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Editorial

Viviane Durand-Guerrier?, Reinhard Hochmuth?, Simon Goodchild®, Ninni Marie Hogstad®

University of Montpellier, viviane.durand-guerrier@umontpellier.fr

University of Hannover, hochmuth@idmp.uni-hannover.de

University of Agder, simon.goodchild@uia.no, ninni.m.hogstad@uia.no

The INDRUM 2018 conference was held in Kristiansand, 5-8 April 2018. The INDRUM
conferences fall within the activities of INDRUM (International Network for Didactic
Research in University Mathematics), which has been initiated by an international team of
researchers in didactics of mathematics at university level. This network aims to contribute to
the development of research in didactics of mathematics at all levels of tertiary education,
with particular focus on support for young researchers in the field and for dialogue with
mathematicians.
The idea for the network and biennial conferences was first discussed in Paris (France),
November 2014 and then Oberwolfach (Germany), December 2014. Following these
discussions, a scientific committee with 19 scholars from 12 countries was established. The
decision for organising the first conference in Montpellier (France), 31 March - 2 April 2016,
with Elena Nardi and Carl Winslow as chair and co-chair was taken during CERME 9 in
Prague, in February 2015.
Following the success of INDRUM 2016, the decision for organising the second INDRUM
conference in Kiristiansand in April 2018 with Simon Goodchild as Chair of the local
committee, was taken during INDRUM 2016 in Montpellier. The International Scientific
Committee held a meeting in Dublin during CERME 10, and nominated the INDRUM 2018
International Programme Committee: Viviane Durand-Guerrier (Montpellier, France) Chair;
Reinhard Hochmuth (Hannover, Germany) Co-chair ; Marianna Bosch (Barcelona, Spain);
Simon Goodchild (Kristiansand, Norway) ; Thomas Hausberger (Montpellier, France) ; Ninni
Marie Hogstad (Kristiansand, Norway) ; Elena Nardi (Norwich, United Kingdom) ; Chris
Rasmussen (San Diego, United States) ; Carl Winslgw (Copenhagen, Denmark). The Local
Organising Committee was composed of Simon Goodchild (Kristiansand, Norway) Chair;
Lillian Egelandsaa (Kristiansand, Norway); Ninni Marie Hogstad (Kristiansand, Norway);
Thomas Hausberger (Montpellier, France); Elisabeth Rasmussen (Kristiansand, Norway). As
for INDRUM 2016, INDRUM 2018 was an ERME Topic Conference.
A total of 53 papers and 14 posters was accepted for presentation. The final number of papers
and posters presented at the conference and included in these proceedings (51 full papers and
14 posters, with the latter represented in the Proceedings as two-page short papers) varied
slightly as a small number of delegates withdrew submissions or cancelled attendance for
personal reasons. Discussion of the accepted papers and posters was organised in six thematic
working groups (TWG1-TWGS6), based on a classification of contents. Two members of the
INDRUM Scientific Committee were invited to lead each of the five TWGs:

TWG1: Calculus and Analysis (Maria Trigueiros, Fabrice Vandebrouck)

TWG2: Mathematics for engineers; Mathematical Modelling; Mathematics and other

disciplines (Alejandro S. Gonzéles Martin, Ghislaine Gueudet)

TWG3: Number, Algebra, Logic (Faiza Chellougui, Viviane Durand-Guerrier)

TWG4: Students' practices (Chris Rasmussen, Elena Nardi)

TWGS: Teachers’ practices (Marianna Bosch, Simon Goodchild)

TWG6: Transition to and across university (Thomas Hausberger, Reinhard Hochmuth)



The scientific programme comprised: A plenary talk by Duncan Lawson (United Kingdom):
Lessons for mathematics higher education from 25 years of mathematics support; a
presentation of posters and of thematic working groups; a plenary panel chaired by Carl
Winslgw: Preparation and training of university mathematics teachers: Panelists: Rolf Biehler
(Germany), Barbara Jaworski (United Kingdom), Frode Rgnning (Norway), Megan Wawro
(United States). The accepted papers were presented in two parallel sessions and discussed in
four themalsic working group (TWG) sessions. A report was prepared and presented in plenary
on April 8™,

The conference was attended by a total of about 120 registered participants. In the light of the
volume and quality of submissions, and substance of exchanges during the sessions, we are
happy to conclude that the second INDRUM conference turned out as a further eminent
success.

Papers appear in these Proceedings in a version chosen by the authors following the (optional)
possibility to upload a final version of their paper soon after the conference.

