics (Biehler, Hochmuth, Fischer, & Wassong, 2011; Gueudet, 

2008). Several supportive measures such as pre-university bridging courses or 

mathematical support centres are implemented at German universities to ease stu-

dents’ difficulties in the transition phase (Hoppenbrock, Biehler, Hochmuth, & Rück, 

2016). But we often do not know how effective these supportive measures are as de-

tailed studies on the effects and success conditions are missing.  

THE WIGEMATH-PROJECT 

At this point, the ongoing WiGeMath project (Effects and success conditions of 

mathematics learning support in the introductory study phase), a joint project of the 

universities of Hannover and Paderborn (Liebendörfer et al., 2017) in collaboration 

with 14 universities, comes in. We distinguish four types of support: pre-university 

bridging courses, mathematics support centres, newly designed bridging lectures in 

the first semester, and support systems accompanying traditional lectures such as e-

learning material or extra tutorials. The WiGeMath project’s goals are developing a 

theoretical framework in order to be able to describe, analyse and compare support 

measures, investigating effects and success conditions and elaborating recommenda-

tions for effective designs for mathematical support measures in the introductory 

study phase. The theoretical framework for the examinations is the 3P model of 

Thumser-Dauth (2007). It describes a programme evaluation for higher education 

measures based on Chen’s theory-driven evaluation approach (Chen, 1990). Based 

on transition literature from mathematics education, we refined this framework to 
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make it content-specific. Interviews with our collaborating universities and docu-

ment analysis were used to locate the specific measures in the framework 

(Liebendörfer et al., 2017). The reconstructed programme theories contain goals, 

procedures, circumstances and expected effects of the measures. Based on the theo-

retical framework, instruments were developed for evaluating the success of the 

measures. 

Bridging courses in Germany 

Most German universities provide bridging courses in mathematics for various kinds 

of beginning students shortly before the first semester. They differ in length, struc-

ture, amount of e-learning, content, audience, and goals. Some courses focus on the 

repetition of school mathematics while others aim at introducing students to univer-

sity mathematics content and working methods (Bausch et al., 2014; Biehler & 

Hochmuth, 2017). 

One main aim is to evaluate the success of bridging courses by assessing short term 

and medium term effects on attitudes and mathematical knowledge of the students. 

Therefore, we questioned the students at the beginning of the course, immediately 

after the course and after two months in the first semester. 

Sample: Selected Bridging courses in the WiGeMath study  

The following six bridging courses at five German universities are included in the 

analysis. 

 

University Online (O) or 

Attendance (A) 

Duration 

in weeks 

Aimed at… 

A O 5  Math., Comp. Sci., Engineer-

ing, teacher ed. 

B A 2  Engineering 

C A  2  Math., Physics, teacher ed. 

DA A  4  Math., Comp. Sci., teacher ed.  

DO O 4  All math programs (except 

econ. and physics) 

E A 2  Math., teacher ed. 

Table 1: Overview over the investigated bridging courses 

RESEARCH QUESTIONS 

In this paper, we will focus on the post-test directly after the course. Apart from 

evaluating different instruments used in the post-test questionnaire the research ques-

tions are:  
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1. Which goals do lecturers of bridging courses set for their courses? How can 

the profiles of the courses be compared and located in the WiGEMath frame-

work? 

2. To which extend do students think they achieved explicit or implicit goals of 

their bridging course? 

3. How much do the results of two different instruments measuring to which ex-

tend the students think they achieved different goals in the bridging course dif-

fer? 

4. How do the (theoretical) profiles set up by the lecturer differ from the empiri-

cal profiles of the course? 

METHODS AND INSTRUMENTS FOR EVALUATING BRIDGING  

COURSES  

Instruments based on the WiGeMath Framework 

The 13-pages questionnaire for the post-test contains about 205 Items – usually 6-

level Likert-scale from “strongly agree” to “strongly disagree”. The following tables 

illustrate the scales with exemplary items. Most of our scales had a reliability above 

0.6 in the majority of cases at all locations. 

Category of goals Scale name  Example item  

School math. knowledge 

and competencies 

Identifying and overcoming 

deficiencies in school 

mathematics.  

“I got to know my indi-

vidual deficiencies in 

school mathematics.” 

 Recapitulating and elaborat-

ing school mathematics 

“School mathematical 

topics were repeated.” 

University math. knowledge 

and competencies 

University mathematics 

knowledge and competen-

cies 

“I learned new mathe-

matical topics.” 

Mathematical terminology Mathematical terminology “I have learned new 

mathematical symbols” 

Table 2.1 Knowledge goals 

 

Category of goals Scale name Example item (of 2 to 4 per scale) 

Mathematical 

modes of working  

 

Process-related com-

petences concerning 

math. texts 

“I have learned how to read mathemati-

cal texts.” 

Metaknowl. for math. 

modes of working 

“I know how to recapitulate a mathe-
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matical lecture.” 

Working autono-

mously on math. 

tasks 

“I can work on mathematical tasks and 

topics on my own for some hours. “ 

University modes 

of working (*) 

Organizing university 

routine 

“I learned how to organise my daily 

routine at university on my own.” 

Learning strategies 

(*) 

New ways for learn-

ing mathematics 

“I learned about new ways to study 

mathematics.” 

Learning and 

working behaviour 

Study groups (*) “I learned to work in study groups.” 

Knowledge about 

digital tools and how 

to use them 

“I know the digital learning platforms 

used at my university.” 

Table 2.2 Behavioural (action-oriented) goals. (*) only one item 

 

Category of 

goals 

Scale name Example item (of 3 to 7 per scale) 

Beliefs Metaknowl. and beliefs 

concerning higher maths.  

“In the course, I recognised the role 

of proofs in higher mathematics.” 

Relevance of 

school maths. for 

future studies 

Estimating how relevant 

school mathematics are 

for future studies and 

later profession 

“In the course, I became aware that 

school mathematics provides a basis 

for my further studies.” 

Table 2.3 Attitudinal goals 

 

Category of 

goals 

Scale name  Example item (of 2 to 6 per 

scale) 

Social contacts 

 

Social contacts between students “I met fellow students.“ 

Perceived social integration 

(Rakoczy, Buff, & Lipowsky, 

2005) 

“I think the other students of the 

course would help me, if neces-

sary.” 

Studying together with fellow 

students (Liebendörfer et al., 

2014) 

“If I have an idea for a solution, 

I will discuss it with other stu-

dents.” 

Making uni- Gaining insight into university “I gained insight into higher 
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versity study 

demands 

transparent  

 

learning/teaching methods re-

garding mathematics  

mathematics learning and teach-

ing methods at university.” 

Getting to know possible diffi-

culties at the beginning of uni-

versity and how to solve them 

“I heard about possible difficul-

ties at the beginning of my stud-

ies.” 

Table 2.4 System-related goals 

Additionally, we asked the participants about some affective characteristics (such as 

mathematical fear and self-regulation), these items are not used in the analysis for 

this paper.  

Instruments adapted to the explicit goals of the course 

The WiGeMath instruments are based on a comprehensive framework of potential 

goals of a bridging course. As a supplement we used a learning outcome oriented 

evaluation system, called BiLOE, proposed by Frank and Kaduk (2015). For the 

BiLOE, each lecturer is asked to specify her/his three to six major learning goals in 

his/her own words. Additionally, the lecturers had to specify up to seven study ac-

tivities that should help the students to achieve these goals. Students are asked to 

evaluate these goals and activities. An important further element of the BiLOE is that 

the students have to state their personal goals for the course and are asked to which 

extend they think they achieved them. Those students who did not believe they 

achieved a learning goal were asked to give reasons for this at the end of the ques-

tionnaire. The BiLOE also requests the students to evaluate the relevance of the lec-

turer’s goals and how much certain activities helped them to achieve those goals.  

SELECTED RESULTS 

RQ 1: The different profiles of the investigated bridging courses 

We categorized the major goals provided by the lecturers in the BiLOE from the per-

spective of the WiGeMath framework. The results can be found in table 3. Quite dif-

ferent profiles become visible. 

Category A B C DA DO E 

School math. knowledge and competencies 1 1 0 0 1 0 

University math. knowledge and competen-

cies 

1 1 1 1 1 3 

Mathematical terminology 1 0 0 0 0 1 

Mathematical modes of working 0 0 0 0 0 2 

University modes of working 0 0 1 0 1 0 

Learning strategies 0 0 0 0 0 0 

Learning and working behaviour 0 2 1 0 2 0 

Social contacts 1 0 0 1 0 0 
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Making university demands transparent 0 0 0 2 0 0 

Table 3: Number of learning objectives in the respective category mentioned by the 

lecturers 

It is striking that no attitudinal goals were mentioned among the major goals, neither 

beliefs, nor affective features, nor mathematical enculturation. Likewise, none of the 

lecturers mentioned teaching learning strategies as a goal of their bridging course.  

RQ 2: Goal achievements  

The results of the WiGeMath and the BiLOE instruments provide valuable informa-

tion for every single lecturer. The broader spectrum of the WiGeMath results will 

moreover provide information on the effects of the course from the perspective of its 

participants that the course lecturer may not have explicitly thought of in the selected 

major goals. This analysis provides empirical profiles and assesses the success of the 

various bridging courses.  

In all cases, we calculated the percentage of students who rather agree up to fully 

agree (meaning greater than 3 in Likert scales with 4 steps or greater than 4 in Likert 

scales with 6 steps, respectively). 

The following tables show the percentage of participants agreeing to the WiGeMath 

scales concerning the respective categories.  

Category of goals / Scale A B C DA DO E 

School math. knowledge and competencies 

Identifying and overcoming deficiencies in school math. 59 81 58 33 71 34 

Recapitulating and elaborating school math. 86 89 69 34 87 35 

University math. knowledge and competencies  

University mathematics knowledge and competencies 60 89 100 95 73 95  

Mathematical terminology 

Math. terminology 63 86 99 97 74 96 

Table 4: Results knowledge goals: Rounded percentage of participants agreeing to the 

WiGeMath scales (n=651) 

Category of goals / Scale A B C DA DO E 

Mathematical modes of working 

Process-related competences regarding math. texts 36 42 74 46 31 56 

Meta knowledge for mathematical modes of working 34 72 70 66 46 65  

Working autonomously on mathematical tasks 70 73 76 65 64 71 
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University modes of working 

Organizing university routine 45 58 42 41 46 49 

Learning strategies 

New ways for learning mathematics 55 58 74 51 44 69 

Learning and working behaviour 

Study groups 25 49 88 47 17 82 

Knowledge about digital tools and how to use them 58 80 54 67 77 45 

Table 5: Results action-related goals: Rounded percentage of participants agreeing to 

the WiGeMath scales (n=651) 

Category of goals / Scale A B C DA DO E 

Beliefs 

Meta knowledge and beliefs towards higher mathematics 50 70 94 90 59 90 

Relevance for eventual profession and for subsequent studies 

Estimating how relevant school mathematic is for university and pro-

fession 
63 74 63 54 71 44 

Table 6: Results attitudinal goals: Rounded percentage of participants agreeing to the 

WiGeMath scales (n=651) 

Category of goals / Scale A B C DA DO E 

Social contacts 

Social contacts between students 34 84 98 76 64 86 

Perceived social integration 46 82 93 88 74 89 

Studying together with fellow students 36 71 81 66 57 88 

Making university demands transparent 

Gaining insight in university learning/ teaching methods regarding 

mathematics  

34 82 95 85 44 91 

Getting to know possible difficulties at the beginning of university and 

how to solve them 

31 67 81 42 62 63 

Table 7: Results system-related goals: Rounded percentage of participants agreeing to 

the WiGeMath scales (n=651) 

RQ 3: Differences between the two evaluation tools 

To compare BiLOE and WiGeMath data, we first matched the learning goals given 

by the lecturers with the framework categories. The BiLOE results are mostly similar 

to the WiGeMath results. There are only six cases with differences of more than 15 
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percentage points. We reported back the interesting differences to the respective lec-

turers but these are relevant only for the individual and provide the general insight 

that the WiGeMath framework is sufficient for the evaluation. 

RQ 4: Comparison of theoretical and empirical profiles  

With these empirical results, a re-evaluation of the profiles based on the formulated 

learning goals of the respective bridging courses is possible. We will evaluate in 

which categories the percentage of agreeing participants are high or low and com-

pare these results to the theoretical profiles. Here, “high” means an agreement to the 

WiGeMath scales of more than 80% of the participants and “low” is an agreement of 

less than 40%.  

Course A. Based on the formulated learning goals, bridging course A has many 

goals. School mathematics, university mathematics, mathematical modes of opera-

tion, and social contacts are aimed at equally strongly. The empirical results differ: 

The only category with high agreement is school mathematics. There are some cate-

gories with low agreement, including social contacts, which was originally formu-

lated as a goal by the lecturer.  

Course B. Goals in various categories were stated as well. The empirical profile is 

similar but even broader: high agreement is reached in school mathematics, univer-

sity mathematics, mathematical terminology, social contacts, and gaining insight in 

university learning and teaching methods. No goals concerning the last three catego-

ries were stated by the lecturer.  

Course C formulated various goals. The empirical results show that there is high 

agreement in the categories university mathematics and study groups. There is also 

high agreement in the categories mathematical terminology, meta knowledge and be-

liefs towards high mathematics, social contacts and making university demands 

transparent.  

Course DA’s empirical results also fit the theoretical classification very well. Addi-

tionally, high agreement is reached for mathematical terminology and meta knowl-

edge and beliefs towards high mathematics. The only category with a low percentage 

is school mathematics, which was not an explicit learning goal, however. 

Course DO. The empirical profile of this bridging course differs significantly from 

the profile based on learning goals. The only category with a high percentage of 

agreement is school mathematics. Therefore, the focus of the course seems to be 

more on school mathematics than on university mathematics. Based on the learning 

goals, both could have been seen as equally strong.  

Course E was the only one with a clear profile based on the formulated learning 

goals which was on university mathematics (including mathematical terminology). 

This is reflected in the empirical results, which however show a broader spectrum. 

Additionally, there is also a high percentage in the categories studying in study 
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groups, meta knowledge and beliefs towards high mathematics, social contacts, and 

gaining insight in university learning and teaching methods. Low agreement was 

found concerning school mathematics, which was not a formulated learning goal.  

SUMMARY AND DISCUSSION 

The presented results are an intermediate step in communicating back to those who 

were responsible for the respective bridging courses with two goals. The immediate 

goal is to give feedback in order to improve and change the profile of the course – if 

desired. The second goal is to redesign our instruments so that the future instrument 

combines scales from the WiGeMath framework and more specific goals of the lec-

turers.  The lecturers’ goals given are quite diverse but all goals could be classified 

into the theoretical framework of the WiGeMath project. Some WiGeMath catego-

ries remained empty, however, e. g. learning strategies. We asked for the most im-

portant 5 goals, so it may be the case that our lecturers regarded them as minor ones. 

Additionally, some lecturers stated more specific goals, while other stated general 

ones. This may be due to the lack of experience with formulating learning goals as 

most of the lecturers do not work in the field of didactics. It seems necessary and 

valuable to extend the phase of specifying BiLOE goals by informing the lecturer in 

more depth about the WiGeMath framework as a supportive frame for specifying 

their own goals.  

The students in the different courses differ when referring to their achievement of 

certain goals and categories. This is no surprise. For example, an online bridging 

course will not provide as much social contact to other students as an attendance 

based bridging course. It is important to mention that all answers are based on the 

students’ self-assessment. The instruments developed (termed WiGeMath scales) and 

the BiLOE mostly yield similar results, sometimes the results differ. That can be ex-

plained by the BiLOE items being more specific or some of the learning goals only 

having a corresponding category but no perfectly fitting scale was found, as the 

questionnaire was already up to 13 pages long. The BiLOE is limited by the number 

of goals a lecturer can state, while the developed instruments of the WiGeMath pro-

jects allow providing a general survey of the bridging course. Additionally, the 

(theoretical) profiles set up by the lecturer differ from the empirical profiles of the 

course. For example, no lecturer mentioned an attitudinal goal. Nevertheless, the 

WiGeMath scales show that there is very high agreement in this category in relation 

to courses for students in mathematics and mathematics teacher education. In these 

courses the focus explicitly lies on university mathematics and not on the recapitula-

tion of school mathematics.  
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We recently used the notion of praxeology from the Anthropological Theory of the 

Didactic to model the knowledge that is necessary for students to learn in order to 

succeed in an undergraduate multivariable Calculus course. We considered the 

presence and absence of elements of the knowledge to be taught, as proposed by 

curricular documents, in the knowledge to be learned, as indicated by final exams. 

Our results indicate that the mathematical activities expected of students at this level 

align with the activities observed in differential and integral Calculus, where 

exercise-driven assessments set students’ work mainly in the recognition of types of 

tasks and recollection of appropriate techniques. 

Keywords: transition to and across university mathematics, assessment practices in 

university mathematics education, teaching and learning of analysis and calculus, 

Anthropological Theory of the Didactic, praxeology. 

INTRODUCTION 

So far, research on the teaching and learning of Calculus has focused on single-

variable Calculus. Cognitive and epistemological obstacles have been illustrated 

against students’ learning of Calculus (Tall & Vinner, 1981; Sierpinska, 1994) and 

an institutional perspective has also been taken to study the influence of institutional 

practices on students’ learning of Calculus (Barbé, Bosch, Espinoza, & Gascón, 

2005; Hardy, 2009). There’s a pattern that indicates Calculus students mostly engage 

in procedural work that requires only a superficial grasp of the underlying concepts 

(Hardy, 2009; Lithner, 2004; Selden, Selden, Hauk, & Mason, 1999). 

We recently undertook a study that shifts the focus to multivariable Calculus courses 

(Brandes, 2017). Our goal was to determine the knowledge that is essential for 

students to learn in order to provide acceptable solutions on the final exam of an 

undergraduate multivariable Calculus course. To this end, we used the notion of 

praxeology from the Anthropological Theory of the Didactic (Chevallard, 2002) to 

model the knowledge students are expected to learn and the knowledge to be taught. 

We present our operationalization of this concept in the first part of this paper. In 

second stage, we discuss a partial result of our study that places this multivariable 

Calculus course along the transitions that university mathematics students undergo in 

their engagement with mathematics (Winsløw, Barquero, de Vleeschouwer, & 

Hardy, 2014). 

477 sciencesconf.org:indrum2018:174202



  

THE EDUCATIONAL SYSTEM 

We studied a ‘Multivariable Calculus I’ course offered to students in two 

mathematics programs at a large North-American university. One of the programs is 

for those who plan to join the workforce after graduation; the other aims to prepare 

students for graduate studies in mathematics. Students in either stream will have 

completed one-variable differential and integral Calculus and an introductory Linear 

Algebra course on matrix and vector algebra. The multivariable Calculus course and 

its sequel (‘Multivariable Calculus II’) are prerequisite to most of the courses in the 

program geared towards graduate studies. Students usually complete Multivariable 

Calculus I and II within the first year of their degree. 

In any given term, the course is split into two sections per program, with about 70 

students per section. The course is heavily coordinated across sections and terms 

through a strict curriculum, course examiner, and common assessments. The course 

outline specifies what to teach every week along with exercises from the textbook. 

The course examiner writes common assessments for students in all sections. A 

student’s grade is obtained from the highest of the following: 10% assignments, 30% 

midterm, 60% final exam, or 10% assignments and 90% final exam. Finals exams are 

therefore the crux of a student’s performance; in turn, the exams are consistent from 

term to term in both format and content. Past exams are readily available to students, 

and concern with their reactions prevents changes being made to the final exams. 

ROUTINE PROBLEMS IN SINGLE-VARIABLE CALCULUS 

We are interested in the mathematical activities with which students of a 

multivariable Calculus course are expected to engage. We focus on the types of 

problems that typify the learning of multivariable Calculus; a wealth of studies do so 

for single-variable Calculus (Hardy, 2009; Lithner, 2004; Selden et al., 1999). These 

studies emphasize the exercise-driven quality of the course assessments, in the sense 

of Selden et al.’s (1999) routine problems, which “mimic sample problems found in 

the text or lectures, except for minor changes in wording, notation, coefficients, 

constants, or functions” and “can be solved by well-practiced methods” (p.18).  

The exercise-driven quality of the course assessments extends to elements of the 

curricula (Lithner, 2004). Calculus textbooks traditionally adhere to a definition-

theorem-example-exercise format, wherein the exercises repeat the problematics of 

the examples and algorithms outlined in the text. Lithner (2004) measured the extent 

to which intrinsic mathematical properties play a role in the minimal reasoning 

required to solve routine tasks in traditional Calculus textbooks. Lithner’s 

classification of reasoning types runs along a scale of how big a role is played by the 

mathematical properties intrinsic to the problem versus the reapplication of known 

algorithms; this scale runs parallel to Selden et al.’s (1999) spectrum of problems 

from very routine to very non-routine, which vary based on how familiar the solver 
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is with the given problem. The more routine the problem, the less interaction is 

required of the solver with the mathematics specific to that problem. 

Assessments in North-American Calculus courses are largely drawn from the course 

textbook, which Lithner (2004) showed to be steeped in routine problems. 

Accordingly, he found students’ strategies to be anchored in what they recall 

superficially rather than in the mathematics specific to a problem. This correlates 

with Calculus students’ failure to complete non-routine problems (Selden et al., 

1999; Hardy, 2009). If textbook exercises can mostly be solved by identifying 

superficial similarities with a known example (Lithner, 2004), then students’ non-

reliance on intrinsic mathematical properties and over-reliance on the recall of 

algorithms may have roots in their learning environment. We follow this view by 

framing our study within the Anthropological Theory of the Didactic and focusing 

on elements of students’ learning environment: curricular and assessment documents. 

ANTHROPOLOGICAL THEORY OF THE DIDACTIC (ATD) 

Framework 

From the perspective of the ATD, knowledge does not exist in a vacuum, rather, it is 

bound to the institution in which it is shared and somehow connected to the 

knowledge shared in related institutions; such connection is called transposition and 

is of a didactic nature in the context of educational institutions (Chevallard, 1985). 