Very special thanks are due to the organising committee, chaired by Simon Goodchild and co-
chaired by Ninni Marie Hogstad, for their tireless work over many months towards this event.
Ninni Marie was responsible for the website, and received continuous support from Thomas
Hausberger. Administrative support was offered by Lillian Egelandsaa and Elisabeth
Rasmussen. These colleagues worked unstintingly before, during and after the conference to
ensure that every participant had a smooth, productive and enjoyable INDRUM experience.
They have set the bar high for the conferences to follow and we are indebted to them all.

The organizers are grateful to MatRIC, Centre for Research, Innovation and Coordination of
Mathematics Teaching for financial support covering the work of the local organizing
committee and some other conference arrangements, also the University of Agder for
technical and domestic services and conference accommodation.

INDRUM follow-up

Strengthening the Network through publications is an important goal of the INDRUM
network. Apart the INDRUM conferences proceedings, two publications were planed after
INDRUM 2016.

First, an International Journal for Research in Undergraduate Mathematics (IJRUME) Special
Issue has been guest-edited by Elena Nardi and Carl Winslgw, with support from IJRUME
Editor Chris Rasmussen and reviewers including members of the INDRUMZ2016 Scientific
Committee, was published in time for the 2018 conference and participants were able to
download a copy of the issue without charge.

Second, a book reporting from INDRUM 2016 and INDRUM 2018 will be published in the
Routledge ERME Series. It will be based on the scientific work developed in the TWGs
during both conferences. A TWGs session of INDRUM 2018 was devoted to provide input to
the book, in addition to input provided during INDRUM2016. Carl Winslow, Viviane
Durand-Guerrier, Elena Nardi and Reinhard Hochmuth will be the editors.

Third, during INDRUM 2018, 13 colleagues from 10 countries have accepted an invitation to
be members of the INDRUM International Scientific Committee, that now comprises 31
colleagues form 15 countries.

Finally, we are very happy to be able to announce that the Faculty of Sciences of Bizerte
(Tunisia) will host INDRUM 2020; 27-29 March 2020, with Faiza Chellougui as chair of the
Local Organising Committee and Rahim Kouki as co-chair. The conference will be chaired by
Thomas Hausberger and Marianna Bosch.

We now invite you to carry on reading this volume and we hope that the promise of its
contents will encourage you to join, or continue to be part of, the ambitious, bold enterprise
that is INDRUM!
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Lessons for mathematics higher education from 25 years of
mathematics support

Duncan Lawson! and Tony Croft?
INewman University, United Kingdom; 2Loughborough University, United Kingdom

INDRUM KEYNOTE PRESENTATION

The scale and scope of mathematics support within UK universities have grown
significantly since the 1990s. Mathematics support has evolved from a ‘cottage
industry’ initiated by enthusiasts into a main-line student support provision overseen
by institutional senior managers. Over this 25+ year period, the importance of the
mathematical sciences in other disciplines has similarly boomed. No longer is it just
engineering and physics undergraduates who need to acquire highly developed
mathematical skills. Today geographers, bioscientists, sociologists and political
scientists (to name but a few) have to be more skilled than ever before with
understanding mathematical and statistical models and methods, particularly if they
are to be able to access the international research literature and compete in the
international employment market. Just as in the 1980s and 1990s, the Engineering
Council produced reports warning of ‘the mathematics problem’, so in the 2000s and
2010s, the British Council and Royal Society of Arts have done the same. This
presentation will outline how mathematics support has developed throughout the UK
to meet this increasing demand.

Whilst the initial impetus for mathematics support came from a desire to improve the
mathematical learning of students from other disciplines, it is an indisputable fact that
a significant proportion of the users of mathematics support has been, and remains,
mathematics undergraduates. This gives us cause to reflect: why is mathematics
support so attractive to mathematics undergraduates? To answer this question, we
explore the views of mathematics undergraduate students as expressed through the
National Student Survey and in focus groups and individual interviews. The views
the students express shed light on the reasons why many of them find mathematics
support to be an attractive resource to support their learning.

10 sciencesconf.org:indrum2018:199857
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Education and professional development of University Mathematics

Panell

Chair:

Teachers

ists:  Rolf Biehler (Paderborn University, Germany)
Barbara Jaworski (Loughborough University, United Kingdom)

Frode Renning (Norwegian University of Science and Technology,
Norway)

Megan Wawro (Virginia Tech, United States)
Carl Winslgw (University of Copenhagen, Denmark)

ABSTRACT

The theme of this panel may surprise some, as university teachers of mathematics
typically hold a PhD in mathematics or some adjacent field, and in many places some
“pedagogical training” is also foreseen. However, university teaching presents still
more challenges (in many places: more inhomogeneous or different student groups to

teach)

, and opportunities (including new technology, and — we hope — useful

resources from research on UME). For all of these reasons, the panel will address the
following questions:

1.