Didactic transpositions take place along a spectrum of knowledge in which scholarly 

mathematics (the knowledge developed, shared, and used by the experts – the 

mathematicians) is transposed into knowledge to be taught in a given institution, up 

to a transposition into knowledge actually learned by the students. This 

transformation of mathematical knowledge takes form in several stages: scholarly 

knowledge, knowledge to be taught, knowledge actually taught, knowledge to be 

learned, and knowledge actually learned. 

An essential feature of the ATD is an epistemological model called praxeology. It 

allows the researcher to model knowledge at any stage of a didactic transposition. 

The notion of praxeology is based in the assumption that any human activity consists 

of a practical block (praxis) and a theoretical block (logos). The praxis is made up of 

tasks  to be accomplished and techniques  with which to accomplish them; the 

logos is the discourse that produces, justifies, and explains the techniques in the 

practical block. Chevallard (1999) specifies two components of a theoretical block: 

technology , the discourse that produces and justifies the techniques in the practical 

block, and theory  that justifies the technology. 

In light of these theoretical considerations, and given our goal of finding the minimal 

core of knowledge that students must learn in order to succeed in their multivariable 

Calculus course, we treated three instances of didactic transposition. We created a 

model of the knowledge to be learned, as determined by the final examinations; to 
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this end, we needed a model of the knowledge to be taught, as indicated by the 

curricular documents. In order to familiarize ourselves with the mathematics prior to 

these two instances of didactic transposition, we also created a reference model 

based on the scholarly multivariable Calculus knowledge to be transposed. Before 

we present our praxeological models of the knowledge to be taught and to be 

learned, we review some of the literature about mathematics students’ praxeologies. 

Transitions in students’ praxeologies 

Winsløw et al. (2014) explain that students, at the pre-university level and in some 

cases at the university level, tend to have a praxeology defined mostly by practice. 

This is especially the case in differential and integral Calculus courses where 

assessment is concerned mostly with the practical block and does not address the 

ways in which the theoretical maintains the practical. This may have a precedent in 

the way knowledge is taught in the classroom, as teachers may not have time to 

justify tasks and techniques, given often-hefty curricula to deliver. Students, for their 

part, tacitly accept the existence of a theoretical discourse supporting the practical 

without concerning themselves with it (Hardy, 2009; Winsløw et al., 2014). Their 

work is mainly in recognizing types of tasks and identifying a suitable technique 

(Hardy, 2009; Winsløw et al., 2014), much as in Lithner’s identification of 

similarities reasoning (2004) and Selden et al.’s routine problems (1999). 

As students progress in university mathematics, they undergo two transitions. Where 

once they might have ignored theoretical blocks and worked exclusively within the 

practical block of a praxeology, they increasingly have to engage with theory and 

technology in their completion of tasks. Winsløw et al. (2014) call the transition 

from praxeologies that are purely practical to praxeologies that include a theoretical 

and a practical block a first transition of university mathematical praxeologies 

(p.101). For example, prior to the first transition, students complete tasks such as 

using derivative rules to find the derivative of a function. Here, differentiability is an 

always-met condition of the functions upon which students act in the tasks they do. 

Prior to the first transition, it is sufficient for students to attend only to the practical 

block of the mathematical knowledge; at the other end of this transition, students are 

required to acknowledge the theoretical block as the justification for the techniques 

they use for accomplishing a task. For instance, students may have to address the 

differentiability condition of a function before engaging in finding its derivative. 

A second transition occurs when students reach courses whose curricula and 

assessment prioritize what once may have been the theoretical block of a praxeology; 

as students transition into proof-making and validating, theoretical blocks of the past 

become their practical blocks. For instance, the second transition will have occurred 

in a student who knows to use the definition or theorems about continuity to prove 

that, if a function is continuous, then some property of that function is true. The 

characteristics of a second transition are that students explicitly acknowledge and use 

the theoretical block to generate a technique for achieving a task. 
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KNOWLEDGE TO BE TAUGHT 

The textbook of the multivariable Calculus course is typical of those used in North-

American Calculus courses and follows the usual definition-theorem-example-

exercise format. The course outline lists the textbook sections to be covered each 

week and a choice of end-of-section exercises. By knowledge to be taught (KT) we 

mean the mathematical knowledge in the sections and exercises listed on the outline. 

To model the KT, we identified the praxeologies of which it consists. 

In the case of the knowledge to be delivered in this course, we found that technology 

and theory can be taken as one. There is no clear distinction between the two in the 

textbook; the discourse throughout is set in the geometry and algebra of three-

dimensional space organized in the Cartesian system, and at times in Euclidean 

metric spaces. However, the theory is not made explicit and tends to be woven into 

the technology. Further, we found that the focus of the KT is mainly in the practical 

blocks. For the purpose of this study, then, it was sufficient to compile a list of items 

(definitions, theorems, etc.) that form the theoretical blocks of the praxeologies of 

KT without distinguishing theory from technology. 

This tended to the theoretical block of the praxeology that modelled each section of 

the textbook on the course outline. To identify the tasks to be accomplished, we 

considered the examples and the end-of-section exercises listed in the outline. To 

describe the associated techniques, we consulted the examples and discussion 

portions (theorems, explanations) of the text. To account for the build-up of 

knowledge between sections (e.g. the notion of derivative of a vector function is 

defined in one section and reused in later sections), we cross-referenced across 

theoretical blocks and across and within practical blocks. 

KNOWLEDGE TO BE LEARNED 

In an operational sense, we define knowledge to be learned (KL) as the subset of the 

KT which students need to know in order to provide solutions on final exams. This 

operationalization was necessary from a methodological perspective: while the 

questions in the final exams indicate the tasks to be accomplished, in most cases 

there is no indication as to the expected technique or theoretical justifications. The 

model of KT was therefore necessary to identify these elements of a mathematical 

activity. In this sense, the main purpose of the model of KT was to model the KL. 

Our operationalization, although useful to describe and characterize the KL, does not 

properly reflect the fact that a transposition takes place and that some of the 

praxeological elements (likely, elements of the theoretical block) are more likely ill-

defined than well-defined subsets of the praxeological elements of the KT. While the 

KL may borrow elements of the KT praxeologies, the discourse that unifies the two 

blocks of a praxeology might be distorted in the transposition. 

Our model of KL is based on twelve final exams given recently within a span of 

three years. We described the solution to each exam question in terms of KT task-
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technique pairs that occur in the solution. Here is an instance of this work. Consider 

the following item from one of the exams: 

Find the tangent plane  that touches  at , where the surface  is given by 

 

We recorded this as “to find the tangent plane to a surface at a point.” This task 

corresponds identically to task  from the KT model; in turn, the technique for 

this task requires the completion of : to find the value of the partial derivative of 

a function at a point. Thus, we associated to this task the KT sequence 

 This particular exam task corresponded identically to a 

KT task; this was not always the case. Nevertheless, apart from a handful of cases, 

we were able to identify sequences of task-technique pairs that would form complete 

solutions to the exam questions; this methodological affordance may attest to the 

routine quality (Selden et al., 1999) of the tasks students are expected to accomplish. 

Next, we grouped tasks of the same type so as to reflect praxeologies that occur in 

the KT. For example, the following tasks come up in solutions to exam questions: 

To find the first partial derivatives of a function  

To find the first partial derivatives of a two-variable function defined implicitly 

 

To verify that a two-variable function satisfies a partial differential equation 

 

This cluster of tasks is drawn from the praxeology of KT specific to partial 

derivatives. Altogether, we partitioned the model that captures KL about partial 

derivatives and surfaces into groups of tasks that match up with these praxeologies 

of KT: the above cluster specific to partial derivatives, along with tasks that draw 

from KT praxeologies specific to functions of several variables, the chain rule, 

tangent planes and linear approximations, directional derivatives and the gradient 

vector, extreme values, and Lagrange multipliers.  Organizing the model of KL in 

parallel to the model of KT facilitated our analysis of the structure of the KL. 

STRUCTURE OF THE KNOWLEDGE TO BE LEARNED 

The KL has to do with partial derivatives and surfaces; space curves and vector 

functions; equations of lines and planes and distance in ; limits of rational 

functions; polar curves; and Taylor Series. Let’s call ‘ideal student’ one who has the 

requisite knowledge to write acceptable solutions in a final exam. How might we 

characterize the praxeologies of an ideal student in this course? Below, we consider 

which parts of the KT praxeologies are to be learned and characterize them in the 

language of Lithner (2004) and Selden et al. (1999).  

Knowledge from all KT praxeologies occurs as knowledge to be learned. Thus, the 

KL is not necessarily a subset of KT in the sense that some praxeologies are to be 
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learned while others are not. Rather, we found that the KL is a subset in the sense of 

what’s left of the KT praxeologies after the didactic transposition of KT into KL. 

First, the practical blocks of the KT praxeologies are downsized in this transposition. 

For instance, consider the praxeology of KT about polar coordinates. The ideal 

student can convert polar equations into Cartesian equations and sketch the curve – 

given the following curves (up to a change in constants and functions sine or cosine): 

 ;  

The algebraic manipulations specific to converting these types of polar equations 

into Cartesian equations are in examples from the textbook, as is the technique for 

sketching them. The ideal student’s topos (‘action space’) (Chevallard, 2002) does 

not need to extend beyond the point praxeology (a praxeology of knowledge that is 

particular to a single type of task) specific to these functions. We found many of the 

practical blocks of KT praxeologies to be reduced in this way to point praxeologies. 

Most of the praxeologies of KT are downsized in another sense: their theoretical 

block is removed following the transposition from KT to KL. For instance, consider 

the praxeologies that constitute the knowledge to be taught about partial derivatives. 

We found that the practical blocks are reduced to computational tasks where the 

ideal student needs to apply the appropriate differentiation algorithm; the geometric 

interpretation of partial derivatives as slopes is unneeded and the ideal student does 

not need to know any of the theory or technology at the backbone of the procedures. 

The ideal student does not need to know the limit-based definition of partial 

derivative nor the definitions and roles of limits, continuity, and differentiability in 

the concepts of derivative, gradient, and extrema of a function. The theoretical 

blocks of these praxeologies vanish in the transposition from KT to KL. In general, it 

seems that the ideal student needs to be fluent in the algorithms prescribed by 

praxeologies of the KT but doesn’t need to justify or explain them. 

The absence of theoretical blocks in the ideal student’s praxeology is manifested in 

several ways: first, the student needn’t justify the validity or choice of technique (e.g. 

by verifying or stating that the chain rule is applicable, since the functions in the 

exams are always differentiable); second, the exam questions do not require students 

to interpret any results (e.g. by making a sketch of a surface near a point where some 

geometric properties of the surface were computed); and finally, it suffices to have a 

superficial grasp of the concepts in the theoretical blocks in order to accomplish the 

types of tasks in the final exams. We expand on this point. 

In general, the ideal student can recognize task types and identify the appropriate 

technique, in reasoning similar to Lithner’s (2004) identification of similarities (IS), 

whereby a strategy for tackling a problem is chosen based on the similarities of 

certain surface properties between the new problem and a known problem (e.g. given 

a limit-finding problem, note whether the limit is taken at a numerical value or 

infinity and identify the type of function involved). For instance, the exam questions 
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specific to limits of multivariable functions are as follows: find the limit of a 

function  at the origin, if it exists, or show that it does not exist. The function 

 given in the exams is either an odd rational function with no limit at the origin or it 

involves a trigonometric component which could be rid of to reduce  to a rational 

function in the process of an  argument (in these cases, the exam functions 

invariably have limit ). This task occurs in examples in the textbook and exercises 

in these students’ assignments. In general, tasks required by the exam questions were 

similar to those in the KT, so that students could rely on IS reasoning rather than on 

the underlying mathematics in order to choose the appropriate technique. This course 

is therefore in line with students’ pre-university mathematics, where much of their 

responsibility is in recognizing types of tasks and choosing an appropriate known 

technique (Winsløw et al., 2004). 

IS reasoning is characterized as requiring little reflection on the intrinsic 

mathematical properties of the problem at hand (Lithner, 2004). To successfully 

implement IS, the ideal student needs to recognize terms in the question statements 

(arc length, curvature, normal plane, binormal vector…) and the formulas for 

deriving them. But the ideal student is not tested on the meaning of these quantities 

and geometric properties as they relate to a curve at a point (e.g. a student might need 

to find the equation for an osculating plane, but does not need to explain what the 

osculating plane describes). The irrelevance of intrinsic mathematical properties to 

the tasks students need to achieve suggests that the theoretical block of KT 

praxeologies need not be present in the ideal student of either course. 

Theoretical blocks are missing from the ideal student’s topos in a few senses: the 

student is not required to justify or explain the techniques chosen to complete a task, 

and at times is even told which technique to use (e.g. via instructions to ‘use 

Lagrange Multipliers’ or ‘use the chain rule’). The ideal student is not required to 

interpret the numerical or algebraic results of their calculus in any way; and it 

suffices to learn the components of the theoretical blocks only superficially. In all, 

this multivariable Calculus course seems to follow in the pre-university mathematics 

tradition whereby students need not link the practical and theoretical blocks of a 

praxeology (Winsløw et al., 2014). Further, the components of the practical blocks 

themselves are discrete, as the ideal student does not need to combine tasks in any 

way – for instance, the ideal student must know how to find invariant quantities of a 

curve, but needn’t provide a local description of a curve based on its invariant 

quantities. This may be called the “compartmentalization of knowledge in calculus 

courses” described by Winsløw et al. (2014, p.104). 

On the whole, it appears that only a surface version of the KT theoretical blocks is 

essential for the ideal student to learn: they need to know terms and associated 

formulas, in some cases have some intuitive image of certain concepts, and be fluent 

in the algorithms described by the technologies. This surface acquisition of the 

theoretical block serves to recognize routine tasks and identify a suitable technique. 
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In light of the absence of theoretical blocks in the minimal core of knowledge that is 

essential for students to learn in order to provide solutions to exam questions, we 

conclude that the KL cannot be described by actual praxeologies (made up of a 

praxis and a logos). Rather, the KL is an amalgamation of practical blocks. This 

places this university-level multivariable Calculus course in the stage prior to the 

first transition in university mathematics education previously discussed: 

 

Figure 1. Transitions in university mathematics education (Winsløw et al., 2014, p.101) 

where  refers to the practical block of a praxeology and  to its theoretical block. 

Winsløw et al. (2014) explain that this first transition occurs when students no 

longer work strictly within the practical block of a praxeology and begin to 

incorporate a theoretical block, perhaps by using it to justify or produce a technique; 

a second transition occurs when students’ past theoretical blocks turn into their 

current practical blocks, as when they start making and validating proofs in Analysis. 

CONCLUSIONS 

The aim of our study was to determine the minimal core of knowledge that is 

necessary for students to learn in a multivariable Calculus course in order to provide 

acceptable solutions on their final exam. We found that the exercise-driven quality of 

the course assessments makes it essential for students to recognize certain types of 

tasks and to identify the appropriate technique, but does not require students to learn 

the theoretical block that maintains these tasks and techniques. 

Historically, the studied educational system introduced the multivariable Calculus 

course as a prerequisite to Analysis in an effort to help students adapt to university 

mathematics in the first year of their studies. It seems, however, that the 

mathematical activities expected of students in this bridge between pre-university 

and university courses are of the type expected in past Calculus courses:  students’ 

action space is fully within the practical block of the praxeologies that model the 

knowledge to be taught. As a result, students are no more required to engage with the 

theoretical in this Calculus course than they previously were. Meanwhile, the 

mathematical activities in Analysis courses are two steps ahead, after the second 

transition described by Winsløw et al. (2014), where students must work within what 

once were the theoretical blocks that backed the practical of Calculus. The question 

therefore remains: what course would make it essential for students to incorporate 

the theoretical blocks of a praxeology into the work they do in a practical block? 
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In this paper, we introduce an in-progress study of the transitions students face as 

they advance in their mathematics courses. Previous work has discussed the changes 

that occur in the transition from high school to university. With regards to the 

knowledge students are expected to learn, however, significant similarities have 

been noted: to do well in introductory university courses, students can learn to solve 

a particular subset of tasks through routinized techniques, with limited awareness of 

the supporting mathematical theory. In contrast, students in advanced courses are 

required to work with and on that theory. The first stage of our project aims to better 

understand this transition by building praxeological models of the knowledge to be 

learned in a succession of two introductory analysis courses.     

Keywords: Transition to and across university mathematics, teachers’ and students’ 

practices at university level, teaching and learning of analysis and calculus. 

INTRODUCTION 

Several studies have discussed the specific knowledge taught and learned in pre-

calculus, calculus, and analysis courses, from different perspectives: for example, 

concept image and concept definition (e.g., O’Shea, 2016), APOS theory (e.g., 

Martínez-Planell, Trigueros Gaisman, & Mcgee, 2016), and the Anthropological 

Theory of the Didactic (ATD; e.g., Bergé, 2016). Our starting point is the general 

and relatively vague question of when in an undergraduate degree in mathematics 

does a student need (need in the sense of to succeed in the course) to engage in 

mathematical activities that may substantially, or meaningfully, lead to developing 

mathematical practices. We consider and frame this question within the ATD 

(Chevallard, 1999), which provides theoretical tools for modelling any human 

activity or practice. The semantic distinction between these two words is essential to 

us. Our hypothesis is that the kinds of didactic constructs to which professors and 

students are exposed are decisive in fostering the emergence of practices out of 

collections of local, particular, and relatively short-lived activities. From the 

theoretical stance we take, this means the development of mathematical knowledge 

out of local, particular, and relatively short-lived mathematical activities.  

Previous research has found that the activities proposed to students in introductory 

calculus courses do not necessarily encourage the development of mathematical 

practices. Lithner’s (2004) study of the exercises in undergraduate calculus 

textbooks used in Sweden led to the conclusion that the majority of tasks students 

encounter can be solved by mathematically superficial techniques such as finding 

and copying a similar solution outlined somewhere in the same section of the book. 

When working in Spanish high school calculus classes, Barbé, Bosch, Espinoza, and 
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Gascón (2005) observed teachers implementing mathematically incomplete 

practices: they solved numerous tasks in hopes of guiding students in developing 

solid mathematical techniques, but struggled to introduce any lasting rational 

discourse (i.e., theoretical block) that produced or explained the techniques. Hardy 

(2009), who conducted task-based interviews with students in North American 

college calculus courses, showed that in the absence of such a theoretical block, 

students construct non-mathematical reasoning to support the highly routinized 

practical block they develop (i.e., the techniques and corresponding types of tasks).  

To describe the kinds of transitions students are expected to go through as they 

progress in their university mathematics coursework, Winsløw (2008) introduced the 

model depicted in Figure 1 below. The conjecture is that students encounter at least 

two types of transitions in the practices they are supposed to develop. The first 

requires them to gain some level of awareness of the theoretical block that was once 

absent from their exclusively practical work; the second occurs when elements of 

that theoretical block become part of the practical block with which they must 

engage autonomously. Think, for instance, of how some early university courses 

spend a significant amount of time in lectures elaborating previously scarce 

definitions, theorems, and proofs, which students may be expected to understand 

enough to quote in assignments or reproduce on exams. In contrast, more advanced 

coursework requires students to develop their own proofs, often involving the more 

abstract objects that were part of the theoretical block constructed in earlier courses. 

 

Figure 1: Transitions in university mathematics coursework (from Winsløw, 2008) 

A recent study suggests that in the context of undergraduate multivariable calculus 

courses, students are not yet required to go through Transition 1: the models of the 

knowledge to be learned in these courses show that students are exposed to a limited 

practical block (Π), with no need to work with or on the corresponding theoretical 

block (Λ; Brandes, 2017). This said, students are indeed expected to work with and 

on mathematical theory when they take advanced courses later on.   

A few questions arise from this:  

1. What does this “work with and on a theoretical block” look like in comparison 

to the routinized, principally practical activity in which students seem to be 

engaging in introductory courses? 
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2. If the practices students develop in advanced mathematics courses can be 

modelled by the third stage shown in Figure 1, when, if ever, do students’ 

practices reflect the second stage, and what are the mathematical activities 

proposed to them in such contexts?  

The purpose of our study is to contribute to addressing these questions, and 

therefore, to the discussion of the transitions students face. To do so, we propose to 

model the knowledge at different stages in the didactic transposition process in two 

courses contained in what we will call the “analysis path” in a typical undergraduate 

mathematics program in North America (US and Canada). Ultimately, the goal is to 

reflect on the general question mentioned above: Can the activities in which students 

are obliged to engage lead to the development of mathematical practices (i.e., 

mathematical knowledge)?  

THEORETICAL FRAMEWORK  

“Activity and practice” 

As mentioned above, we have come to see the semantic difference between activity 

and practice as pertinent to our work. The ATD’s notion of praxeology provides a 

fundamental model for defining mathematical practice, which, in the context of the 

theory, is equated to mathematical knowledge. According to the model, any practice 

(or piece of knowledge) can be represented by a quadruplet [T, τ, θ, Θ] involving 

four interconnected components: a type of tasks T, which generates the practice, the 

corresponding collection of techniques τ developed to accomplish T, the discourse 

used to describe, justify, explain, and produce the techniques (i.e., their technologies 

θ), and the underlying theories Θ that serve as a foundation of the technological 

discourse. As students progress in their studies of mathematics, they engage in 

numerous activities, which progressively determine the practices they develop.  

As a strictly hypothetical example, we could imagine students in an introductory 

calculus course being asked to engage in the following activities, inspired by a 

commonly used calculus textbook (Stewart, 2008):   

a1: Estimate the area under the graph of  from  to  using 

four approximating rectangles and right endpoints. Sketch the graph and the 

rectangles. Is your estimate an underestimate or an overestimate? What happens if 

you repeat the exercise with left endpoints? (Areas and Distances, Section 5.1) 

a2: Evaluate . (The Substitution Rule, Section 5.5) 

a3: Determine if  is convergent or divergent. If it is convergent, 

evaluate it. (Improper Integrals, Section 7.8)  

If these were the first activities completed by students in the corresponding sections, 

we could expect their actions to be localized and particular. In other words, the 
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solutions students produce would likely be the result of their engagement in a 

relatively isolated act of figuring out how to solve the specific given problem. As the 

students participate in more activities, however, they may be exposed to tasks of the 

same type, and may consequently begin to develop a related practice. By the end of a 

calculus course, for example, students will have typically solved a large number of 

problems involving the calculation of definite integrals by way of various integration 

techniques. From this, they may have learned to recognize other activities (e.g., 

 or ) as forming a type of task with a2, and therefore as 

requiring the same technique: making a substitution (not forgetting to change the 

bounds!), determining the anti-derivative of the new function, and calculating the 

difference of this anti-derivative evaluated at the bounds. In comparison, certain 

activities may be encountered by students only in insignificant (e.g., unevaluated), 

rare, and/or disconnected situations. The action of accomplishing those tasks may 

hence remain isolated and particular, never contributing to the development of 

practices. Activities like a1 or a3, for instance, might never be encountered beyond a 

few recommended exercises at isolated, unique moments in the course.  

Research confirms that the collection of activities given (and not given) to students 

play a crucial role in determining the kinds of practices they develop (and do not 

develop). Although students may seem to be learning mathematical practices, they 

may in fact be engaging in isolated activities or developing practices of a non-

mathematical nature. In her research, Hardy (2009) noticed that when first-year 

calculus students are given activities related to slightly non-routine tasks, they often 

apply techniques in a mathematically unjust way. For example, when asked to 

compute , 20 out of 28 students factored, seven of which did direct 

substitution first. Her analysis of students’ discourse during task-based interviews 

led her to conclude that the students tended to justify their techniques through 

perceived norms. She specifies, for example, that “it seems that students were doing 

substitution not to find the limit or to characterize an indetermination, but because 

that is ‘what you do first’” (p. 351). To explain her observations, Hardy (2009) 

discusses how the kinds of activities to which the students were exposed led them to 

develop such practices, composed of a limited practical block and non-mathematical 

technologies. The activities in which students participated did not only relate to sets 

of highly routinized tasks, they also required no form of mathematical justification. 

Engaging in such activities, students observed patterns that led to the construction of 

techniques based on arbitrary lists of steps that just seemed to work; at least enough 

to do well on assignments and exams.   

In a similar sense, we could imagine a student in our hypothetical example justifying 

their solution to the activity “integrate  over ” by 

saying something like: “first, find the antiderivative, then find the difference between 

the value at 1 and the value at -1, because that’s how we always do it!” An activity 
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such as “integrate  over ”, might therefore elicit the following 

erroneous response: 

 

Unless of course the isolated activities, a1 and a3, were eventually, substantially, and 

meaningfully incorporated into developing the above non-mathematical practice into 

a practice more mathematical in nature.   

“Undergraduate mathematics coursework” 

As illustrated in the previous section, an anthropological perspective does not 

interpret students’ non-mathematical practices (or knowledge) as reflecting a 

common misconception inspired by difficulties inherent to a given mathematical 

concept. Rather, it sees such practices as resulting from a concrete situation within 

which the student finds themselves, under the influence of institutions (Douglas, 

1986). In the ATD, the word “institution” is taken in a wide sense. For example, 

mathematicians work within an overarching institution that we could call 

Mathematical Research (MR), where their praxeologies are shaped by various shared 

criteria (concerning consistency, beauty, explanatory power, efficiency, etc.), but 

survive only if they follow the strict rules of mathematical reasoning. The students of 

interest to us, in contrast, are subjects of the institution Undergraduate Mathematics 

Coursework (UMC), which was in large part created to train potential participants of 

MR. This said, various conditions and constraints within UMC can require and 

enable a network of praxeologies that is fundamentally different from that built and 

recognized by MR. The non-mathematical praxeologies described in the previous 

section provide some examples.  

To capture the transposition of knowledge as it moves from MR into UMC, 

Chevallard, and others (e.g., Bosch, Chevallard, & Gascón, 2005), have introduced a 

distinction between different types of knowledge (i.e. practice): 

 Scholarly Knowledge, produced and used by mathematicians; 

 Knowledge to be Taught, as determined by curricula, textbooks, and 

professors’ teaching plans;  

 Knowledge Actually Taught, according to professors’ actual interactions with 

students, e.g., in lectures; 

 Knowledge to be Learned, i.e., the knowledge students are expected to 

develop, which is often a transposed subset of the knowledge to be taught and 

actually taught, with the minimal core indicated by assessment tools;  

 Knowledge Actually Learned, which can only be predicted, through analyses 

of student work, in-class observations of students, or other specially-designed 

interactions with students, such as interviews or problem-solving situations.   
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Although a lot can happen in university lectures, the minimal knowledge students are 

obliged to learn to pass their courses is determined by their assignments and exams. 

It is not surprising that the knowledge actually learned by students is often only a 

transposed subset of this minimal core. Hence, if we want to know what kind of 

knowledge students are or could possibly be developing in UMC, then we cannot 

restrict our exploration to curricula, textbooks, and teachers’ lecturing practices: we 

need to pay careful attention to the way in which students are assessed.  

Students’ learned knowledge in UMC may also be characterized as a progression 

through various sub-institutions: from secondary school to early university courses 

(e.g., in single and multivariable calculus), through to more advanced university 

courses (e.g., in real analysis, metric spaces, measure theory, and functional 

analysis), which may eventually lead to graduate studies and beyond. Programs can 

vary from school to school and from country to country. However, a common 

phenomenon in secondary schools seems to be that assessments focus solely on the 

practical block of mathematical knowledge. The teacher may be expected to know 

the theoretical block for explaining the material to students; but the students are 

typically not obliged or even invited to develop an awareness of the technology or 

theory, let alone how it is linked to the practical block (Barbé et al., 2005; Winsløw, 

Barquero, De Vleeschouwer, & Hardy, 2014). One observed result is that many 

students interpret mathematical knowledge (practice) as equivalent to identifying a 

type of task and applying the corresponding technique (Bergqvist, Lithner, & 

Sumpter, 2008). Several studies confirm that this same kind of situation can arise in 

early university coursework (e.g., Lithner, 2003; Hardy, 2009; Brandes, 2017).  

Indeed, over multiple years of coursework, students not only gain a particular view 

of what mathematical knowledge is, but they also develop knowledge that, when 

judged against the scholarly knowledge produced and used by mathematicians, is 

evidently non-mathematical – from the strategies they develop to identify tasks, to 

the discourses they use to justify these strategies and the techniques they choose. 

Nevertheless, as conjectured in the schema shown in Figure 1, a transition is 

expected to occur at some point: students are eventually required to develop 

knowledge that is completely and coherently mathematical. These circumstances lead 

Winsløw et al. (2014) to wonder about how teachers could help students accomplish 

such transitions. In parallel, we are inspired to validate, specify, and extend these 

researchers’ claims by constructing praxeological models of how the different kinds 

of knowledge produced in the didactic transposition process progress throughout an 

entire undergraduate degree. In other words, we are inspired to investigate more 

closely the nature of the mathematical training being received by future 

mathematicians in the progression of their undergraduate coursework.  

Of course, developing praxeological models to represent the knowledge (to be) 

taught and (to be) learned throughout an entire undergraduate degree is a hefty task. 

Within the context of our PhD project, we propose to accomplish a first stage, based 
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on a subset of courses in one coursework path. Like in the Mathematical Research 

institution, Undergraduate Mathematics Coursework is divided into several sub-

institutions according to domain – e.g., algebra, geometry and topology, analysis, 

statistics, mathematical physics, or probability – each of which contain a grouping of 

courses, which can be placed in some chronological order according to their 

prerequisites. Having already carried out research in the early courses of an “analysis 

path”, this is the context that seemed most appropriate for our work.  

METHODOLOGY 

Although our project aims at modelling different levels of knowledge that can be 

identified in the didactic transposition process, in this paper we discuss only the 

modelling of the knowledge to be learned (KTL).  

Our research is conducted at a large, urban, Canadian university. The mandatory 

courses in the analysis path of an Honours Bachelor of Science in Mathematics 

include multivariable calculus (MVC) I and II, and mathematical analysis (MA) I, II, 

and III. Since previous work (Brandes, 2017) suggests that the KTL in MVC I and II 

is similar in nature to the KTL in calculus and pre-calculus courses, we decided to 

start by focussing our attention on the two courses that come next and are likely 

candidates for housing the transitions of interest to us: MA I and II.  

As mentioned above, the KTL represents the knowledge that students are expected to 

develop, which can be gleaned from the various activities in which they are invited 

to engage (lectures, assignments, and exams), as well as the materials that frame and 

support the activities (course outlines and textbooks). Since the minimal core of the 

KTL is represented in the assessment activities students must complete on their own, 

we have decided to ignore what happens in lectures and focus on the activities that 

comprise assignments and (practice) exams.   

MA I and II are institutions in themselves in that they enjoy some sort of stability. 

For various reasons, course outlines and assigned textbooks tend to remain the same 

from year to year. The courses also maintain the same assessment structure: students 

complete assignments on a regular basis during the term, a midterm exam halfway 

through, and a final exam, with most of their mark (90% or more) concentrated in the 

examinations. This said, the actual activities proposed on assignments, midterms, and 

finals have less stability in that they can reflect personal choices of the professors 

assigned to teach the course in a given term. On top of this, our approach to 

modelling the knowledge actually learned will involve task-based interviews with 

students after they have passed MA I or II. Hence, we have collected the assignments 

and (practice) exams proposed only by the professor(s) who would be teaching those 

students. For instance, from the two MA I professors teaching in Fall 2017, we 

collected eleven weekly assignments, seven practice midterms, six practice final 

exams, and the actual examinations they gave to their students (these professors 

worked together in that they gave the same set of activities to their students).  
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To analyse such a collection of activities, we think about whether each activity is 

“isolated” or part of a “path to a practice”. An “isolated” activity may occur only 

once in the sense that no other activities engage students in accomplishing the same 

type of task. Since such activities are unlikely to contribute directly to the 

development of a practice, we reflect on why they are proposed. In comparison, the 

activities that belong to a “path to a practice” typically combine with other activities 

to expose students to a type of task. Our goal in studying these activities is to extract 

a theoretical model of the praxeologies that the ideal student (i.e., the student that 

receives a good passing grade) is expected to develop in the course. We start by 

constructing punctual praxeologies related to groups of non-isolated activities. 

Looking at the problem statements, we can establish the types of tasks (T) that 

generate the praxeologies. Determining the technologico-theoretical blocks ([τ, θ, 

Θ]), however, requires more data. We rely on the solutions a professor makes 

available to students to uncover the intended techniques, as well as portions of the 

expected theoretical blocks; and we complete the latter by checking the course 

outline and reading the relevant textbook chapters. The resulting collection of 

punctual praxeologies then becomes part of our data, which we use to construct more 

generalized praxeologies, think about how they are related to one another, and reflect 

on the nature of the KTL.  

Eventually, we plan to put the models of the KTL for MA I and II together and 

compare our results with what previous researchers have found in calculus and pre-

calculus courses. This, we hope, will allow us to discuss how the ideal student is 

expected to progress in the early stages of the analysis path. At the time of the 

INDRUM 2018 conference, we will have completed this initial theoretical stage of 

our project and will thus be able to share our results.  

SUMMARY AND EXPECTATIONS 

For a long time, mathematics students survive their courses based on developing a 

transformed version of a practical block, where they learn to recognize routine tasks 

and apply techniques to solve them in a sort of mechanical, naturalized, or 

normalized way, void of a mathematical theoretical block. At some point throughout 

an undergraduate degree in mathematics, however, the conditions for students’ 

survivability change dramatically and possibly abruptly: they are faced with 

activities that require them not only to fill the void of a mathematical theoretical 

block, but also to develop techniques for accomplishing tasks (e.g., proofs) that 

involve the abstract theoretical objects that have come out of hiding. Through 

modelling the knowledge the ideal student is expected to develop, as well as, 

eventually, the knowledge students actually develop in early analysis courses, we 

expect our project to bring about a more detailed and concrete understanding of 

praxeological “transitions” that have been theorized to occur, and give us some 

insight into how (or if) students adapt to them.  
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Returning to the vague and general question that originally inspired our project, we 

ultimately hope to learn more about what students are actually learning throughout 

an undergraduate degree in mathematics. The empirical data we collect will be a 

contribution to largely anecdotal discussions about when (if at all) students’ 

knowledge is invited to become, and actually becomes, coherently, completely, and 

complexly mathematical, just like the scholarly knowledge produced and used in the 

institution of Mathematical Research. The significant difference between elementary 

and advanced courses, as professors gain more freedom and teach topics more 

closely related to their field of study, leads us to predict that students are eventually 

required to develop mathematical practices. After all, in spite of the apparent 

disconnection that is often observed between university mathematics courses and 

mathematical research (cf. Broley, Caron, & Saint-Aubin, 2017), the field of 

mathematics continues to live on, with new mathematicians emerging from the 

coursework that made up their mandatory professional education. In any case, 

through studying the principal conditions that currently shape the activities in which  

undergraduate mathematics students engage, we feel that we will be in a better 

position to discuss realistic and meaningful ways of encouraging these students to 

develop practices that are truly “mathematical”, within the confines of educational 

institutions. This, we hope, will serve as complementary to the recent surge of 

studies (cf. Barquero, Serrano, & Ruiz-Munzon, 2016) aiming to explore innovative 

teaching approaches that question not the nature of the knowledge developed, but the 

dynamics of the knowledge development.  
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This paper focuses on two mathematical topics, namely continuous probability 

distributions (CPD) and integral calculus (IC). These two sectors that are linked by 

the formula 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 are quite compartmented in teaching classes 

in France. The main objective is to study whether French students can mobilize the 

sector of IC to solve tasks in CPD and vice versa at the transition from high school to 

higher education. Applying the theoretical framework of the Anthropological Theory 

of the Didactic (ATD), we describe a reference epistemological model (REM) and use 

it to elaborate a questionnaire in order to test the capacity of students to bridge CPD 

and IC at the onset of university. The analysis of the data essentially confirms the 

compartmentalisation of CPD and IC. 

Keywords: Transition to and across university mathematics; Teaching and learning of 

analysis and calculus; Teaching and learning of probability; Anthropological Theory 

of the Didactic. 

INTRODUCTION 

Continuous probability distributions (CPD) and integral calculus (IC) are two topics 

that are taught in France during the last year of high school (grade 12 of the scientific 

track). They constitute two sectors (in the sense of the Anthropological Theory of the 

Didactics, ATD) that belong to the two different but closely related mathematical 

domains of probability theory and calculus respectively.  Indeed, the continuous 

probability of an event and the definite integral with respect to a non-negative function 

are both defined as areas of suitable two-dimensional domains in the syllabus (in 

France), and the formula 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is the key for solving several 

standard tasks in CPD, where 𝑋 represents a random variable and 𝑓 its associated 

density function. 

IC is the focus of extended studies in mathematics education: for instance, research 

(Schneider, 1992; Tran Luong, Bessot & Dorier, 2010; Haddad, 2013) was conducted 

in the context of Belgian, French, Vietnamese and Tunisian secondary education, 

including the secondary-tertiary transition (Haddad, 2013). By contrast, there is hardly 
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any literature on CPD and, to make things worse, the available studies mostly put the 

emphasis on normal distributions (Batanero, Tauber & Meyer, 1999; Wilensky, 1997; 

Batanero, Tauber & Sánchez, 2004; Pfannkuch & Reading, 2006). Therefore, the 

teaching-learning phenomena generated by the interrelationship between CPD and IC 

are still to be investigated. 

A first stone was laid by Derouet and Parzysz (2016; see also Derouet, 2016), who 

studied possible ways to introduce the density function at grade 12 so that students may 

construct this concept starting from considerations regarding histograms and therefore 

might relate continuous probability to the integral.  By an analysis of textbooks, 

Derouet could show that the two sectors CPD and IC are very much compartmentalised 

in the French curriculum (Derouet, 2016, pp. 127-190). For instance, the above formula 

is seldom justified by a thorough discussion of the definitions involving areas, which 

certainly hinders the bridging of the two sectors by students. 

In this paper, we regard this “compartmentalisation” of knowledge as an institutional 

phenomenon and therefore use ATD as the theoretical framework (see below). Our 

goal is to study the impact of this compartmentalisation on the learning of mathematics: 

are French students able to mobilize the sector of IC to solve tasks in the sector of CPD 

and vice versa at the transition from high school to higher education? 

After the presentation of theoretical constructs from ATD used in this research, we will 

describe the reference epistemological model (REM) that we elaborated for the types 

of tasks in CPD and IC with regard to studying interrelations of the two sectors. We 

will then describe our methodology that builds on the elaboration of a questionnaire, 

based on the REM, that has been submitted to students at the entrance of university. 

We finally present results of a primary analysis of the data from the questionnaire and 

draw some conclusions and perspectives opened up through this study. 

THEORETICAL CONSTRUCTS  

ATD “postulates that any activity related to the production, diffusion or acquisition of 

knowledge should be interpreted as an ordinary human activity, and thus proposes a 

general model of human activity built on the key notion of praxeology” (Bosch & 

Gascon, 2014). The praxeology 𝛱 is represented by a quadruple [𝑇/𝜏 /𝜃/𝛩]: its praxis 

part (or know-how) consists of a type of tasks 𝑇 together with a corresponding 

technique 𝜏 (useful to carry out the tasks 𝑡 ∈ 𝑇 in the scope of 𝜏). The logos part (or 

know-why) includes two levels of description and justification: the technology 𝜃, i.e. 

a discourse on the technique, and the theory 𝛩, which often unifies several 

technologies. 

The elaboration of a reference epistemological model (Florensa, Bosch, & Gascon, 

2015) as sequences of praxeologies, for a given body of knowledge, is an important 

step in any research carried out in the ATD framework. It is the tool that will be used 

by the researcher to describe, analyse, put in question or design the specific contents 
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that are at the core of a teaching and learning process. In order to build such a model, 

“mathematical praxeologies are described using data from the different institutions 

participating in the didactic transposition process, thus including historical, semiotic 

and sociological research, assuming the institutionalized and socially articulated nature 

of praxeologies” (loc. cit. p. 2637). 

Our study relies on an overview of standard textbooks used at grade 12 in France, as 

well as the official syllabus, in order to identify the standard praxeologies in CPD and 

IC that may be related and the nature of this relationship at the praxeological level. An 

epistemological investigation of the historical development and the interrelation of 

both domains have previously been carried out in (Derouet, 2016, pp. 67-85). In order 

to test the effect of the institutional compartmentalisation of knowledge on the learning 

of mathematics, we need to check the availability of the identified praxeologies in the 

praxeological equipment of students, and then submit tasks to students which need to 

bridge CPD and IT as mutually interdependent sectors that share techniques or 

technologies, borrow them from or lend them to each other. Special care must be taken 

in the phrasing of these bridging tasks, taking into account the effect of ostensives 

(Bosch & Chevallard, 1999), that is to say the role of signs. Indeed, ostensives 

contribute to the activation of the specific sectors to which they belong and therefore 

direct students toward specific techniques. 

REFERENCE EPISTEMOLOGICAL MODEL  

Even though problems of quadratures arose in ancient Greece, IC finds its roots as a 

systematic method in the 17th century. The emergence of continuous probability may 

be situated in the 18th century with the theory of errors in physical measurements. 

Various functions were introduced to model the distribution of errors and the area 

under the curve permitted to evaluate the “theoretical frequency” (so the probability) 

of the deviation from the “true” value. CPD was thus naturally connected to IC in its 

historical roots. The gaussian distribution was proposed later by Gauss in 1809. 

To identify the different praxeologies, we have analysed 12 textbooks of the grade 12 

of the scientific track (edition 2012). We focused on the exercises with a given solution 

in the textbooks to have access to the usual techniques for the different tasks.  

In our study, we will focus on two main types of mathematical tasks 𝑇𝐼 and 𝑇𝑃, which 

are related to the mathematical domains of integral calculus and the continuous 

probability respectively: 

● 𝑇𝐼: compute a value for an integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for a positive continuous function 

𝑓; 

● 𝑇𝑃: determine the probability 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) for a random variable 𝑋 endowed 

with a density function 𝑓. 

The type of tasks 𝑇𝐼 may further be split into two subtypes of tasks, depending on the 

expected result: an exact value (𝑇𝐼,𝑒𝑥𝑎𝑐𝑡) or an approximation (𝑇𝐼,𝑎𝑝𝑝𝑟𝑜𝑥). 
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The most useful technique 𝜏𝐼,𝑒𝑥𝑎𝑐𝑡 to solve 𝑇𝐼,𝑒𝑥𝑎𝑐𝑡  is to compute a primitive of the 

function and apply the fundamental theorem of calculus. The corresponding 

technology 𝜃𝐼,𝑒𝑥𝑎𝑐𝑡 is given by the fundamental theorem of calculus that relates 

integrals and primitives: ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎) with 𝐹′ = 𝑓. The theory 𝛩𝐼,𝑒𝑥𝑎𝑐𝑡 

includes the definition of the definite integral for a continuous positive function as an 

area and properties of areas that may be formalised into a local axiomatic theory1. 

The technique 𝜏𝐼,𝑒𝑥𝑎𝑐𝑡 thus resorts to praxeologies dedicated to the computation of 

primitives. The standard technique at high school level is to use the “tabular of 

primitives” (deduced from the tabular of derivatives). The technology comprises the 

properties of the derivative and the theory is that of differential calculus. In the case of 

piecewise affine functions, an alternative technique to 𝜏𝐼,𝑒𝑥𝑎𝑐𝑡 is to interpret the integral 

as the area of an elementary surface (or a union of these). 

The type of tasks 𝑇𝐼,𝑎𝑝𝑝𝑟𝑜𝑥 may be solved using two main techniques:  using a 

calculator (or software), more or less a blackbox, or applying the “rectangle method”. 

The latter technique 𝜏𝐼,𝑎𝑝𝑝𝑟𝑜𝑥 consists in considering the integral as an area, taking a 

subdivision of the interval of integration and computing the sum of rectangular areas. 

The technology 𝜃𝐼,𝑎𝑝𝑝𝑟𝑜𝑥 comprises the definition of the integral and properties of 

areas. A further theoretical level 𝛩𝐼,𝑎𝑝𝑝𝑟𝑜𝑥 is mainly non-existent at high school level 

(cf. endnote 1). 

Regarding the type of tasks 𝑇𝑃, two cases need to be distinguished, depending on 

whether a primitive of the density function f is known (𝑇𝑃,𝑝𝑟𝑖𝑚) or not. The latter case 

is reduced to that of the normal distribution (𝑇𝑃,𝑛𝑜𝑟𝑚), which is dealt with using the 

implementation of such a distribution in a calculator or software. Computer scientific 

tools are mainly used as a blackbox by students, which hinders the possibility for 

students to make connections with IC. 

The generic technique 𝜏𝑃,𝑝𝑟𝑖𝑚 for 𝑇𝑃,𝑝𝑟𝑖𝑚 is to compute ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, in other words to 

resort to the praxeology 𝛱𝐼,𝑒𝑥𝑎𝑐𝑡. The technology 𝜃𝑃,𝑝𝑟𝑖𝑚 is given by the formula 

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, and the theory 𝛩𝑃,𝑝𝑟𝑖𝑚 comprises the definition of a 

continuous probability (as the area of the corresponding domain) and the definition of 

a probability density function. At high school, two particular cases are emphasised and 

lead to local techniques, as concrete formulas are available for 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) in the 

case of the exponential and uniform distributions. For instance, the technique 𝜏𝑃,𝑒𝑥𝑝 in 

the case of the exponential may be reduced to computing 𝑒𝜆𝑎 − 𝑒𝜆𝑏 with the 

technological argument 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝑒𝜆𝑎 − 𝑒𝜆𝑏. 

Let us recall that our model is based on the study of standard textbooks used in grade 

12 classes in France and is dedicated to the description of the teaching-learning of CPD 

and IC as it actually is (we are not planning task-design at this stage of the research). 
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In this model, we note the following links between CPD and IC:  at the level of the 

theoretical blocks, praxeologies in both sectors are anchored on the empirical notion of 

area. At the level of the technique, 𝛱𝑃,𝑝𝑟𝑖𝑚 uses 𝛱𝐼,𝑒𝑥𝑎𝑐𝑡, so that, from an ecological 

point of view (Bosch & Gascon, 2014, p. 72), CPD contributes to the thriving of such 

IC praxeologies. By contrast, 𝛱𝐼,𝑎𝑝𝑝𝑟𝑜𝑥 does not seem to be reinvested in CPD 

(whereas the computation of a probability of the Gaussian distribution could be an 

opportunity to mobilize 𝛱𝐼,𝑎𝑝𝑝𝑟𝑜𝑥). Conversely, we did not detect elements of the 

praxis of CPD in the IC sector. This isn’t a surprise: IC is regarded as a prerequisite to 

CPD and precedes the teaching of CPD in all textbooks. Nevertheless, the normal 

distribution is a prototypical example of a function whose primitive cannot be 

expressed in terms of available elementary functions. This fact explains the choice of 

techniques in 𝛱𝑃,𝑛𝑜𝑟𝑚 and contributes also to the logos of 𝛱𝐼,𝑒𝑥𝑎𝑐𝑡 (by complementing 

the statement that every continuous function admits a primitive). What about the type 

of tasks 𝑇𝐼,𝑛𝑜𝑟𝑚: compute ∫
𝑒−(𝑥−𝑚)2/2𝜎2

𝜎√2𝜋
𝑑𝑥

𝑏

𝑎
? It could appear in the IC sector through 

𝛱𝐼,𝑎𝑝𝑝𝑟𝑜𝑥 only but we didn’t find it in any textbook and it is never stated as such in the 

CPD sector. The most efficient technique requires to use the formula 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) =

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 from right to left: although the equality is symmetrical as an equivalence 

relation, it isn’t symmetrical as a sign which denotes a succession of operations in 

performing a computation. How would students react to such a task that asks to bridge 

CPD and IC in an unusual way? This question came to us as a starting point for the 

elaboration of our questionnaire dedicated to the investigation of the educational 

effects of the institutional phenomenon of compartmentalisation of knowledge, in the 

case of CPD and IC. 

THE QUESTIONNAIRE 

Our main goal is to test whether students are able or not to connect CPD and IC, and 

especially mobilize the CPD sector to solve an IC task when ostensives do not indicate 

explicitly the probability domain. To do so, we have elaborated a questionnaire both to 

check the availability of standard praxeologies of CPD and IC in the praxeological 

equipment of students and the capacity of students to complete such bridging tasks. 

Bridging tasks appear at the very end of the questionnaire and are stated as follows: 

Question 6: Expliquer toutes les méthodes que vous pouvez utiliser pour déterminer une valeur exacte et/ou approchée 

de l’intégrale suivante : 𝐼 = ∫
𝑒−𝑥2/2

√2𝜋

1

−0,5
𝑑𝑥. On pourra se limiter à donner une idée de la méthode si sa mise en oeuvre 

est trop compliquée. 

Question 7: Soit A la fonction définie par 𝐴(𝜆) = ∫ 𝑓(𝑥)𝑑𝑥 
𝜆

0
avec 𝑓(𝑥) = 𝑥𝑒−𝑥, pour tout  ∈ [0; +∞[. On peut 

démontrer que lim
𝜆→+∞

∫ 𝑥𝑒−𝑥𝑑𝑥
𝜆

0
= 1. D’après ce résultat, expliciter tout ce que vous pouvez dire sur la fonction A et 

la fonction f. 

Translation: 
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Question 6: Explain all the methods that can be used to determine an exact and/or approximate value of the following 

integral: 𝐼 = ∫
𝑒−𝑥2/2

√2𝜋
𝑑𝑥

1

−0,5
. It suffices to give an idea of the method if its implementation is too complicated. 

Question 7: Let A be the function defined by 𝐴(𝜆) = ∫ 𝑓(𝑥)𝑑𝑥
𝜆

0
 with 𝑓(𝑥) = 𝑥𝑒−𝑥, for all  ∈ [0; +∞[. It can be 

proved that lim
𝜆→+∞

∫ 𝑥𝑒−𝑥𝑑𝑥
𝜆

0
= 1. According to this result, note everything that you can say about the function A and 

the function 𝑓. 

Figure 1: bridging tasks submitted to students 

Question 6 contains an instance of the type of tasks 𝑇𝐼,𝑛𝑜𝑟𝑚 discussed in the REM. The 

task is stated in an opened way, asking for every method that students may know to 

compute an exact or approximate value for the Gaussian integral. Praxeologies 𝛱𝐼,𝑒𝑥𝑎𝑐𝑡 

and 𝛱𝐼,𝑎𝑝𝑝𝑟𝑜𝑥 should therefore also show up. In question 7, we intend to check whether 

students can say that A is both a primitive for f and a probability associated with the 

density function f, or restrict to the IC sector with an interpretation in terms of areas.   

Previous questions intend to “activate” both sectors CPD and IC equally. In this 

respect, question 1 offers a routine task of type 𝑇𝐼,𝑒𝑥𝑎𝑐𝑡 in the case of a straightforward 

exponential function. Analogously, the first part of question 4 is a routine task of type 

𝑇𝑃,𝑒𝑥𝑝 (compute 𝑃(1 ≤ 𝑋 ≤ 5) when X has an exponential distribution of parameter 

3). In its second part, students are asked for a graphical interpretation of the probability 

𝑃(1 ≤ 𝑋 ≤ 5) that is in fact defined as an area in the high-school syllabus, as well as 

the integral: this interpretation is therefore essential in order to link the logos of 𝛱𝑃 and 

that of 𝛱𝐼. 

Question 2 activates the CPD sector by soliciting an element of the logos of 𝛱𝑃, namely 

the properties that define a density function. This logos is crucial in the bridging 

question 7, which is stated in the IC sector without any reference to CPD. Question 3 

tests if students are able to retrieve the definitions of both the exponential and normal 

distributions by specifically asking for those in the case of simple parameters (the 

reduced centered gaussian law). The latter is an element of the logos of 𝛱𝑃,𝑛𝑜𝑟𝑚: we 

wish to check if students are able to recognize the normal distribution in the statement 

of the bridging question 6, while taking care not to direct them towards a specific 

technique (hence the order of questions). 

In question 5, we rather activate the IC sector, more precisely elements of the logos of 

𝛱𝐼,𝑒𝑥𝑎𝑐𝑡 (primitives), but we have in mind the praxeology 𝛱𝑃,𝑛𝑜𝑟𝑚 in relation to the 

bridging question 6: students are asked to provide an example of a continuous function, 

if it exists (or justify the impossibility), that a) doesn’t possess primitives b) admits 

primitives but expressions for these are not “explicitly known” (expected answer: the 

density function of the normal law).  

Summarizing, by the questions 1 to 4 we want to investigate whether the students 

master techniques 𝜏𝐼,𝑒𝑥𝑎𝑐𝑡 in a calculus context and 𝜏𝑃,𝑝𝑟𝑖𝑚 in a probability context and 
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whether they know technologies related to IC and CPD. Then, by questions 6 and 7, 

we focus on relationships between CPD and IC and the previous questions: we analyse 

links between the questions 3, 4 (second part), 5 and 6, on the one hand, and links 

between the questions 2 and 7, on the other hand. 

DATA ANALYSIS AND RESULTS 

The questionnaire was used at the beginning of September 2017 (the first week of 

classes) in two classes of first year CPGE (French engineers school preparatory classes) 

students, which is in fact at the transition between secondary and tertiary levels. The 

first class (called class N) is a class of MPSI (Mathematics, Physics and Engineering 

Science) and the second class (called class R) is a class of PCSI (Physics, Chemistry 

and Engineering Science) of a rather prestigious establishment. The students working 

on the questionnaire are in selective classes, so we can assume that they are “good” 

scientific students, and in particular, if they meet difficulties then these are shared by 

the other students. We only analysed answers from students who studied in French high 

school during the past year because we constructed the questionnaire taking into 

account the context of the French high school institution. We retrieved 82 

questionnaires (40 of the class N and 42 of the class R). Except for a few students (less 

than 5), the students didn’t use a calculator during the test. 

From the 82 students, only one does not mobilize the technique 𝜏𝐼,𝑒𝑥𝑎𝑐𝑡 to resolve the 

routine task concerning IC (question 1). 85% find a correct expression of the primitive 

and 78% obtain the correct result, which means that this technique is mastered quite 

well by students. Regarding the computation of the probability for an exponential 

distribution (question 4), 63% of the students get a correct result. 82% of the students 

use the technique 𝜏𝑃,𝑝𝑟𝑖𝑚 and the other students directly apply a formula. More than 

70% of the students could identify the probability as an integral. Summarizing, except 

for some errors regarding the primitive or the computation, the majority of students are 

able to pass from a probability to an integral and, moreover, know the fundamental 

theorem of calculus. In praxeological terms, they are able to mobilize the technique 

𝜏𝑃,𝑝𝑟𝑖𝑚 that implies the use of the technique 𝜏𝐼,𝑒𝑥𝑎𝑐𝑡 in the case of an exponential 

distribution.  

Regarding CPD and neglecting formulation and formalization issues, only 39% of the 

students know the definition of the density function (question 2) and only 27% recollect 

the density function of the normal distribution (question 3b). In view of question 5, 

only 32% mobilize the theorem claiming that all continuous functions on an interval 

admit a primitive. 52 % give an example of a function for which they don’t explicitly 

know a primitive (although it might exist and be expressed in terms of standard 

functions2, for instance 𝑙𝑛(𝑥)). Among these, 15% mention the density function of the 

Gaussian distribution (or a function of the type 𝑒−𝑥²). Of the 22 students who know the 

density function of the normal distribution, half propose it as an example in question 5 

(13% of all the students).  
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9% of the students do not answer question 6.  The method most often proposed is 

technique 𝜏𝐼,𝑒𝑥𝑎𝑐𝑡 (46%). Less than 20% (16 students) mention the normal distribution 

and 16% propose the rectangle method (𝜏𝐼,𝑎𝑝𝑝𝑟𝑜𝑥). A few students propose the 

technique “integration by parts”, which is beyond the curriculum in grade 12. 

Moreover, only 23% of the students who propose the rectangle method are able to 

illustrate the method by drawing the graph of the Gaussian curve (the other students 

draw a wrong curve or do not consider any graph). Only 11 of the 16 students (69%) 

who mention the normal distribution in this question write that the integral I is equal 

to the probability  𝑃(−0,5 ≤ 𝑋 ≤ 1) with 𝑋 a random variable of a reduced normal 

distribution and 7 of them state more precisely that they have to use the calculator to 

evaluate this probability (𝜏𝑃,𝑛𝑜𝑟𝑚). So, our results indicate that the ostensive 

∫
𝑒−𝑥2/2

√2𝜋
𝑑𝑥

1

−0,5
 without indication invite students to stay in the IC sector and even more 

particularly in the praxeology 𝛱𝐼,𝑒𝑥𝑎𝑐𝑡 (even if it is not possible here), which reflects 

that 𝛱𝐼,𝑒𝑥𝑎𝑐𝑡 is the praxeology most developed in grade 12. To pass from an integral to 

a probability and to change the sector in this direction does not seem to be natural for 

students. Moreover, of the 22 students who know the expression for the density 

function of the reduced normal distribution (question 3b), only 10 (45%) recognize the 

density function of the normal distribution is this context. Of the 15 students who say 

that the Gaussian function does not admit primitives expressed by using standard 

elementary functions (question 5b), around 27% proposes to use the technique 𝜏𝐼,𝑒𝑥𝑎𝑐𝑡 

nevertheless and only 53% recognize the normal distribution in question 6. This means 

that most of the students were not able to mobilize 𝛱𝑃,𝑛𝑜𝑟𝑚 in the IC-context of 

question 6, that is 𝛱𝐼,𝑛𝑜𝑟𝑚. In particular the application of 𝜏𝐼,𝑒𝑥𝑎𝑐𝑡, although question 

5b is answered correctly, demonstrates the strong compartmentalisation between CPD 

and IC.   

Regarding the answers to question 7, we notice that 38% of the students (31) state that 

the function 𝑓 is a density function. 42% of them (13 students) could justify that it is a 

density function including 4 who forget to mention the positivity of the function 

(because they don’t write this condition in their definition in question 2). Moreover, 12 

of the 31 students as well as one additional one identify 𝐴(𝜆) as 𝑃(0 ≤ 𝑋 ≤ 𝜆). 8 

students think that the distribution in question 7 is an exponential distribution of 

parameter 𝑥 and 7 students state that 𝐴 is a density function. Finally, more than 46% 

of the students mention “probability”, which means that they manage to identify at 

least some link between the IC embedding of question 7 and CPD. Probably, the 

questionnaire itself  influenced students and the percentage would be lower otherwise, 

i.e. if question 7 was asked independently. Overall correct results with justification are 

rare and of the 32 students who master the definition of a probability density function 

(one element of the technology 𝜃𝑃,𝑝𝑟𝑖𝑚 tested in question 2), 31% (10 students) do not 

identify 𝑓 as a density function. 16% of the students do not at all answer question 7. 
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Again, we observe also with respect to question 7 that CPD praxeologies, although 

they are in principle available, often cannot be mobilized in the IC contextualization. 

Summarizing, the data analysis shows that techniques related to one sector are 

available for the majority of students only when ostensives related to this sector are 

provided. Additionally, related technologies are much less mastered by students. 

Perhaps, this could be an explanation why it is not natural for students to mobilize 

praxeologies of the CPD sector for a task in the IC sector, in addition to the fact that 

these tasks are not taught in the classroom. The data analysis by all means shows a 

strong compartmentalisation between CPD and IC. 

CONCLUSION AND PERSPECTIVES 

The results of our primary data analysis clearly demonstrate a strong 

compartmentalisation between CPD and IC. In particular, techniques from CPD, 

although available in a CPD task, could not be mobilized in an IC-contextualized task. 

A next step in our research will be more detailed data analyses looking for correlations 

and interdependencies between techniques and technologies of CPD and IC. We further 

observed that available techniques were not accompanied by related technologies. One 

could claim that more elaborated technologies might support the transfer of techniques. 

More generally, we think about studies investigating the impact of changes in the 

institutional setting, i.e. establishing innovative teaching sequences with less 

compartmentalisation. A teaching sequence articulating CPD and IC is proposed in 

Derouet (2016). The effect of this teaching on the answers of students to the 

questionnaire could be analysed by comparing the latter with the present results. 

NOTES 

1. This axiomatic remains implicit at the secondary level; it may be related to Measure Theory at university level. 

2. We realised a posteriori that our question was not phrased properly: “a function that admits a primitive whose 

expression is not explicitly known to you” may be interpreted as a lack of techniques to actually compute the primitive 

and not the impossibility to provide an expression (in terms of elementary functions).    
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 Affective variables in the transition from school to university 
 mathematics 
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The transition from school to university mathematics is a difficult step for students, 
which many of them do not succeed to manage immediately. In this contribution we
use questionnaires, which measure mathematics-related affective variables as well as 
subject-unspecific affective variables and students’ achievement during the semester 
to predict the outcome of the exam at the end of the first semester (as a first indicator 
for success in their studies) and the students’ attendance in this exam (as an indicator 
for early dropout). We are interested in whether the mathematics-related or the
“general” affective variables are more suitable to predict the students’ exam 
attendance and the exam outcome. The students’ achievements during the semester 
turned out to be the best predictor for the exam outcome, whereas the students’ 
attendance was best predicted by their interest in mathematics. 
Keywords: transition to and across university mathematics, teaching and learning of 
analysis and calculus, dropout, study success, affect 
INTRODUCTION 
Dropout is a big problem for German universities, especially in mathematics. Nearly 
80% of all mathematics students drop out or change their subjects – most of them
during their first year at university (Dieter & Törner, 2012). However, this is not a 
typical German phenomenon: Chen (2013) reports similar figures of dropout and
subject change for the United States. In this paper, we do not distinguish between 
students who drop out and leave the university system without examination and those
who “just” leave mathematics and change to another subject.  
At Ruhr-University Bochum, where our study takes place, students begin their studies 
of mathematics with two lecture courses in the first semester – calculus I and 
linear algebra I. Two so called “mini-tests” are written during the semester to prepare 
the students for their first “real” exam at university. These “mini-tests”, designed by 
the lecturer, cover conceptual and procedural knowledge about definitions and proof 
which have been discussed in the lecture before. 73% of the students at Ruhr-
University (who attended the exams) failed their calculus exam in 2017. Furthermore,
25% of the students did not even attend the exam. Following the goal to improve the 
support of students who are at risk to fail their exam and/or drop out, we are 
interested in which way students at risk differ from those who succeed.  
Due to data protection regulations, it was not possible for us to identify which 
students really dropped out from mathematics at Ruhr-University in 2017. Instead, 
we could match the results from our questionnaires with the results of the exam at the 
end of the first semester. We therefore could identify which students were successful 
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in their exam, which failed and which did not attend the exam. Students who did not 
attend the exams might have dropped out before or may be at risk to drop out soon. 
Baars and Arnold (2014) found that students who do not attend their exams in the 
first semester have a high risk to drop out.  
THEORETICAL BACKGROUND 
Both, dropout and study success, are considered to be influenced by multiple factors, 
which are often called predictors, such as the socio-economic and school background, 
personal psychological prerequisites, learning behaviour and study conditions (Tinto, 
1975; Heublein et al., 2009; Thiel et al., 2008).  
The predictors, which are listed by the students for their decision to drop out, are 
called dropout reasons. In Germany, most dropped out mathematics students name 
the course requirements (e.g. failed exams, work-overload) (33%) and low motivation 
(25%) as their main reasons to quit their studies of mathematics. Other reasons such 
as study-conditions (13%) and reasons related to health- or financial problems (12%) 
and personal reasons like family problems (10%), were less important – specially for 
early dropout (Heublein et al., 2009).  
Given the fact, that most dropped out mathematics students in Germany name the 
requirements at university and their lack of motivation as crucial for their decision to 
drop out, we want to shed light on the following affective variables, which are 
considered to influence the students’ motivation and academic achievements: 
mathematical self-concept, interest in mathematics, beliefs concerning the nature of 
mathematics, basic needs and general self-efficacy. These variables are briefly 
discussed in the following. 
Mathematical self-concept  
The self-concept can be seen as the mental model of one’s personal competences, 
abilities and properties, or “in very broad terms, self-concept is a person’s perception 
of himself” (Shavelson, Hubner, and Stanton, 1976 as cited in Bong and Skaalvik, 
2002). The self-concept is influenced by the students’ former experiences and 
achievements and can itself influence students’ motivation (Bong and Skaalvik, 
2002). The self-concept is considered to be domain specific. Rach and Heinze (2016) 
found that the mathematical self-concept is a significant predictor for dropout but not 
for students’ success in the first semester. 
Interest in mathematics  
The interest in mathematics is considered to have a positive impact on the learning of 
mathematics. Schiefele et al. (1993) define interest as a specific relation between a 
person and an object. The interest in the subject that one is studying is rather stable, 
since it has been developed over a longer time through different experiences. 
Due to contradictory results in various studies the impact of interest in mathematics 
on students’ performance and success in their studies of mathematics remains 
uncertain. Rach and Heinze (2016) found no significant influence of the interest in 
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mathematics on students’ success during the first semester or on their risk to drop out. 
However, Blömeke (2009) found significant correlations between the interest in 
mathematics and the students’ intention to drop out. 
Beliefs concerning the nature of mathematics  
It has been widely discussed that the nature of mathematics changes with the 
transition from school to university (e.g. Rach and Heinze, 2016). Mathematics in 
German schools is often focused on applying mathematical techniques to solve real 
world problems (modelling, problem solving). New mathematical contents are 
regularly presented more intuitively with examples and illustrations and yield on an 
intuitive or practical understanding of the concepts. Mathematics at university is 
more theoretically and proof oriented. New concepts are presented in a rather formal 
and abstract way and therefore less illustrated than in school. The focus often lies on 
encouraging logical and abstract thinking. The students have to develop 
understanding for deductive argumentations and proof – applying the theory is less 
important than at school. This change from a practical to a theoretical approach is not 
easy for most students. Many of them feel a big gap between mathematics at school 
and university (Geisler, 2017). This feeling might be a result of unfulfilled 
expectations and incongruences between the mathematical “reality” at university and 
their established beliefs concerning the nature of mathematics, which are based on 
their school experiences. Daskalogianni and Simpson (2001) call this phenomenon 
“belief overhang”. Andrà, Magnano and Morselli (2011) found hints that students’ 
beliefs concerning the nature of mathematics can influence their decision to drop out 
or to stay. Traditionally we distinguish between a static view, where mathematics is 
viewed as a summary of (unconnected) rules, facts and techniques, and a dynamic 
view, where mathematics is considered as a process and a creative field of research 
(Grigutsch and Törner, 1998). However, it is yet unclear which beliefs are beneficial 
for a successful transition from school to university. 
Basic Needs  
Following the framework of self-determination theory (Ryan & Deci, 2000), there are 
three basic psychological needs that are important for the well-being of humans and 
to generate motivation: social relatedness, competence and autonomy. In the special 
situation of the transition from school to university mathematics, many students do 
not experience autonomy and competence (Liebendörfer and Hochmuth, 2013). This 
is problematic since Faye and Sharp (2008) found that especially the feeling of 
competence is strongly associated with motivation in university. In an explorative 
case-study, we found hints for the impact of social relatedness and competence on the 
decision to drop out (Geisler, 2017). 
General self-efficacy  
The general self-efficacy is the strength of a persons’ belief to be able to reach certain 
goals and to solve problems by his or her own competences and abilities 
(Luszczynska et al., 2005). This general belief is not limited to a special domain like 
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mathematics or special academic settings. In contrast to the self-concept, self-efficacy 
is more focused on the consequences of one’s own competences and abilities than on 
the competences and abilities themselves. That’s why self-concept is rather past 
oriented whereas the self-efficacy focuses on the future (Bong and Skaalvik, 2002). 
Besides, self-concept is considered to be the more stable variable. Self-efficacy can 
influence the students’ motivation in the sense that students who believe that they are 
able to succeed in their studies of mathematics are more motivated to put effort in 
their learning than those who believe that they have no chance in the exams. Self-
efficacy is therefore associated with academic achievement (Luszczynska et al., 
2005; Bong and Skaalvik, 2002). Students with lower self-efficacy have a higher risk 
to drop out than those with higher self-efficacy (Krieger, 2011). 
Achievement during the semester 
The students’ achievement is an important factor for success and dropout. In Tinto’s 
(1975) framework, achievement, as a part of the academic integration, is important 
for the decision to drop out or to stay. In an explorative case-study, Geisler (2017) 
found hints that students who are not satisfied with their achievement during the first 
semester sometimes drop out, even if they are successful in their exams at the end of 
the semester. Though achievement is closely connected with the perceived feeling of 
competence. 
RESEARCH QUESTIONS  
In order to support students who are at risk to fail their exam or even to drop out we 
want to know in which way these students differ from those who succeed. Following 
the theoretical background described above, we decided to focus on the students’ 
achievements during the first semester and on affective variables which are likely to 
influence students’ motivation. Since the dropout rate in mathematics is high 
compared to other subjects, it seems plausible that mathematics related variables have 
an important impact on dropout and success. We therefore distinguish between 
mathematics-related affective variables (mathematical self-concept, interest in 
mathematics, beliefs concerning the nature of mathematics) and more “general” 
affective variables (basic needs, self-efficacy). We are interested in whether the 
mathematics-related or the “general” affective variables are more suitable to predict 
students’ exam attendance and their exam outcome. This leads to the following 
research questions: 
Differences between the three groups of students  

1) Which differences in the affective variables and the achievements can be found 
between students who do not attend the exam, students who fail in the exam 
and those who succeed? 

Prediction of the students’ exam attendance 
2.1) In which way can the mathematics-related affective variables predict the 

students’ attendance for the exam at the end of the first semester? 
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2.2) In which way can the “general” affective variables and the students’ 

achievements approve this prediction? 
Prediction of the exam outcome 
3.1) In which way can the mathematics-related affective variables predict the 

outcome of the exam at the end of the first semester? 
3.2) In which way can the “general” affective variables and the students’ 

achievements approve this prediction? 
METHODOLOGY   
209 students in the calculus lecture in wintersemester 2016/17 voluntarily 
participated in our study. Undergraduate mathematics students as well as pre-service 
teachers in mathematics usually attend this lecture during their first year at university. 
The questionnaires were filled out during the lecture in the mid of the first semester, 
taking into account that students cannot rate their satisfaction of the basic needs at the 
begin of the semester. Due to incomplete datasets, only N=193 cases could be 
included in our analysis. The instruments used in our questionnaire can be found in 
Table 1. 

construct source No. of items / 
Crobach’s α 

Item-example 

Interest Schiefele et al. 
2007 

12 / 0.82 “It is personally important for me 
that I can study mathematics.” 

Self-Concept Kauper et al. 
2012 

4 / 0.82 “I am very good in mathematics.” 

Beliefs: static Laschke & 
Blömeke 2013 

6 / 0.67 „Mathematics means learning, 
remembering and applying.“ 

Beliefs: dynamic Laschke & 
Blömeke 2013 

6 / 0.73 “Mathematics involves creativity 
and new ideas.” 

Social Relatedness Kauper et al. 
2012 

6 / 0.78 “I feel comfortable with the other 
students.” 

Competence Kauper et al. 
2012 

3 / 0.66 “I get clear and detailed feedback 
on my achievements.” 

Autonomy Kauper et al. 
2012 

3 / 0.58 “I can do tasks in my way.” 

Self-Efficacy Beierlein et al. 
2012 

3 / 0.88 “I can solve most problems on my 
own” 

Table 1: Instruments with numbers of items, reliability and item-example 

All reliabilities (Cronbachs α) were at least sufficient – except for the reliability of 
the autonomy-subscale. All items were answered on a five-point Likert scale 
(1=totally disagree; 5=totally agree). To measure the students’ achievement during 
the semester, we used their results in the first “mini-test” (1 to 12 points).  
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The results of the questionnaires were analysed using a MANOVA (to prevent the 
accumulation of the α-error compared with t-tests) to answer research question 1. To 
answer the other research questions, we used linear and binary logistic regressions. 
RESULTS 
Students who do not attend the exam at the end of the first semester differ 
significantly from those who fail the exam and those who succeed in almost all 
affective variables (research question 1), except for the static beliefs (Table 2). 
Focussing on the mathematics-related affective variables, the biggest difference 
between the three groups of students can be found in the interest in mathematics, 
which can explain 13% of the variance (η2=0.13***). Regarding the “general” 
affective variables, the self-efficacy turned out to explain the most variance between 
the three groups of students (η2=0.1***). Taking into account all measured variables, 
the biggest difference between the three groups of students can be found in their 
achievements in the “mini-test” (η2=0.19***). 

 No Attendance 
N = 54 

Failed 
N = 101 

Succeeded 
N = 38 

 

 M SD M SD M SD F η2 

Interest 2.99 0.66 3.43 0.7 3.7 0.56 13.89 0.13*** 

Self-Concept 2.64 0.83 2.93 0.67 3.11 0.58 5.45 0.05** 

Beliefs: static 3.77 0.66 3.79 0.58 3.68 0.5 0.46  
Beliefs: dynamic 3.07 0.68 3.46 0.65 3.56 0.62 8.22 0.08*** 

Self-Efficacy  2.46 0.96 2.78 0.78 3.25 0.69 10.18 0.1*** 

Social Related. 3.77 0.68 4.07 0.55 4.23 0.57 7.69 0.08** 

Competence 2.94 0.87 3.23 0.86 3.43 0.81 3.91 0.04* 

Autonomy 2.89 0.72 3.28 0.79 3.42 0.66 6.83 0.07** 

Achievement 6.19 3.9 7.81 3.16 10.89 2.75 22.74 0.19*** 

Table 2: Means, standard deviations and results of the variance analysis              
*p<0.05  **p<0.01  ***p<0.001 

To answer research questions 2.1 and 2.2, three different logistic regression models 
were tested (Table 3). Model 1 only contains the mathematics-related affective 
variables. The only significant predictor for the students’ attendance in this model 
was interest in mathematics. Model 1 can explain 19% of the variance and is able to 
classify 71% of the students correctly as attending or not attending. Model 2 
additionally contains the affective variables basic needs and self-efficacy. None of 
these variables has a significant influence on the students’ attendance and they do not 
improve the students’ classification. In contrast, the students’ achievements are a 
(weak) significant predictor for the students’ attendance (Model 3). The inclusion of 
the students’ achievement can improve the classification of the students (75.1% 
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correct) and increases the explained variance (Nagelkerke’s R2=0.26). Note that the 
interest in mathematics is still the most significant predictor in Model 3. 

 Model 1 Model 2 Model 3 
Interest 2.43** 2.5** 2.42** 

Self-Concept 1.22 0.89 0.8 
Beliefs: static 1.14 1.3 1.29 
Beliefs: dynamic 1.66 1.3 1.24 
Self-Efficacy   1.33 1.18 
Social Relatedness  1.3 1.14 
Competence  0.93 1.04 
Autonomy  1.4 1.39 
Achievement   1.13* 

Nagelkerke’s R2 0.19 0.22 0.26 
Correct classification 71 % 71 % 75.1 % 

Table 3: Results (coefficients Exp(B)) of the logistic regression to predict the exam 
attendance - *p<0.05  **p<0.01   

We used three linear regression models to answer research questions 3.1 and 3.2 
(Table 4). In Model 1 only the mathematics-related affective variables were included.  

 Model 1 Model 2 Model 3 
Interest 0.08 0.06 0.01 
Self-Concept 0.17 -0.03 0.04 
Beliefs: static -0.09 -0.01 0.02 
Beliefs: dynamic 0.05 -0.02 -0.05 
Self-Efficacy   0.41*** 0.2* 
Social Relatedness  0.11 0.07 

Competence  -0.08 0.02 
Autonomy  -0.03 -0.07 
Achievement   0.54*** 

R2 0.05 0.13 0.37 

Table 4: Results (standardized beta coefficients) of the linear regression to predict the 
exam outcome - *p<0.05  ***p<0.001  
None of them can predict the exam outcome significantly. All these variables 
together only explain 5% of the variance in the exam outcome. The “general” 
affective variables, specially the self-efficacy, seem to have a bigger impact on the 
exam outcome (Model 2). The inclusion of these variables improves the variance that 
can be explained (R2=0.13). The self-efficacy is a highly significant predictor. The 
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most important (highly significant) predictor for the exam outcome is the students’ 
achievement in the “mini-test” (Model 3). The inclusion of the achievement increases 
the explained variance to 37%. Multicollinearity of the variables in our models is at 
least tolerable (tolerance>0.48, VIF<2) and should not have a big impact on results. 
CONCLUSION 
The interest in mathematics is the most important predictor for exam attendance in 
our study, whereas the mathematical self-concept has no significant influence. This is 
contradictory to Rach’s and Heinze’s (2016) findings, where only the mathematical 
self-concept was able to predict the attendance. However, both studies have in 
common that a mathematics-related affective variable is the most important predictor 
for the attendance, whereas the “general” affective variables have no influence. 
The mathematics-related affective variables do not predict the exam outcome. The 
only affective variable that significantly predicts the exam outcome is the general 
self-efficacy. This is rather surprising, taking into account that self-efficacy and self-
concept are (at least theoretically) closely connected variables and it seemed plausible 
that the mathematics-related variable provides more insights. However, in contrast to 
the mathematical self-concept, the general self-efficacy is not only focussed on one’s 
competences and achievements in mathematics but also takes into account subject 
unspecific competences which could be beneficial at university, too. 
All in all, it turned out that the students’ achievements can predict both, exam 
outcome and exam attendance. Interest in mathematics is suitable to predict the exam 
attendance, whereas self-efficacy can predict the exam outcome. Firstly, this finding 
shows that, mathematics related as well as general affective variables play an 
important role in the transition from school to university. Secondly, it suggests that 
success and dropout should not necessarily be viewed as two sides of a coin.  
Our study has some limitations. We conducted data from only one university, which 
could lead to cohort specialities. Furthermore, questionnaires were filled out in the 
mid of the semester during the lecture. Students who do not (regularly) attend 
lectures or have dropped out before have not been captured by our study. Some 
results might be different if we could capture those students, too. 
Our on-going research will now focus on a more detailed characterisation of dropped 
out students, taking into account cognitive and metacognitive variables (e.g. students 
learning behaviour) as well. In addition, it seems to be useful to identify different 
types of dropped out students in mathematics. This might help to design and evaluate 
more individualized supporting programs for students in the transition. 
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This programmatic contribution discusses the link between concepts from 

Anthropological Theory of Didactics (ATD) and the “subject-scientific point of view” 

according to Holzkamp (1985, 1993). The main common concern of ATD and the 

subject-scientific approach is to conceptualize and analyse “objects” like 

“institutionalized mathematical knowledge” and “university” not as conditions that 

cause reactions but essentially as meanings in the sense of generalized societal 

reified action possibilities.  The link of both approaches is illustrated by the issue of 

“real numbers” in the transition from school to university: Hypotheses are derived 

for further actual-empirical research, which intrinsically incorporate content- and 

subject related perspectives as well as societal and school-related findings.   

Keywords: Curricular and institutional issues concerning the teaching of 

mathematics at university level, transition to and across university mathematics, 

subject scientific approach, mathematical praxeologies, real numbers. 

INTRODUCTION  

This paper contributes to an ongoing major research project that describes and ana-

lyses form and content of advanced mathematics and its teaching and learning from a 

subject scientific point of view. This approach is grounded in “Critical Psychology”, 

framed by Holzkamp (1985) (see Tolman (1991) and Schraube & Højholt (2015) for 

English written introductions). Recently this theory becomes internationally more 

known in the mathematics education community due to Roth & Radford (2011), who 

assessed “German Critical Psychology” as a further development of the culture-

historical activity approaches by Leontjev (1978) and Vygotsky (1978). It’s beyond 

the scope of this paper to describe and analyse in which respects “German Critical 

Psychology” differs and goes beyond culture-historical activity theory. Instead the 

paper intends to point out its compatibility and (partial) complementarity with ATD 

as well as to illustrate its potential relevance for further research concerning 

university mathematics education.  

Main features of “Critical Psychology” and its subject-scientific point of view are 

well elaborated psychological categories (roughly: basic notions, see for details 

(Holzkamp, 1985, pp. 28)) for describing and analysing cognitive and emotional-

motivational dimensions of subject [individual] related experiences, in particular 

thoughts, actions and learning, in a way that major societal aspects are inherently be 

incorporated. It aims (besides others) to provide individuals with analytic tools for 

their self-reflection of problematic experiences and situations to reveal their inherent 

dependencies and circumstances, thus allowing individuals to achieve a more 

reflective learning. Within this framework, there is so far a lack of research that 
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relates to mathematical learning in general and in university in particular. “Critical 

Psychology” provides points of contact for incorporating research results concerning 

the societal and historical genesis of knowledge and reference structures as well as 

institutionally framed (e.g. school, university, study courses) external and internal 

transposition processes (Chevallard, 1991). 

ATD’s praxeological analyses could principally inform any psychological or socio-

logical theory considering teaching and learning. Already in Castela (2015) a link 

between ATD and cultural historical activity theory is discussed, in particular 

between Roth’s concept of crossing boundaries between different socio-cultural 

contexts and the issue of inter-institutional transitions. This basic idea is in the 

following taken up in a broader sense.  

In view of the ongoing major research project, this contribution has the status of an 

intermediate step presenting programmatic ideas about linking ATD with the subject 

scientific approach. This combination might in particular be fruitful for research 

connecting detailed analyses of mathematical practices with a complex vision of 

learners and teachers in a way that (with respect to both sides) their intrinsic societal 

mediatedness is systematically incorporated. Though this rather pretentious goal can 

easily be formulated (at least by using abstract notions, which would require a lot of 

pages to be embedded in a coherent theory and to be explained in detail (Holzkamp, 

1985, 1993)), the following lines also indicate that there is still a way to go 

combining both approaches in actual-empirical research (Holzkamp, 1985, pp. 509).  

The structure of the paper is organized as follows: In the first two sections we intro-

duce some notions from ATD and the subject scientific approach. Then we discuss 

the link of both approaches. Finally we illustrate the link  and some of its aspects and 

opportunities considering the issue of “real numbers” in the transition from school to 

university: After an ATD-orientated overview about the nowadays typical treatment 

of real numbers in German secondary schools and considering various options of 

extending this discourse in the transition from school to university , we discuss 

subject scientific related aspects taking into account  societal  and school-related 

findings and how they might contribute to validate mathematical and didactical 

practices. This theoretical analysis exemplarily demonstrates how the link 

intrinsically integrates content- and subject-related perspectives and leads to 

hypotheses for actual-empirical research projects.   

SOME NOTIONS FROM ATD 

ATD (Chevallard, 1992; Winslow, Barquero, Vleeschouwer & Hardy 2014) aims at a 

precise description of knowledge and its epistemic constitution. Its concepts make 

possible to explicate institutional specificities of knowledge and related practices. An 

underlying conviction of this approach is that cognitive-oriented accesses tend to 

misinterpret contextual or institutional aspects of practices as personal dispositions. A 

basic concept of ATD are praxeologies represented in so called “4T-models 

(T,τ,θ,Θ)” consisting of a practical and a theoretical or logos block. The practical 
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block (know-how, “doing math“) includes the type of task (T) and the relevant 

solving techniques (τ). The logos block (knowledge block, discourse necessary for 

interpreting and justifying the practical block, “spoken surround“) covers the 

technology (θ) explaining and justifying the used technique and the theory (Θ) 

justifying the underlying technology. Praxeologies give descriptions of mathematics 

by reference models that are activity oriented (techniques, technologies). The 

interconnectedness of knowledge is modelled in ATD by means of local and regional 

mathematical organizations that allow contrasting and integrating practical and 

epistemological aspects in relation to different institutional contexts. Therefore ATD 

is in particular helpful for analysing institutional realizations of mathematical 

knowledge within different learning contexts, e.g. the use of mathematics in signal 

theory (Hochmuth & Schreiber, 2015).  

More than 15 years ago Chevallard has introduced the additional notion of “scale of 

levels of codeterminations” that in the meanwhile has become rather important in 

ATD analyses (Bosch & Gascón, 2006). The hierarchical sequence of levels covers 

civilisation, society, school, pedagogy, discipline, domain, sector, theme and subject 

(in the sense of topic). Each level provides some kind of framework, within among 

others actions on lower levels are possible, supported or hindered and praxeologies 

are in a certain sense embedded. In Barbé et al. (2005) is shown, for example, how 

general didactic restrictions for teaching mathematical topics in school can affect 

teachers’ practices and their established praxeologies, in particular the shaping of the 

practical and the logos block and the relations between them. To mention one further 

example,  Job & Schneider (2014) argue that smoothing the transition-gap from 

calculus to analysis shows at least the tendency to blur the distinction between the 

different discourses in school and university, which tends to reinforce an empirical 

positivist attitude by students as an epistemological obstacle to learning (ditto; p. 

641). Generalizing their arguments, one might say that there are issues relating to 

general world views (society) that affect institutionally settled praxeologies.  

Moreover, Chevallard (1991) introduced the notion         indicating the relation of 

a position x (a typical position of an individual) within an institution I to a praxeology 

o.  The “scale of levels of codeterminations” underlines that the institution and, with 

the institution, the position x and the praxeology o have to be considered as being 

societal situated, i.e., that in their analyses specific emphasize also has to be  put to 

societal assignments that are related to societal mediation processes. The subject 

scientific perspective, which is introduced and discussed in the next both sections, 

allows to further specify positions x keeping the significance of societal and 

institutional mediatedness (in a materialistic sense, see for example (Arndt, 2013)). 

SOME NOTIONS CONCERNING THE SUBJECT SCIENTIFIC APPROACH 

(“CRITICAL PSYCHOLOGY”) 

“Critical Psychology” claims to present a scientific discussable and criticisable elabo-

ration of basic psychological concepts (categories). The starting point is a historical-
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empirical investigation of general historical-specific characteristics of relations 

between societal and individual reproduction as well as its dialectic mediatedness. 

One of the central subject related categories is “action potence”, which is the potence 

to ensure the disposal about the subject’s individual living conditions together with 

others (Holzkamp, 1985, pp. 239).  

Within the context of this paper there are three important points to notice: First, the 

actual historical-specific form of subjectivity is characterized by the “possibility rela-

tion” regarding the societal reality, which includes in particular the basic experience 

of intentionality. Second and connected to the first, the specific modality of 

subjective experiences comprises the discourse form “reasoning discourse”: “I” speak 

about my “own” actions in terms of subjective reasonable (not necessarily “rational”) 

activities and of premises in the light of “my” life interests. A third crucial point is 

that the “human’s relationship to the environment is almost always mediated. […] 

Categories of psychology like learning, emotion, motivation and cognition cannot fail 

to be significantly altered by the fact of our existence’s social mediatedness. The 

most important mediation category is meaning.” (Tolman, 1991, pp. 14-15)  

These three interrelated issues are combined in the assertion that conditions are given 

to “me” in terms of meanings in the sense of generalized societal action possibilities 

and that reality aspects, which are relevant for “me”, denoting again the generalized 

subject standpoint, become premises for “me” in the light of “my” life interests. 

Therefore, subject scientific considerations are essentially given by meaning-

premises-reasons-relations, which a priori situate experience and activities of the 

(individual) subject “within the world” Accordingly, Holzkamp (1985, pp. 342) 

figured out the level of subjective action reasoning as the main subject specific level: 

It represents the level with respect to which individual experiences and activities (e.g. 

learning) has to be reconstructed and analysed. 

Via the specific notion of meaning, human activities, like teaching and learning, are 

intrinsically thought as societal mediated. This implies that any analysis of subjective 

actions requires the reconstruction of subjectively relevant conditions in the sense of 

generalized action possibilities and the consideration of their societal mediatedness. 

Since meanings appear (via objective-subjective premises) as the medium within 

which subjects’ reasoning discourses are grounded, their study is a prerequisite for 

describing and analysing related cognitive, motivational and emotional processes as 

aspects of subjects’ activities. But, although meanings in the indicated sense are 

rather relevant for acting and thinking, they do not determine them. Instead, they 

represent action possibilities that might become premises in the light of subjectively 

perceived “life interests”. 

THE LINK BETWEEN ATD AND THE SUBJECT SCIENTIFIC APPROACH 

The position x within an institution can be (re-)interpreted as the “position” and/or 

“situation of life” from the subject point of view, which includes intentionality, the 

modus of reasoning discourse and societal mediatedness. As an “element” (a 
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“position x”) of an institution a subject is typically not confronted with the whole 

world but only with a local “situated” section represented by those meanings 

typically produced and reproduced within the institutional context. Hence, insti-

tutional contexts provide specific frameworks for premise-reasoning-patterns. In this 

sense ATD’s praxeological analyses contribute to concretisations of meaning-

premise-reasoning-patterns that are typical within an institution at the position x. In 

particular the concept of praxeologies allows capturing substantial aspects of 

mathematical practices in such a way, that they can be injected as facets of action 

related meanings, i.e., they can be (re-)interpreted as generalized societal action 

possibilities, which were potentially reflected in subject related reasoning schemes as 

premises and/or reasons. In this sense praxeological analyses can be seen as one non-

trivial first step within subject scientific research projects: They might inform 

microanalyses of task solution processes by exploring institutional established 

practices.  They are relevant for describing and analysing related activities, since they 

appear as institutionalized medium, within subjective action reasoning grounds. With 

respect to premises-reasoning-patterns the technological dimension of praxeologies, 

i.e. the justification and validation of techniques, is of specific importance. But, see 

above, praxeologies do not determine subjects’ activities, since there is an 

unconscious-conscious step by subjects of selecting, neglecting or highlighting facets 

of praxeologies in view of their evaluation of “life interests” and how they are 

perceived by them at “position x” in the “institution I” in view of all prospects 

addressed by “the scale of level of codeterminations”. Thus, the latter is rather 

relevant for both, the analysis of meanings (essentially by ATD) and the analyses of 

premises-reasons-relations (essentially by the subject scientific approach). In fact, 

both strands can’t be seen as totally separated but as dialectically interrelated, since 

institutionalized practices live through subjects’ [individual] activities. 

THE ISSUE OF “REAL NUMBERS” 

In this section we give first a short overview of the nowadays typical treatment of real 

numbers in German secondary schools in grade eight or nine. Because of the space 

limitation a detailed praxeological analysis can’t be presented. 

The Treatment of Real Numbers in German Schools 

The treatment of real numbers in German schools presumes that rational numbers are 

known and can be represented by ratios, decimal fractions and points on the number 

line. Moreover it is presumed that students are able to switch between those 

representations. In particular basic calculations should be understood and can be 

executed with respect to the different representations. The typical starting point for 

the introduction of real numbers is the observation or proof (sometimes!) that there 

are quadratic equations like       without rational solutions. Next it is observed 

(but typically not proven) that one can find approximations by proper decimal 

fractions that fulfil those equations up to an arbitrary chosen error. On the other hand 

it is (geometrically) argued that there is a magnitude x, the length of the square 
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diagonal, satisfying      that corresponds to a certain point on the number line. 

The intuitive conviction about the existence of those points on the number line 

supports the idea, that (somehow converging) infinite sequences of approximating 

proper decimal fractions give a (unique!) final finite result, a number,  that can be 

represented by a non-terminating decimal fraction. This type of discourse justifying 

the existence of infinite-finite objects (i.e., infinite processes giving in a certain sense 

a finite result) has in particular been considered in Lakoff & Nūñes (2002) as basic 

for the whole analysis and denoted as “basic metaphor of infinity”. The new objects 

of non-terminating and non-periodic decimal fractions are called irrational numbers 

and build, together with the already known rational numbers, the set of real numbers. 

Moreover, the calculation rules that are known for rational numbers are assumed to 

be also true for all real numbers. Whereas in former years one can at least find 

Descartes’ geometrical arguments for explaining multiplication and division for 

general real numbers such arguments are nowadays missing. Corresponding to the 

sketched treatment of real numbers there are nearly no tasks that are related to 

structural aspects of real numbers or that enforce to reflect arguments of the discourse 

concerning limits or the existence of points or numbers respectively. Instead the tasks 

focus on various isolated techniques that are locally established, for example 

approximation techniques like interval bisections and the Heron algorithm or the use 

of calculation rules.   

In terms of the 4T-model the established mathematical praxeologies can be 

characterized as essentially punctual (or at most local) with isolated types of tasks 

and corresponding isolated techniques, where the tasks can be solved without 

referring to superordinated technological aspects, i.e., there are praxeologies 

         
       with technologies   

     having in particular weak connections to 

      for    .The technological and theoretical discourse remains (so far it is 

represented at all) mostly implicit and essentially incomplete. These observations 

blend with those presented by González’s et al. (2013) institutional analysis and with 

results from a qualitative study by Bauer, Rolka & Törner (2005). For corresponding 

results considering prospective secondary mathematics teachers we refer to (Sirotic & 

Zazkis, 2007)  and for an actual rather detailed study, which problematizes in 

particular the use of the number line and investigates the knowledge of fresh French 

university students see (Durand-Guerrier, 2016). 

Real Numbers in University Education and Potential Foci for Transitions 

First of all it is interesting to notice that mostly the treatment of real numbers in 

university is either done axiomatically (courses for math majors) or (more or less) 

skipped (courses for engineers and natural scientists), but does generally not intend to 

connect or complete school praxeologies, i.e. for example: showing the one-to-one 

correspondence of number line and decimal fraction views (Kirsch, 1966); discussing 

geometrically the completeness of the number line (Artmann, 1983); showing how to 

add and multiply non-terminating and non-periodic decimal fractions. 
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For improving this situation one might think of transition measures that are adjusted 

to study courses for, e.g., math majors, prospective grammar school teachers or 

engineering students. A general scheme suitable for describing and analysing 

desirable transitions is given as follows (Hochmuth, 2018):   

       
 
                                

where o represents a praxeology and s a student within the institution S  (school), ω  a 

praxeology and  a student within the institution U (university) in relation to one or 

several blocks of the praxeology             and   is the power set symbol. The 

scheme works as a heuristic tool and allows to express that techniques, technologies 

or theories of o might be differently relevant for the relation of S within U to a 

(perhaps new) praxeology   (see (Biehler & Hochmuth, 2017) for a slightly more 

restricted scheme).  

Applying the scheme we illustrate next various transition foci: At first the focus 

might be on techniques    and technologies   
     of o such that related skills are 

improved, but  tasks, techniques and technologies are only slightly extended, for 

example: ordering of square roots and decimal fractions; applying calculation rules 

for simplifying terms. This might be important for all above mentioned study courses. 

Secondly the focus might be on technologies    
     and their further development 

(possibly also their theoretical embedding), for example: knowing, that square roots 

like    or    can only be approximated by finite decimal fractions; justifying real 

exponentials and powers (Winsløw & Grønbæk, 2014). This might in particular be 

important for prospective grammar school teachers. Thirdly the focus might be on 

techniques    and the replacement of technologies   
     by technologies    that are 

strongly and systematically embedded in real analysis, for example: constructing the 

set of real numbers by Dedekind cuts or Cauchy sequences; starting with axioms for 

ℝ and identifying natural and rational numbers within this new set of objects. This 

might in particular be important for math majors. Within the ATD-framework each 

case could be analysed, explored and specified in greater details and in view of the 

scale of level of codeterminations. We skip further details in this paper. 

Links to the Subject Scientific Approach 

From the subject scientific point of view the analysed praxeologies represent 

meanings in the sense of institutionalized action possibilities. Students’ reasoning and 

activities ground in those praxeologies but select, neglect or highlight them in view of 

an evaluation of their “life interests” and how they are perceived in view of the 

institutions S and U, corresponding to positions s and , and in particular aspects 

related to levels of codetermination. It is well-known that in the transition a lot of 

issues play a role, see e.g. Gueudet (2008). In the following we will discuss two 

different but complementing issues that are specifically linked to “Critical 

Psychology”.  
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The first issue refers to the level “society” and in particular to Dowling’s sociological 

analysis of myths, exemplarily the myth of “reference” (Dowling, 2002). Within our 

frameworks Dowling’s myths can be (re-)interpreted as technological aspects of 

mathematical praxeologies in school that are related to the societal significance of 

educational processes. With respect to the latter Dowling differentiates between as-

signments concerning general societal aspects and those concerning their historic 

specificity. Considering the historic specificity the exchange-value aspect comes into 

play, which somehow undermines the use-value aspect and establishes a problematic 

mixture of both. This fits to the observation that actual school introductions of real 

numbers typically refer to “real world” problems like doubling the area of a quadratic 

piece of chocolate. Such references dominate the justification of introducing real 

numbers although treating the “real world” problems does not require “exact” solu-

tions and, moreover, algebraic extensions would be sufficient to resolve this issue. 

Following Dowling, the myth of “reference” is not only a didactical issue that relates 

to illustrative introductions, but possibly leads  to problematic technological and 

theoretical ideas, which do not disappear by establishing new, for example, axiomatic 

praxeologies, instead they possibly survive and constitute a strong epistemological 

(and motivational) obstacle (similar to the epistemological obstacle considered in 

(Job et al., 2014))  for students’ learning of university mathematics, in particular for 

future grammar school teachers. This could in particular happen, since Dowling’s 

myths might dominate students’ general view of their “situation of life” and therefore 

their accentuating of meanings.  

The second issue relates to the organization of learning in school and to the “school-

and-exam system” mentioned for example in Chevallard (2013). Partly because of 

this issue Holzkamp (1993) introduced the notion of defensive learning, a learning 

which primarily intends to prevent negative consequences. An important aspect of 

this notion is the opposition between ostensive and conceptual thinking that repre-

sents, according to (Holzkamp, 1985), the historic-specific societal concretization of 

the cognitive aspect of human activities: Ostensive thinking is essentially 

characterized by taking things as they appear to be and, in terms of the 4T-model, by 

strongly focusing on locally situated technical and technological issues, which blend 

with the above described praxeological organisation of “real numbers” in school.  

Again, corresponding “ostensive” students’ views on their “situation of life” and 

related meanings-premises-reasoning-patterns might let transition measures’ 

intentions fail and in particular the incorporation of technological school-blocks 

within technological university-blocks, which results in new isolated praxelogies with 

new but still weak technologies. It is an empirical open question how this tendency is 

amplified by actual initiatives aiming to reduce transition problems by establishing a 

“university-and-exam system”. 

FINAL REMARK 

 The hypotheses derived in the last section illustrate the necessity that an analysis of 

measures supporting students in the transition from school to university have 
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systematically to take into account both approaches, the praxeological and the subject 

scientific as well as, with respect to both, the scale of level of codeterminations.  The 

established link between ATD and the subject scientific approach facilitates 

theoretical and actual-empirical studies factoring in systematically aspects, which are 

intrinsically connected to the institutional and societal level and have impact both on 

institutionalized praxelogies and subjects’ meaning-premises-reasoning-patterns. 
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The transition from high school to university mathematics has proven to be difficult 

for many students but especially for pre-service secondary teachers. To support these 

students at mastering this transition, various universities have introduced support 

measures of various kinds. The WiGeMath project developed a taxonomy that makes 

it possible to describe and compare these measures concerning their goals as well as 

their frame characteristics. We exemplify the use of the taxonomy in the description of 

one specific innovative measure that was part of the WiGeMath evaluations. 

Moreover, we present first results concerning the goal-fulfilment of this measure 

concerning affective characteristics of the student cohort and their predominant 

beliefs. 

Keywords: Transition to and across university mathematics, Novel approaches to 

teaching, Teacher education, Motivational developments, Beliefs. 

BACKGROUND 

In German mathematics teacher education, pre-service teachers first study at 

university before they enter a practical training. In this first phase, there is a strong 

focus on mathematical content, in particular in higher secondary teacher education 

where students mostly attend the same courses as mathematics major students. In 

these shared lectures, many internationally known problems of the secondary-tertiary 

transition arise (Gueudet, 2008), in particular, motivational problems and drop-out 

are often reported. There is a substantial decline in students’ mathematical interest in 

the first semester with Cohen’s d around 0.4 (Rach und Heinze, 2013, 2016), a 

decline in their mathematical self-concept with Cohen’s d ranging from 0.5 to 0.7 

(Rach und Heinze, 2013, 2016), and a strong dominance of controlled motivation 

over autonomous motivation (Liebendörfer, in press) in the terminology of Ryan and 

Deci’s (2017) self-determination theory. Consequently, many pre-service students 

experience their university courses as a necessary evil rather than a helpful 

qualification towards their aspired job (Kalesse, 1997; Liebendörfer, in press). 

THE WIGEMATH PROJECT 

To counteract the negative effects which for many students seem to occur at the 

transition between school and university mathematics, many universities have 

introduced support measures of various kinds. Even though university internal 

evaluations of these measures mostly exist, a framework that helps to facilitate the 
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comparison of design and outcomes of different measures has until recently been 

lacking. The WiGeMath project (Wirkung und Gelingensbedingungen von 

Unterstützungsmaßnahmen für mathematikbezogenes Lernen in der 

Studieneingangsphase; Effects and success conditions of mathematics learning 

support in the introductory study phase) [1], which is a joint research project of the 

Universities of Hannover and Paderborn (Colberg et al., 2016) led by Biehler, 

Hochmuth and Schaper, has developed a framework for goal dimensions and frame 

conditions of mathematics learning support in universities (Liebendörfer et al., in 

press) that aims at such a comparison. Moreover, the project has used the framework 

in first evaluations of various support measures at different universities in Germany. 

Some exemplary results for one representative of the category of redesigned lectures, 

which is one type of support measure that was evaluated in the project, is presented 

below. 

THE WIGEMATH TAXONOMY 

The aim of the WiGeMath project is to develop and exemplify in use a taxonomy that 

categorizes features and goals of Projects of Mathematics Learning Support (PMLS) 

and to use this taxonomy to evaluate different support measures at German 

universities. All projects that fall under the category of PMLS have in common that 

they try to support students at the beginning of their university studies in mastering 

the critical transition to university mathematics. They are innovative insofar as they 

deviate from the standard format of lectures and tutorials that is encountered in 

university mathematics even though the way how they do this differs. In the 

WiGeMath project, different PMLS are subsumed under one of four categories, 

namely bridging courses, mathematics support centres, support measures that parallel 

courses and redesigned lectures. Due to space limits, this text focuses only on 

redesigned lectures; a description of the other types of PMLS is given in 

(Liebendörfer et al., in press). 

Redesigned lectures are lectures that offer particular support to students that have 

been shown to have higher risks at failing mathematics courses or focus on very 

specific learning goals in a non-traditional way. We examined both redesigned 

lectures that address preservice secondary teachers, who often show the greatest 

problems with the transition from school mathematics to more abstract mathematical 

content, and redesigned lectures which address engineering students who had already 

failed a compulsory mathematics test of some kind. All redesigned lectures have in 

common that new mathematical content is not the focus of teaching. 

Different PMLS have different aims some of which are explicit but some of which 

stay hidden even to the teaching staff until they are inquired about them by an 

outsider. WiGeMath aimed at evaluating different PMLS based on their own 

assumptions following a program evaluation approach (Chen, 1990) as well as 

comparing them on grounds of an encompassing taxonomy that should categorize 
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descriptive (non-normative) goals in the sense of criterions that the PMLSs set out to 

meet in their conception, features and conditions of PMLSs.    

The taxonomy was constructed in a two-fold process. A first draft was developed by 

the project members by means of a document analysis, taking into account documents 

provided by project partners. The WiGeMath project collaborates with 11 partner 

universities in Germany at which PMLS have been implemented. The draft for the 

taxonomy was then used as a guiding thread for guided interviews with teaching staff 

of eight PMLS, two of each category. The interviews were taped and transcribed and 

afterwards the draft for the taxonomy was tested by trying to fit mentioned goals into 

the draft’s categories. This led to minor refinements and reformulations of categories 

and yielded the final WiGeMath taxonomy.   

This final WiGeMath taxonomy consists of three main categories, namely frame 

conditions, measure categories/ characteristics and goal categories. The frame 

conditions include various sub-categories, which help to characterize the student 

cohort addressed by a PMLS, the way it came about and developed, its embeddedness 

in the university course system, organisational characteristics that may pertain to it, 

characteristics of the room where it is held, financial and staff conditions and lastly 

characteristics of the learning culture. Measure categories/ characteristics serve to 

describe certain elements that characterize the PMLS in its structure, its didactical 

elements and its teaching staff. Finally, goal categories encompass various sub-

categories of goals that either regard the individual learner or goals that the university 

may have in implementing the PMLS as a broader organization as well as a sub-

category that allows to describe the quality of the goals. Not every sub-category has 

to be relevant in the description of every PMLS and some aspects of a PMLS may 

pertain to more than one category but the use of these categories aims to give an all-

encompassing description of a PMLS’s characteristics. 

In the following, the use of the WiGeMath taxonomy shall be exemplified by 

applying it to one of the redesigned lectures. 

CHARACTERIZATION OF REDESIGNED LECTURES 

All in all, six redesigned lectures at five German universities were evaluated in the 

WiGeMath project. Out of these, four addressed preservice secondary teachers and 

two addressed engineering students. To reach a characterization of each lecture, an 

interview guided by the WiGeMath taxonomy was held with the teacher before the 

start of the semester. It was audiotaped and transcribed and the transcript was then 

used to name the measure’s characteristics and sort them into the right categories of 

the WiGeMath taxonomy. What follows is the exemplary description of one of the 

evaluated lectures along the lines of the taxonomy’s categories and sub-categories. 

Frame conditions 

Concerning the characteristics of the student cohort, those students that attended 

the given redesigned lecture were preservice secondary teachers in their first semester 
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meaning that most of them were less than 20 years old and had just graduated from 

high school. The lecture has had round about 200 participants in each of its turns. 

The development of the lecture officially started in 2011. Since then, there has not 

been a strict script, which is followed each year, but the different lecturers who have 

been responsible focused on different aspects. Nonetheless, the basis of the lecture 

always is the book by Grieser (2013) which deals with problem-solving strategies and 

proofs. 

As to the embeddedness of the lecture in the wider system of university lectures, it 

is compulsory for preservice secondary teachers and voluntary for mathematics 

majors in their third semester. For preservice secondary teachers the lecture has 

substituted Linear Algebra as a first semester lecture though they still have to attend 

Linear Algebra in their second semester. 

Staff conditions have been marked recently by problems to find qualified tutors to 

give the tutorials that support the lecture. As noted before, though there is only one 

lecturer per semester, it is not always the same one. 

Finally, the learning culture is characterized by a strong focus on the students being 

active in their learning. They are supposed to try new methods and solve tasks during 

the lectures as well as during the tutorials. The concept of a “thinking pause” is very 

much enforced in the problem solving process. The lecturer gives some new input at 

the beginning of each class and collects and discusses results after the students have 

worked on problems or proofs. 

Measure categories/characteristics 

As to the structural characteristics, the measure consists of a lecture of two times 

90 minutes per week with a tutorial of 90 minutes per week. One cycle of the 

measure starts at the beginning of each winter semester and finishes at its end 

(October through January). 

The didactical elements include weekly homework and tutorial work of three to four 

exercises. All exercises may be worked on in groups. The solutions are discussed in 

the tutorials but no exemplary solutions are handed out. During the lecture there are 

phases of teacher talk, partner work and individual work. The book by Grieser (2013) 

is named as a reference text and can be accessed online on campus. At the end of the 

semester, a written exam concludes the course. 

Concerning the characteristics of the teaching staff, the lecturer has his PhD in 

mathematics and is responsible for the contents of the lecture as well as the tutorials, 

the exercises and the final exam. The tutorials are given by six tutors who are 

students in higher semesters. These same tutors also have to correct the exercises 

which are handed in by students. As mentioned before, the selection of tutors proved 

difficult due to a small number of qualified applicants. 
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Goal categories 

In the category of individual learning goals the measure focuses on activity-oriented 

rather than on knowledge-related goals: Both mathematical working strategies, like 

problem-solving strategies or use of examples and counter-examples, and learning 

strategies shall be improved. Attitudinal goals play a major role, as well: The measure 

aims at strengthening process beliefs and weakening toolbox beliefs in the sense of 

Grigutsch and Törner (1998) and wants to introduce the students into the 

mathematical professional community. Affective characteristics are to be influenced 

insofar as anxieties shall be lessened, interest and motivation shall be strengthened 

and the students shall gain a higher mathematical self-efficacy. Moreover, the 

measure wishes to let students recognize the relevance of its contents for further 

university studies. 

The system-related goals include the preparation of the participants for their further 

university studies and the decrease of the number of dropouts. Besides, the measure 

wants to increase the quality of the feedback that students receive during their 

studies. 

The quality of the goals as understood in the WiGeMath taxonomy is not to be 

understood in a normative sense but rather as a description of their substantiality. 

With this aim in mind, goals are examined concerning how specific, measurable, 

accepted, realistic and time-phased they are. Such a description of the quality of a 

goal would be done for every goal individually in a thorough analysis but due to 

space restrictions we will only focus on one specific goal in this paper to illustrate the 

point: One of the measure’s goals is to improve affective characteristics of the 

participants, i.e. to lessen maths anxiety, increase motivation and interest and improve 

the participants’ mathematical self-efficacy, in the course of the semester. This goal is 

specific to the point that it explicates what shall be achieved when by whom. It 

remains unspecific in naming why the goal is important, who holds the responsibility 

to reach it and which preconditions or limitations possibly exist. The goal is indirectly 

measurable through a survey directed at the students and it is accepted as it was 

named by the lecturer as a goal he wants to achieve rather than a goal he has to 

achieve due to orders given from above. The goal seems to be realistic to the point 

that the affective characteristics of the students seem to change for worse quite fast at 

the beginning of their university studies so it seems plausible that they may be 

changed for better even within a single semester. Still, this has to be checked as will 

be shown below. Finally, the goal is time-phased as it shall be reached within a 

limited time, namely the duration of the measure. 

In this paper we will evaluate the following research question: To what extent was the 

described redesigned lecture successful in achieving the last-mentioned goal of 

influencing affective characteristics of the student cohort and in how far was the 

lecture successful in changing beliefs away from toolbox beliefs towards process 

beliefs? 
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METHODS 

To measure the extent to which the above mentioned goals were reached, two 

questionnaire surveys were conducted with the participants of the described lecture. 

The first survey (t1) took place in the second week of the winter semester 2016 and 

the second one (t2) was conducted in the second to last week of the same semester. 

For each survey a questionnaire was developed, each one laid out to take about thirty 

minutes to complete. These questionnaires were handed out at the end of a lecture so 

that only those who were present that day could participate and participation was 

voluntary which the students were informed about. Moreover participation was 

anonymous but students used an individually constructed code so that the results of 

each participant in the first survey could be compared and contrasted to the results in 

the second survey. 163 students participated in the first survey and 103 in the second. 

We analyze the data of the 76 participants who answered both questionnaires. 

We used adopted versions of the scale of Schiefele, Krapp, Wild and Winteler (1993) 

to measure interest, the scale of Schöne, Dickhäuser, Spinath, & Stiensmeier-Pelster, 

(2002) to measure mathematical self-concept, a translation of the instrument of 

Longo, Gunz, Curtis and Farsides (2014) to measure the experience of competence, 

autonomy and social relatedness, an adopted version of the PISA 2000 instrument for 

self-efficacy (Kunter et al., 2002), a shortened version of the scales by Grigutsch and 

Törner (1998) to measure beliefs (application, process, system and toolbox) and a 

translated version of the academic motivation scale (Vallerand, Pelletier, Blais, 

Briere, Senecal and Vallieres, 1992) to measure different types of motivational 

regulation (intrinsic, identified, introjected and extrinsic). We used Likert scales 

ranging from 1 to 4 for self-concept, self-efficacy and beliefs, from 1 to 5 for 

motivational regulation, from 1 to 6 for interest and from 1 to 7 for the experience of 

competence, autonomy and social relatedness. All reliability coefficients (Cronbach’s 

alpha) are acceptable or better, compare Table 1.  

For each scale and each survey, a descriptive data analysis was conducted in order to 

get an overview of the results. Though the entirety of scales included more than the 

ones mentioned above, we concentrate on these only as our focus is to check to what 

extent affective characteristics of the student cohort, their experience of competence 

and their attitude towards different beliefs was changed in the course of the semester. 

RESULTS 

Table 1 shows the changes in mean values during the semester and effect sizes 

(Cohen’s d) as well as p-values of paired t-tests. 

Scale Number 

of items 

Cronbach’s α Mean value Cohen’s 

d 

p-

value 
t1 t2 t1 t2 

Interest for mathematics 9 .83 .83 4.23 3.96 0.32 .001 

Mathematical self-concept 3 .81 .81 3.03 2.96 0.12 .149 
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Experience of competence 6 .80 .81 4.63 4.25 0.40 < .001 

Experience of social 

relatedness 

6 .85 .89 5.39 5.40 0.01 .900 

Experience of autonomy 6 .73 .77 4.81 4.61 0.20 .132 

Mathematical self-efficacy 4 .83 .87 2.72 2.66 0.10 .353 

Application beliefs 4 .80 .88 3.01 3.02 0.02 .889 

Process beliefs 4 .67 .85 3.26 3.18 0.12 .306 

System beliefs  7 .79 .84 2.97 2.93 0.07 .534 

Toolbox beliefs 5 .66 .74 2.75 2.56 0.34 .002 

Intrinsic regulation 5 .88 .88 3.82 3.55 0.33 .001 

Identified regulation 4 .72 .78 4.01 3.81 0.24 .026 

Introjected regulation 4 .73 .78 2.04 2.19 0.18 .097 

Extrinsic regulation 4 .64 .72 1.78 1.88 0.12 .278 

Table 1: Scales and their Cronbach’s alphas, means, effect sizes of changes between 

the two surveys and p-values for a significant change. 

We see a substantial decline in interest and in the experience of competence, whereas 

students’ mathematical self-concept and self-efficacy did not change significantly. We 

can also see that the objective of reducing toolbox beliefs was clearly achieved, but 

not the objective of strengthening process beliefs. The mean values of motivational 

regulation show that intrinsic and identified regulation are dominating although they 

are decreasing in the course of the semester.  

DISCUSSION 

The observation of a decline in interest is similar to the results showing a decline in 

traditional courses; however, student’s mathematical self-concept does not change 

significantly, which is a major difference (Rach und Heinze, 2013, 2016). Although in 

our tests we were not able to show that the course could raise student’s self-efficacy, 

it did not reduce it significantly either, which may still be an achievement. The 

dominance of intrinsic and identified motivation is a positive result as a study in 

traditional courses found extrinsic and introjected regulations to be dominant 

(Liebendörfer, in press). Thus, although students’ interest in university mathematics 

and their intrinsic motivation may reduce, they do not seem to develop a stronger 

feeling of being inadequate for studying mathematics in the newly designed lecture. 

The decline in interest as well as intrinsic and identified regulation may be explained 

by a decline in the experience of competence. The change in students’ toolbox beliefs 

is remarkable as beliefs are rather stable by definition and toolbox beliefs did not 

change in other studies in the first year of lower secondary or primary mathematics 
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teacher education (Kolter, Liebendörfer & Schukajlow, 2016; Liebendörfer & 

Schukajlow, 2017).  

These results show that a specifically designed lecture may reduce problems of the 

secondary-tertiary transition in mathematics. Nonetheless, the question remains 

whether such lectures prepare the students for their further studies just as well as 

traditional teaching does, considering that the course covered fewer mathematical 

topics.  

Moreover, the analysis that has been done to this point cannot ensure that the results 

obtained were produced by the innovative measure alone. First of all, the lecturer’s 

personality has an influence on the measure’s outcomes that could not be separated 

from the outcomes of the measure itself in our study. A possible further effect may be 

caused by the change in order of other lectures, in explicit the postponement of 

Linear Algebra to a later semester: Whereas students usually experience their low 

competency in both Analysis and Linear Algebra in the first semester, in this case it is 

only one lecture. 

In order to test this hypothesis, a next step in the WiGeMath project will be to 

distribute the same questionnaire that was used in the investigation described above 

to a different innovative measure at a university where different courses are attended 

simultaneously, as well as to a traditional lecture. This will make comparisons more 

explicit. 

As to the taxonomy that was developed by the WiGeMath project, this in part 

resembles the objectives of other taxonomies (Krathwohl, 2002) though with a 

different focus. Whereas other taxonomies are mostly concerned with individual 

learning outcomes, the WiGeMath taxonomy targets a description and ensuing 

comparison of innovative measures as a whole. Though other taxonomies exist which 

classify systems of higher education institutions (for example the Carnegie 

Classification of Institutions of Higher Education, described in Bartelse & Vught, 

2009), the perspective taken by WiGeMath to interpret such characteristics as goals is 

a new one.  

So far, the taxonomy is only laid out to serve innovative measures and even in this 

area will have to be adapted as measures develop and improve. Traditional lectures 

have not been taken into consideration so far but we propose that these would also 

benefit from a similar taxonomy in terms of communicating frame conditions and 

learning goals. In our interviews with lecturers, we found that often even to them 

goals remained implicit until they were asked about them specifically. This might 

even more be the case in traditional lectures that have “worked” for a long time.  

As mentioned above, in many cases goals stay hidden until a framework like the one 

developed by the WiGeMath project provides a common language to talk about them. 

Even though lecturers have specific intentions when they design a course with 

specific learning goals that a student cohort with certain characteristics shall achieve 

in a setting framed by staff conditions, learning culture, etc., they often lack 
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guidelines to arrange these in a way that is comprehensible for others. Yet, only if 

they can explicate their ideas, can an evaluation be successful and show strengths as 

well as possible weaknesses of the designed course. In our example, the lecturer had 

his PhD in mathematics and had hardly been in contact with didactical theories and 

frameworks until the point of the WiGeMath evaluation. Hence, he had would not 

speak in terms of mathematical beliefs, for example. When the concept was explained 

to him, though, he clearly saw that one intention of the lecture was to change 

students’ beliefs but to that point he simply lacked the vocabulary to explain this 

intention.  

Our taxonomy will help to communicate goals between universities, staff and 

students as it provides a frame of reference and a common language as has been 

shown for one example in this text. 

NOTES 

1. The WiGeMath project is funded by the German Federal Ministry of Education and Research (BMBF), grant 

identifiers 01PB14015A and 01PB14015B. 
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The investigation of limits is at the heart of analysis at university. Accordingly, it is a 

worthwhile topic for transition courses. The present study engages upper secondary 

students in reinventing the definition of convergent sequences. Using a commognitive 

framework, the central development stages of the definition from experiential to 

abstract are empirically investigated in terms of activated secondary school 

discourses. The students’ familiarity with secondary school discourses is critical, as 

it allows them to transition from grasping processes with metaphors towards 

grasping them as formal and abstract objects. For this, school objects act as 

intermediate steps. Further studies of transition courses should explicitly address the 

role of students’ secondary notions as resources for reifying processes into abstract 

objects.  

Keywords: transition; limits; convergence; practice of defining; design research. 

INTRODUCTION 

The investigation of limits is at the heart of analysis on the university level (Cornu, 

1991). Accordingly, limits are a worthwhile object of investigation in a transition 

course. In the German context, students also have previous knowledge about limits in 

the domain of derivatives from upper secondary school. At school, the students’ 

notions are usually not developed into a formal understanding of limits, as it is not 

expected in the German curriculum. Students transitioning to university have to 

develop their formal notion of limits in the regular lecture, which can be difficult. 

Thus, transition courses located at school have a huge potential for supporting 

students in developing a more compatible formal and abstract understanding of 

limits.  

Objects in school have an experiential basis, while objects in tertiary mathematics 

“are specified by formal definitions and their properties reconstructed through logical 

deductions” (de Guzmán, Hodgson, Robert, & Villani, 1998, p. 753). For different 

reasons, students in transition often do not use definitions as starting points for their 

reasoning about objects, as would be expected in tertiary mathematics (Edwards & 

Ward, 2008, Vinner, 1991). Engaging students in activities of defining objects on a 

trajectory from experiential to formal approaches might help alleviate these issues.  

In this paper, five students in a transition course from secondary to tertiary education 

in Germany are asked to create a definition of convergent sequences, after having 

studied them with the model of epsilon strips the week before. The paper illustrates 

how students’ progress from their experiential understanding of convergence towards 
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a formal definition based on deductions. The qualitative analysis also unfolds how the 

students use their previous school knowledge for this.  

DEFINING AS A MATHEMATICAL PRACTICE IN TRANSITION 

Students’ intuitions about limits 

The transition from secondary to tertiary mathematics has been extensively addressed 

in terms of changes and obstacles (Thomas et al., 2015). A specific issue of transition 

in regard to the understanding of limits are the students’ intuitions (for typical 

metaphors: Oehrtmann, 2009). The students’ intuitions about limits are not 

surprising: Historically, mathematicians used their intuitions to think about infinity 

based on infinitesimals, and this kind of reasoning still permeates modern analysis 

despite not being accepted as adequate (Cornu, 1991). Students’ intuitions are a 

fruitful starting point for reasoning about limits. Activities of using an epsilon-strip 

help students to understand the convergence of sequence in terms of neighborhoods, 

in which are “almost all terms of the sequence” (Przenioslo, 2005, p. 88). They can 

also help students to understand the logical relations of  and N (Roh, 2010).  

Another issue is the role of pre-formal notions about limits. In upper secondary 

classrooms in Germany, pre-formal notions of limit are encouraged by teachers and 

textbooks, as for example n is commonly referred to as “tends to”. By using and 

extending metaphors of “how many terms make a party” (p. 335) into “an infinite 

amount of terms will be in that epsilon neighborhood and a finite amount of terms 

will be outside”, this understanding can be developed into a formal understanding of 

convergence (Dawkins, 2012). It has been illustrated that students can reinvent the 

formal definition (Swinyard, 2011), but not how students’ intuitions and previous 

knowledge from secondary schools can systematically be activated in this process. 

Hence, carefully guided activities of investigating sequences with epsilon strips might 

help students make experiences that connect to their intuitions, but might at the same 

time be rich enough for students to develop a formal and abstract understanding of 

limits. While the first aspect has been investigated (see above), the latter aspect of 

transitioning to the formal and abstract while connecting to previous knowledge and 

intuitions has not yet been investigated.  

The practice of defining  

Definitions are the central means for grasping objects on the tertiary level, and the 

starting point for mathematical reasoning about these objects (Vinner, 1991; Alcock 

& Simpson, 2002). However, in nearly all mathematical domains, students in 

transition often rely on their informal understanding of objects, instead of definitions 

(overview in Thomas et al., 2015). There are several reasons why students have 

difficulties with defining and definitions. Definitions describe objects in arbitrary 

ways (Vinner, 1991), i.e. students do not have an experiential basis with the defined 

objects. Furthermore, students are usually not engaged in practices of defining. 

Instead, students encounter definitions in processes of proofing or validating 

(Swinyard & Larsen, 2012). When students can encounter definitions as product of 
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their own making, it might help them to become aware of the nature of definitions at 

the university level (Swinyard, 2011). 

In sum, students can and should be engaged in practices of defining limits. From a 

transitionary standpoint, practices of defining should be rooted in familiar secondary 

activities with empirical investigations to create an experiential basis (de Guzmán et 

al., 1998). Then, practices of defining in a transition course should start with an 

experiential basis, and let students reinvent an own ‘arbitrary’ but viable definition, 

and later progress to a more formal and abstract definition. 

THEORETICAL BASIS: COMMOGNITION AND GUIDED REINVENTION 

Commognitive Perspective on Learning and tertiary mathematics 

Within the framework of commognition, students’ participation in discourses is in-

vestigated in terms of changes in the ways students discursively realize mathematical 

objects in their utterances, where such changes constitute learning (Sfard, 2008).  

Mathematical discourses can be distinguished from each other by their use of 

keywords (e.g. “tends to”), of visual mediators (e.g. graphs and symbols), of practices 

(“routines”, patterned activities like defining or proving) and of narratives (like 

definitions) (Sfard, 2008, p. 134). Of special interest in the present study is the 

students’ use of visual mediators and of narratives. Visual mediators are central 

means for grasping convergent sequences with epsilon strips and with mathematical 

symbols. Narratives are the means for students to discursively realize relations 

between objects, or between the facets of the object convergent sequence, like  or N.  

The development of a definition (as a narrative) and its associated mathematical can 

be characterized through the ways it is discursively realized over time. This develop-

ment of the definition can be visualized as a “realization tree”. The branches of the 

realization tree represent the distinct ways in which a definition, in this case about the 

object convergent sequence, is discursively realized by the students (Sfard, 2008, p. 

153), up to a certain point in time in the discourse.  

Research program of design research and framework of guided reinvention 

The present study follows a guided reinvention approach based on realistic mathe-

matics education. It engages students in context problems in which a mathematical 

object is the result of own experiences and activities (Gravemeijer & Doorman, 

1999). This is a fruitful approach for introducing tertiary mathematical objects (e.g. 

Dawkins, 2012; and many others). It is located in the research program of design 

research (Prediger, Gravemeijer, & Confrey, 2015). 

The underlying hypothetical learning trajectory builds on the research on the learning 

of limits. Building on the epsilon-strip activity in the previous session, students are 

asked to document all facets which are relevant for convergence, for example the 

height of the strip. Afterwards, the students have to bring these previously found 

facets into a logical relationship in the form of a narrative. At the same time, the 

students have to formalize the activity, including the process of finding a limit 
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candidate. A critical step in this trajectory is the need to progress from an x-first 

perspective, in which students focus on inputs (x-values) and their respective outputs 

(y-values), to a y-first perspective. The x-first perspective emphasizes finding a 

candidate for a limit (Swinyard & Larsen, 2012). In regard to continuity, the y-first 

perspective and finding a limit candidate is implied in the epsilon-strip activity, as 

students first choose a strip with a certain height and afterwards arrange it on the 

sequence. Nevertheless, previous experiences with functions might still guide 

students to consider an x-first-perspective, so that the y-first perspective needs to be 

stabilized.  

Research questions 

In the present study, the students’ progression from their experiential notion of 

convergence with epsilon-strips towards a more the formal, abstract notion of 

convergence along the outlined trajectory is investigated. The students are engaged in 

practices of defining, in line with the previous considerations. This encompasses, 

among others, the following activities: 1. Identifying central elements that should 

constitute a definition, and baptizing them, and 2. exploring or deducing relations of 

these elements. Of special interest are the students’ ways of building on and 

connecting with their previous secondary school discourses. The study focuses on the 

emergent practice of defining, as students’ preceding exploration of sequences with 

epsilon strips has already been studied in other studies (Przenioslo, 2005). 

The following research questions will be investigated in the present study:  

Q1. What are the crucial steps in the students’ learning trajectory from experiential 

investigations towards a formal definition of convergence?  

Q2. How do students activate their previous knowledge from school, and what role 

does this knowledge play to proceed to a formal, abstract definition?  

METHODOLOGY 

Participants and implementation 

The design research project encompasses three design experiment cycles, the data 

analyzed in this paper stem from the third cycle in which five students participated 

(Ludwig, Lawrence, Dominic, Leif and Tanja). These students are highly proficient 

eleventh-graders, in their penultimate year of upper secondary education. They 

participate voluntarily in a one-year long transition course, designed by the author for 

preparing for university STEM-studies. From their regular mathematics classrooms, 

the students are familiar with an informal understanding of continuity (“Drawing 

without lifting the pen”) and with limits as “tends to”. The teaching unit comprised 5 

sessions of 90 minutes each, three sessions on convergent sequences, two sessions on 

continuity. The teaching unit was taught by a Master student with tutoring 

experiences at university level. All sessions were videotaped and transcribed.  

The analysis focuses on Task 2 of Session 2, in which the students attempt to find a 

formal definition for convergence by drawing upon their activities with the epsilon-
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strips (Session 1). Before Task 2, the students recapitulated the activity of using the 

epsilon-strips with a given convergent sequence. Furthermore, the students have 

generated a ‘knowledge storage’ in the first session, where they documented the 

relevant mathematical facets of convergence, and visualized them. Session 2 finishes 

with the completion of the here investigated task.   

Analysis of data 

The transcripts of Task 2 in Session 2 were analyzed qualitatively in the framework 

of commognition (Sfard, 2008). The central steps of the analysis are: 

To answer Q1, the collective ways to realize the object convergent sequences over 

time are analyzed and depicted in form of a realization tree. For that, the transcript is 

segmented according to the qualitatively different ways in which the students realized 

the object convergent sequence. As illustrated, changes in the ways of realizing 

objects with keywords, visual mediators and their relations with narratives in the 

discourse are indicative of learning. Each branch in the tree hence represents one 

distinct way of grasping convergence discursively. The progression from one branch 

of the realization tree to the next one marks a crucial step in students’ learning 

trajectory, as the students change the discourse about convergence in some 

substantial regard.  

To answer Q2, the transcript is analyzed in regard to episodes in which the students’ 

discourse builds on school objects, which is indicated by keywords like “function”, 

“y-value”, and narratives, e.g. the metaphor of “tends to”. These episodes are 

analyzed in terms of how the students proceed from secondary utterances about 

school objects towards more tertiary abstract and formal utterances. An object 

becomes abstract, when its narratives do not refer to empirical phenomena, but to 

other (previous) mathematical narratives. An object is considered formal, if it is 

typically realized with a symbol as visual mediator (Sfard, 2008).  

RESULTS 

Different Realizations of convergent sequences and their progression 

After having investigated a convergent sequence for 20 min, the students engage in 

finding a definition for convergent sequences in Task 2 for the remainder of Session 

2. For that, they can build on their “knowledge storage”, in which they documented 

the central facets of convergence together with their respective graphical 

representations. The realization tree in Figure 1 illustrates how students progressively 

realize convergent sequences, from left to right, and achieve an abstract, formal 

definition (fourth branch). The small rectangles denote the predominant discursive 

means used. The turn numbers “Tx” under each oval localize the realization branches 

in the classroom conversation. The conversation lasts 393 Turns. 

In regard to the question of proceeding from an experiential notion of convergence 

towards an abstract definition (Q1), this realization tree reveals several interesting 

features of the developing practice of defining in transition. At two points in the pro-
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cess students specifically go back to the experiential basis of working with the 

epsilon strip, in the first and third branch of the realization tree. In these instances, the 

students rely on metaphors to make sense of their experiences. In interaction with the 

teacher, who explicitly states the rule to not use the metaphor “tends to” after #237, 

the students adopt the phrase “it exists” from the teacher to form a new narrative 

about A in terms of functional relationships, leading to the notion of A(m)/ N. 

In the second and fourth branch of the tree, the students activate their previous school 

knowledge in order to grasp their experiences in a more formal and objectified way. 

This will be investigated in more detail in the next section.    

Activation of secondary discourses 

The starting point for the students to define convergence are narratives about limits 

grounded in “tends to”, resulting in a narrative about two interconnected limit 

processes: “m tends to 0 if A tends to infinity. And we need a target value” (#171-

172). In this first branch of the realization tree (Fig. 1), the students rely heavily on 

the familiar school narratives of “tends to”. Now, the teacher establishes the dis-

cursive rule that the students should avoid using “tends to” (#213-230). The students 

attempt to follow this rule, which leads to a change in the discourse (second branch in 

Fig. 1). The following conversation occurs right in the beginning of these attempts: 

237  Lawrence  Yes, A is getting smaller and smaller, I mean, bigger, if m is getting 
smaller and smaller. But we should avoid the tends to. 

238  Leif One could try somehow proportional, like proportional-technique to 
plot it.  

239 Ludwig Dependent from A. Hence, writing in the index. 

240  Lawrence  A in dependence of m.   

241  Leif I would have said, like, somehow m is proportional to 1 divided by A.  

In this episode, Lawrence summarizes the result of the previous discussions in terms 

of “tends to”. Leif proposes to think about the relations in terms of proportionality, 

and Ludwig and Lawrence pick this up in terms of functional relations. 

The students can give up narratives with “tends to” by first replacing the “if…then” 

relationship with a functional relationship, as indicated by keywords of ‘dependence’. 

These keywords show that the students’ ideas are rooted in familiar secondary 

discourses about functional relationships. It seems that these secondary notions are 

brought into the discourse associatively. Accordingly, the viability of these notions is 

up to debate, and competing narratives are uttered (#240, 241). This guides Leif to 

specify his proposal into “m is proportional to 1/A”. In this episode, school notions 

allow the students to collaboratively develop new narratives. They help students to 

engage in a new discourse in which the discursive rules have changed.  

In the following third episode, the students try to decide about the nature of the 

hypothesized functional relationship.   
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 Figure 1. Realizations of the object convergent sequence   
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279  teacher  Yes. You already said, what else is dependent on m?  

280 Lawrence Yes, A. 

281 Leif We have the dependence of m and A.  

282 Lawrence I write this down now like in short as tends to. [Lawrence writes 
m0, A]   

283  teacher What is dependent on what? […] 

287 Ludwig m is the y-value, thus it is always dependent from the x-value.  

288 Lawrence You take, like, the strip and look then, from which value on all of 
them are in it.  

289 Leif Yes, but you, you # 

290 Lawrence We have never taken a value and then looked at how high the strip 
needs to be. […] 

293 Leif Yes, OK, then A is dependent from m.  

294  Lawrence If m gets smaller, A gets bigger.  

While the students still document their ideas in terms of the narrative of “tends to” 

(#282), the teacher engages them in thinking again about the functional relationship.  

Ludwig treats sequences in terms of properties of functions, namely in terms of y- 

and x-values (#287). Based on this, he concludes that, as with functions, m has to be 

dependent from A, taking a x-first perspective. Lawrence goes back to activities of 

using the epsilon strips, and how to choose a strip (#288), proposing an y-first pers-

pective as implied by the epsilon strip activity. Hence, Ludwig treats sequences as a 

variation of the familiar secondary objects of functions, but his functional perspective 

is contested by Lawrence, who enforces his narratives about the epsilon strips and 

their height and placement (#288, 290). In the end, both narratives are merged as “A 

is dependent from m” (#293, 294), resulting in an endorsed narrative about A(m).  

Here, the students’ previous school knowledge about functions and functional 

relationships is the link between the students’ experiences with epsilon strips and the 

formal notion of A(m) as an object. It provides the narrative that A and m can be 

brought together as a combined object A(m) under a y-first perspective, and the visual 

mediator/symbol of A(m). However, as Ludwig’s utterance illustrates, treating se-

quences as functions is at the same time misleading, as it reinforces an x-first per-

spective. Above that, there is still an echo of the metaphor “tends to” in A(m), as the 

students use this narrative to summarize their ideas about the functional relationships 

(#282, #294), suggesting that A(m) (analogue to N) is an evolution of this narrative. 

Synthesis and Summary 

In answer to Q2, secondary discourses seem to have at least two functions in the 

students’ progression to more abstract discourses (branches of the realization tree in 

Fig. 1), where abstract means that students more and more endorse narratives about 

narratives instead of narratives about experiences. First, they are the source for the 

students to develop new discourses with a new set of narratives and visual mediators 

– in this case about A(m) [N] – but similar keywords, after the teacher establishes the 
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discursive rules that “tends to” is not to be used (episode 1). Second, secondary 

discourses unlock objectified narratives. They allow to transform the narratives about 

experiences with “tends to” or with “being in the strip” into narratives about abstract 

objects of A(m) [n] (episode 2) and about d [|an – a|] and “d ≤ m” (Fig. 1). This is an 

example of saming, where “proportionality” (#238) is imported into narratives about 

experiences with the epsilon strips (Sfard, 2008, p. 170). This step is critical in 

progressing from an experiential process-notion of relations, which is suggested by 

the activities of using the epsilon strips, towards understanding these relations as 

abstract objects. Nevertheless, the teacher is needed to provide the phrases and 

scaffolds by which the students can engage in new discourses with new narratives, 

e.g. about logical relations. This is expected, as the students neither have previous 

knowledge about the typical phrases and narratives from the tertiary level, nor about 

the practice of defining.  

DISCUSSION 

The here presented study contributes to the ongoing investigation of teaching inter-

ventions that help students to understand the abstract definition of limits. It especially 

highlights the role of the students’ previous experiences with secondary mathematical 

discourses in practices of defining: Students from an upper secondary classroom 

connect to secondary narratives about limits and other objects (functions) in order to 

make sense of their experiences with the epsilon strips, and to formulate a definition. 

The students’ secondary school notions are critical for transposing secondary 

narratives with metaphors (“tends to”) into more abstract narratives about narratives 

that grasp logical relations. As relatively formal objects, school objects mediate 

between informal experiences of relationships and a more tertiary, abstract 

understanding of these relationships as objects, by allowing saming (Sfard, 2008).  

Investigating students’ practices in terms of familiar secondary discourses and of 

distinct steps of realizations has proven highly insightful to understand students’ 

resources in transitioning to tertiary mathematical discourses. The results of the 

present study call for investigating students’ transition to tertiary mathematics not 

only in terms of difficulties, but also in terms of students’ (secondary school) 

resources and how these resources are situationally activated when the discursive 

rules change.  
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The “double discontinuity” stated by Felix Klein 1908 is still relevant in the 

mathematics teacher education at German universities. We are developing a course 

approach, which is intended to bridge the double discontinuity in a didactic 

dimension. We offer additional learning opportunities for teacher students, which 

are characterized by clarifications of mathematical methods that are fundamental to 

the regular lecture contents. We focus especially on reflections on heuristic 

strategies, which are the core part of mathematical methods according to George 

Pólya. Feedback shows that students consider our approach as helpful in the 

transition from school to university.  

Keywords: Novel approaches to teaching, teaching and learning of analysis and 

linear algebra, mathematical methods, heuristic strategies, teacher education, 

Double discontinuity. 

INTRODUCTION 

In Germany, the first year at university is often associated with great problems for 

mathematics teacher students. The dropout rates in the study entrance phase are 

extremely high in mathematics compared to other study programs. (Dieter et al., 

2008). Klein’s “double discontinuity” is still an issue in the mathematics teacher 

education at German universities (Hefendehl-Hebeker, 2013). On the one hand, the 

double discontinuity can be understood as a discontinuity of content, but Klein also 

assigns a didactic dimension to it (Allmendiger, 2016). While mathematics teaching 

at school can be described as intuitive and problem-based, mathematics at the 

university is characterized by a deductive structure (Klein, 1905). The ideas and 

strategies behind the findings of mathematics are rarely presented at the university. 

The mathematics teacher students take part in the same mathematics lectures as 

regular students who study mathematics as a major subject. Therefore, bridging the 

double discontinuity is only possible by offering additional learning opportunities for 

teacher students. A few years ago, we implemented additional seminars for teacher 

students where we showed connections between school mathematics and university 

mathematics. Feedback of such seminars showed that students did not consider our 

approach as helpful for bridging the discontinuity. They said that the regular lectures 

were challenging and time consuming enough so they did not want to think about 

additional issues in our seminars. For this reason, we have developed an approach for 

additional learning opportunities for teacher students, which is characterized by 
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reflections on intuitions and strategies that are fundamental to the regular lecture 

contents. Our approach is intended to bridge the didactic discontinuity. On the one 

hand, we want to support teacher students in the transition from school to university, 

and on the other hand, knowledge about strategies and intuitions is important in the 

future teaching activity at school. In the following report, we describe first 

experiences we have made with our seminars. 

THEORETICAL FRAMEWORK 

Subjects and methods in mathematics 

In the philosophy of science, it is generally accepted that each science has its specific 

subject and its specific method
i
. As mathematical subjects in university mathematics, 

we deem the mathematical definitions, theorems and their proofs including 

mathematical algorithms. The mathematical methods describe how the subjects of 

mathematics are created or investigated by a mathematician
ii
.  Which methods does a 

mathematician use, when formulating a new definition or a theorem? Furthermore: 

how does the mathematician come to the ideas when developing a proof? Sometimes 

the steps of a proof are easy in the sense that a beginner could do them but the 

decision to do these steps needs a lot of experience. In fact, producing a proof that 

does not already exist is an act of problem solving according to the definition of 

Schoenfeld (1985, p.74) or the idea Pólya (1973, p. 3) describes by mentioning 

“problems to proof”. This point of view corresponds also with the definition of the 

concept “problem” the German cognitive psychologist Dörner gave in 1976 (p. 10
iii

, 

own translation):  

What a problem is, is easy to define: an individual faces a problem if he or she is in an 

inner state that is unwanted by any reason, but the individual has not the means in the 

moment to transform the unwanted situation into the desired one. Three aspects 

characterize a problem: 

1. An unwanted start situation sα.

2. A desired final situation sω.

3. A barrier that prevents the transformation from sα to sω at the moment.

“We distinguish problems from tasks. Tasks are intellectual challenges for which the 

methods
iv
 are known. […]. Tasks only need reproductive thinking while in problem 

solving you have to produce something new.” (1976, p. 10, own translation) 

Dörner (1976, S. 10, own translation) emphasised: “Whether a question is a problem 

or a task depends on the experience of the individual.” If a student just learned 

induction “Prove the Bernoulli Inequality by induction!” as the first exercise might 

still be a problem but having done a series of similar proofs, it should be a task. 
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Based on this definition of a problem Dörner (1976) defines heuristic strategies as 

„the structure that organises and controls a problem-solving process” (Dörner, 1976, 

p. 273, own translation), which covers a very wide range of methods and is not

bound to mathematics. Following this concept, heuristic strategies cover much of

what is meant by the concept of “method” in the philosophy of science once applied

to mathematics. Pólya (1973) already underlined this as the subtitle of “How to solve

it” is “A new aspect of mathematical methods”.

The following list of heuristic strategies was formulated based on the work of Pólya 

and others relying on the broad definition by Dörner. These strategies are arranged in 

groups for a better overview: 

 organise your material / understand the problem: change the representation of the

situation if useful, trial and error, use simulations with or without computers,

discretize situations,

 use the working memory effectively: combine complex items to supersigns,

which represent the concept of ‘chunks’, use symmetry, break down your problem

into sub-problems,

 think big: do not think inside dispensable borders, generalise the situation,

 use what you know: use analogies from other problems, trace back new problems

to familiar ones, combine particular cases to solve the general case, use

algorithms where possible,

 functional aspects: analyse special cases or extreme cases, in order to optimise

you have to vary the input quantity, discretize the situation,

 organise the work: work backwards and forwards, keep your approach – change

your approach – both at the right moment.

Examples and detailed descriptions for each strategy are shown in Stender (2017). 

These strategies do not cover all the methods in the work of mathematicians but a 

broad range due to our literature analysis. Many of these strategies are also 

applicable beyond the field of mathematics
v
 and this way of importance as general 

problem solving strategies. We would call a list of heuristic strategies that are used 

only in mathematics as they rely on a formal language “proof strategies”. This list 

contains for example mathematical induction, proof by contradiction, proof by 

exhaustion, the Invariance Principle (Engel, 1998, p. 1), Cantor's diagonal argument, 

the box principle (Engel, 1998, p. 59) but also very simple ideas like “use an 

adequate substitution” or “add zero in an appropriate way.” We do not claim that any 

of these lists is complete. A third aspect is the use of mathematical language like 

reading a mathematical text appropriately (for example see Hodds, 2014). We 

visualised these aspects in figure 1. 
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Fig. 1: Mathematical Content and Methods 

The importance of the methods in mathematics 

The discussion on problem solving since Pólya (1973) shows the importance of 

heuristic strategies in mathematics and thus (if one follows the argument above) the 

importance of mathematical methods in the process of learning mathematics. But 

mathematical methods are not emphasized often in (German) lectures in the 

mathematics departments. Therefore, we formulate an additional argument here.  

We look at a special case of mathematics competence. Imagine a person that knows 

many mathematical definitions, theorems and even proofs by heart, but has hardly 

any mathematical methods available. This person would not be able to solve any 

mathematical problem. 

The other extreme would be a person with little declarative knowledge of 

mathematical facts but competent in applying mathematical methods. He or she just 

has forgotten most of the mathematical content he or she learned. This person would 

be able to understand new mathematical content very fast and could fill gaps in the 

mathematical knowledge quickly if necessary.  

This thought experiment shows that a lack of mathematical methods is a much more 

severe problem while doing mathematics than a lack of knowledge about 

mathematical content. 

A mathematician often uses mathematical methods unconsciously. This is 

appropriate, as this is faster in the most cases than channelling everything through 

the restricted working space (see Miller, 1956) in the prefrontal cortex. For a future 

teacher it is much more important to be aware of his own methods as he or she shall 
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later explain his actions to children. An explicit reference to his own methods is 

essential in these explanations.  

Furthermore, the methods mentioned are the same in university mathematics and in 

school mathematics while the content shows little similarities as Klein (1945/1908) 

pointed out. This way the methods are an important link between school mathematics 

and university mathematics and give studying abstract mathematics a meaning for 

students who want to become a teacher. 

These considerations lead us to the following goal for our research: we want to 

implement and evaluate teaching and learning of heuristic strategies in the 

mathematics teacher education in a close connection to the mathematics content 

trying to show that learning abstract mathematics means learning mathematical 

methods which is crucial for teaching mathematics in school.  

IMPLEMENTED INTERVENTIONS 

The approach we have developed for teacher students includes different additional 

learning opportunities: 

 We offer special tutorials for mathematics teacher students connected to the

Linear Algebra and mathematical Analysis lectures.

 Within the scope of Linear Algebra and Analysis lectures students must do

weekly exercises. We have implemented a weekly workshop where students get

support in creating and formulating proofs.

 All students may choose a preparation lecture before beginning their studies. Part

of this lecture is a tutorial. We offer special tutorials for mathematics teacher

students too.

These learning opportunities have in common that they do not intervene in the 

regular lectures and are not obligatory. This way we are free to realise our teaching 

approach, but this also leads to smaller groups so a standard pre-test-post-test design 

to evaluate the tutorials is not appropriate. We offered the tutorial over four 

semesters with 20 participants. This number was quite stable while participants 

changed: some gave up studying mathematics, some new students joined during the 

semesters when they heard about the tutorial. Due to the individual timetable of 

students, some of them couldn’t participate over all four semesters. The tutorial was 

open to students with a major in math too (parallel traditional tutorials exists that 

only focus on mathematical content) so overall five teacher students participated 

over the whole time.   

As the tutorials fulfil different functions in the learning process, we offer the 

following aspects for the students:  
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Among other aspects as answering questions related to the lectures, we point out the 

appearance of heuristic strategies in the lecture content. Besides students solve small 

exercises so we can exemplify the application of heuristic strategies. We discuss the 

application of heuristic strategies in school by means of examples. Furthermore, we 

give a structured overview over the lecture content several times per semester to help 

students to network their knowledge. The overview is closely connected to some 

heuristic strategies as using analogies and generalise the situation. 

An example for the use of heuristic strategies is the use of equivalence classes in 

linear algebra for example using quotient rings. Quotient rings were presented in the 

lecture using a formal definition. The lecturer gave ℤ /mℤ  as an example but this 

structure was not familiar to the students. In the tutorial we showed the following 

ideas to the students: 

 Using a special example, we presented the ring ℤ /4ℤ .

 For this structure, we gave several different representations – a number line

where the numbers of the same equivalence classes were coloured in the same

way, the four classes as sets, a representation on a circle and a table that

showed the calculations in this structure.

 The importance of the concept of equivalence classes was emphasised: a

number of objects is chunked together to one new object according to Miller

(1965) so an element of a quotient ring is what we call a supersign according

to Kießwetter (1983).

 We pointed out, that similar structures occur in school when dealing with

rational numbers, which are classes of pairs of natural numbers (supersigns)

and where several representations are necessary while working with fractions.

Even if fractions are not implemented in this abstract description in school,

students must deal with this mathematical structure.

This way similarities in school mathematics and university mathematics are brought 

into the focus of the students and showed that students in school dealing with 

fractions might experience the same difficulties as students in university dealing with 

quotient rings.  

A second example from the tutorial is a short exercise we presented to the students: 

In the tutorial matrices were used in vector spaces with bases. In the tutorial, we 

showed how the matrix describing a rotation (ℝ2→ℝ2, angle α) could be build. Then 

we asked the students to develop the matrix for a reflection through an axis that has 

the angel α with the x-axis. As this group was already used to heuristic strategies, we 

gave the following help: 

 Change the representation (figure).

 Look for special cases (basis).
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 Trace back new problems to familiar ones (use the knowledge from the

rotation).

 Break down your problem into sub-problems (work on one element of the

basis at a time).

 Use symmetry (to work on sin(2α-180°).

This example could also be situated in high school, so it breaks down university 

mathematics to school mathematics and shows in addition how heuristic strategies 

can be used supporting students work. 

In the weekly workshops, students do exercises on their own. Mostly students have 

to prove small theorems related to the lecture content. They work in groups of three 

or four and a tutor supports them in developing and formulating proofs. In case 

students are not able to overcome barriers in proving processes by themselves, the 

tutor promotes the application of an appropriate heuristic strategy. Following a 

proving process, students reflect on the strategies they have applied in the process. 

EVALUATION RESULTS 

As said before the number of students participating in the additional learning 

opportunities is too small for quantitative designs. We are in the process of design-

based research as our interventions are an early approach for the use of heuristic 

strategies in mathematics education. This means results of efficiency do not make 

sense in this phase of the research. 

We have conducted interviews with five participants of the tutorials and the 

workshops at the end of each semester. We have analysed these interviews using 

qualitative content analysis according to Mayring (2010). In the interviews, the 

students were asked what they remembered from the tutorial and what they think was 

helpful (not discriminating helpful for studying mathematics or helpful for the later 

profession). If whole aspects were not mentioned the interviewer stimulated an 

answer using a key word. The two kinds of answers (with or without stimulation) 

were separated in the analysis.     

Over the four semesters of this process, a slightly increasing awareness of the 

heuristic strategies in mathematics can be observed in the responses of the students. 

Over the time, the students gave more examples of the use of heuristic strategies 

during the interviews. The students gave a positive feedback according to the 

heuristic strategies as a link between school and university. They said that it 

delivered a meaning to the fact that the content of the mathematical studies had 

hardly any connect to school mathematics. One student mentioned that he used 

heuristic strategies to explain mathematics when he was working in school as a 

substitute teacher. The students regard the workshops as very helpful for their 

learning progress. They emphasize the importance of developing proofs by their own 
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to understand the lecture content. Therefore, they consider it beneficial that the tutor 

gave only a few strategic hints in case of barriers in the proving process rather than 

presenting solutions. Especially the heuristic strategy of changing the representation 

helps students to develop new ideas. 

We think that it can be expected that the heuristic strategies integrated in the lecture 

as metacognition, added to the mathematical content would be far more effective for 

learning mathematical methods. 

CONCLUSIONS AND LOOKING AHEAD 

Overall, we can observe that there are effects of the metacognitive input according 

the heuristic strategies as mathematical methods, but the learning process is very 

slow. It needs many different examples for each strategy to be able to realise the 

importance of these strategies and even more to identify them in your own 

mathematical work or use them explicitly to solve problems. Pólya (1973, p. 208) 

quotes a fictional traditional professor “A method is a device which you use twice.” 

Obviously “twice” is far not enough in the learning process – and not enough to 

make a device so important that it should be taught. 

The teaching concept to support students by stressing the mathematical methods 

particularly by stressing the heuristic strategies seems to have a positive impact but is 

not realised easily. This corresponds with the difficulty of teaching problem solving 

and heuristic strategies (Schoenfeld1985, p. 95). The examples we gave to the 

students during our tutorials and workshops had an impact on realising heuristic 

strategies in mathematics on the long run. However, we do not know if they were not 

enough to let the student’s use these strategies in their mathematical work explicitly. 

We redesign the tutorial if necessary and expand the number of learning situations 

where we implement metacognition on the use heuristic strategies. A long-time goal 

is to include metacognition in the lectures itself but that means to convince 

mathematics lecturer to change their lectures.  

Our next project is developing a tutor training for master students tutoring beginners. 

In the tutor training, we will use former homework tasks and analyse the solutions 

according to the use of heuristic strategies. This will be presented to the students in 

few examples and then done on further tasks by the students working in small 

groups. In the next step, we will demonstrate how these strategies can be used 

explaining mathematics and supporting students to overcome barriers during 

problem solving. The students shall use their own results from the first step to 

practise this. 
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ii
 There is a broad discussion whether mathematics is produced by humans or discovered and for 

both standpoints and for the idea, that mathematics is a mixture of both there are good arguments. 

For this paper it makes no difference if one changes the verb “producing” by “discovering”. 

iii
 The original is in German language, this is an own translation. 

iv
 Dörner uses the word “method” not in the same way “scientific method” is used in this paper. The 

word method has more the meaning of an algorithm here. 

v
 Pólya (1973) gave examples from mathematics for the heuristic strategies he mentioned but also 

examples from outside mathematics for most of the heuristic strategies shown. 
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