What is the current, typical preparation of University Mathematics Teachers
for their function as teachers? What “in-service” opportunities for teacher
development exist? - naturally, answers will depend both on countries and
institutions, but sharing experiences could help to provide an updated picture
of how the “professional knowledge of UME teachers” is currently built and
sustained.

Do the current preparation and opportunities for development meet the
demands that exist or can be foreseen? Could the preparation and development
opportunities be improved, for instance by giving university teachers (more)
access to selected parts of current research on UME, and possibly also
participate in research and development projects? What initiatives exist, and
which could be imagined as beneficial — both to increase the impact and quality
of research on UME, and of UME itself?

12 sciencesconf.org:indrum2018:200035
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Are all denumerable sets of numbers order-isomorphic?
Laura Branchetti* and Viviane Durand-Guerrier?

! Department of Mathematical, Physical and Computer sciences, Univ. of Parma,
Italy, laura.branchetti@unipr.it

2 Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, France

In this paper we study cognitive conflicts on the issue of number sets being dense,
ordered and denumerable. We first provide historical-epistemological background
related to these notions. Then we consider the cognitive conflicts under the lenses of
concept image and concept definition, which we use to analyse empirical data
collected in order to understand better the didactical and cognitive issues at stake.

Keywords: density, ordered set, denumerable set, concept image versus definition.
INTRODUCTION

Our interest in the title question comes from our teaching experiences in the first year
of the Master degree in Mathematics course in ltaly for the first author, and in first-
year university courses in France for the second author. In both cases, the focus was
on the distinction between density and continuity for an ordered set of numbers. Both
authors were surprised by the following students’ questions concerning the
denumerable sets N and Q.

Q1. How is it possible to find an order in Q if Q is dense, i.e. when the consecutive
number of a rational does not exist?

Q2. How is it possible that there is a bijection between N and Q, but N is discrete and Q
is dense?

The students’ questions highlighted potential conflicts which emerge when making
explicit the properties of density! and denumerability of the set of rational numbers at
the same time. This motivates a research investigation into the didactical
transposition of the objects that underlie the two properties, namely order on a set,
properties of both discrete? and denumerable sets, bijection, ordered isomorphism,
difference between cardinal and ordinal numbers, and enumeration®. Our general
research question is: how should we deal with these questions in classroom activities
in order to help students overcome the apparent contradictions? In this paper, we will
focus on a less ambitious sub-question concerning the first question posed by
students (Q1).

! From the point of view of order, an order dense set is a linearly ordered set (X,<) with the property that if x<y then
there exists ze X with x<z<y (Jech, 2003). Here with the term “density” we refer to order density.

2 Aset S is discrete in a topological space X if every point xeX has a neighbourhood U such that S n U = {x} (points
are said to be isolated) (Krantz, 1999, p.63).

3 An enumeration is a complete, ordered listing of all the items of a set. An enumeration for an infinite set is a one-to-
one correspondence between this set and the set of positive integers.

14 sciencesconf.org:indrum2018:174129



RQ: What are university students’ and teachers’ concept images and concept
definitions of dense, ordered and denumerable set? How do they connect them?

We analysed students’ and teachers’ answers from two perspectives: i. a historical-
epistemological analysis of the topics which emerged in the students’ questions: ii.
concept image and concept definition (Tall & Vinner, 1981). The first point is
addressed in the first section: we refer to historical works in which infinite sets were
studied from the point of view of cardinality, ordering and enumeration (Galilei,
1638; Lolli, 2013; Peano, 1889). The second point is addressed in the second section;
we use our historical-epistemological analysis, together with results in mathematics
education (Tirosh & Tsamir, 1996; Bergé, 2010; Durand-Guerrier, 2016; Branchetti,
2016), as resources to identify a priori possible students’ concept images that could
conflict with each other. In the third section, we describe the contexts and
methodology of data collection and analysis, carried out in parallel in France and
Italy which involved university teachers and Master degree students. Finally, we
provide a brief overview of the way the concepts are introduced in scholastic stages
prior to university studies in both countries, as a relevant background for our
conclusions and starting point for further developments.

HISTORICAL EPISTEMOLOGICAL ISSUES

Galileo’s view on numbers and their squares: an issue about cardinality

In one of the most famous books by Galileo Galilei (1564 - 1642), Dialogues
concerning Two New Sciences (1638), the Italian physician, mathematician and
philosopher introduced the one-to-one correspondence between natural numbers and
their squares. We report here a brief summary of the main ideas. The dialogue
concerns the difficulty that appears when trying to compare the number of points
contained in two segments, one being longer than the other. Salviati, the voice of
Galilei, states; “This is one of the difficulties which arise when we attempt, with our
finite minds, to discuss the infinite, assigning to it those properties which we give to
the finite and limited” (English translation, 1914, p.31). He then moves to numbers
and develops an argument on the impossibility of comparing the totality of all
numbers with the numbers of squares since they are both infinite:

“neither is the number of squares less than the totality of all numbers, nor the latter
greater than the former; and, finally, the attributes "equal,” "greater," and "less" are not
applicable to infinite, but only to finite, quantities.” (p. 32-33)

Density of Q, cardinal and ordinal numbers: Cantor’s contribution

Cantor (1845 - 1918), working on trigonometric series and their convergence, moved
on to the creation of a new theory of transfinite numbers, and the perspectives of
Number Theory and Set Theory. Cantor came firstly to the definitions of a derived set
— the set of limit points — and of a dense set and then of a dense-in-itself set, like the
rational numbers set (Lolli, 2013). Studying infinite sets, he introduced the diagonal

15 sciencesconf.org:indrum2018:174129



argument to prove that not only do the squares have the same cardinality as natural
numbers, but so also does the Cartesian product of the set of natural numbers by it-
self, and hence the set of rational numbers, thanks to the existence of a surjection
from the Cartesian product to this latter set. In other words, he had to find a way to
enumerate the ordered pairs of natural numbers, being sure to consider every pair
once and once only, following an ordering principle. To do this, he moved from the
usual linear image of order to a 2-dimensional image. A crucial distinction,
introduced by Cantor when he was facing such problems, is between cardinal
numbers and ordinal numbers (Lolli, 2013). While in the set of natural numbers with
its standard structure (formalized by Peano in 1889) the relation of order is strictly
connected to the problem of ordering and with the induction principle, this is no
longer the case in Q. Indeed, the standard order on Q (i.e. that consistent with
measurement of magnitudes onto the line) is not consistent with Cantor’s diagonal

ordering principle, i.e. in the resulting order, % is listed before 45 but after 2

Peano's formalization of Arithmetic and the issue of order in natural numbers

In Peano’s Arithmetic, the ideas developed by Cantor were formalized and used as
principles to grasp the ‘“essence” of natural numbers: the injective function that
establishes Cantor’s “first generation principle” (Lolli, 2013) for the consecutive
element of a natural number is strictly linked to the operation of addition (the
consecutive of n, being S(n), is equal to n+1) and to the comparison between natural
numbers, if we consider the standard order. In this structure, the consecutive element
is always greater than its precedent in respect to the standard order.

RESEARCH FRAMEWORK

According to Tall & Vinner (1981) every concept, from a cognitive point of view, is
associated to different concept images. A relevant cognitive feature of
conceptualization concerns the introduction of formal definitions: it often happens
that the concept definition is not introduced appropriately by teachers in relation to
the concept images. According to the authors, “a teacher may give the formal
definition and work with the general notion for a short while before spending long
periods in which all examples are given by formulae. In such a case the concept
image may develop into a more restricted notion, only involving formulae, whilst the
concept definition is largely inactive in the cognitive structure” (p. 3). Some students’
concept images may be recognized as conflicting and inconsistent from an expert
point of view, but they can coexist in their mind until a conflict is shown evoking
them together simultaneously (p. 2). Such cognitive conflicts are occasions for
learning and advancing in the process of conceptualization, but if not recognized and
suitably overcome, they can become obstacles in the learning processes. We
hypothesised that the students who asked our two questions (Q1 and Q2) were facing
cognitive conflicts and trying to manage the following apparent conflicting images of

16 sciencesconf.org:indrum2018:174129



Q: 1. adense set; ii. an ordered set; iii. a set with the same cardinality as a discrete set,
like N.

A priori identification of concept images

The concept definitions relevant to our topic are the following: linear ordering;
enumeration; dense set; discrete set; denumerable set; cardinality; bijection;
isomorphism. Relying on literature review and historical-epistemological analysis, we
identified possible features of concept images that may cause cognitive conflicts:

CI1) Consecutive element is greater: generalizing an association that is typical of
N, reinforced by the spatial image of the oriented line (a greater element is on the
right as the consecutive element). Students may think that a consecutive element
in a list must be greater than the previous one (considering the standard order).
Cl12) A dense set cannot be enumerated: Students might have a concept image of
ordered sets as sets in which the elements are “one after the other” on the line: an
enumeration must move from left to right consistently with the standard order.
CI13) Dense not discrete: Q might be said to be dense as opposed to N, which is
not. The difference is “shown” either on the line or with numerical examples as an
absolute difference (to have elements in “between” or not), independent of the
particular order. Density may thus be considered an absolute property of a set and
the “visual contrary” of discrete.

Cl4) Linear or bidimensional representation: the cardinalities of Q and N are
shown to be equal, “re-ordering” Q and constructing a bijection between the two
sets. The ordering procedure is usually represented in two dimensions (the
“dovetail” counting method) while the standard order is represented using the line.
CI5) Bijection is identification: students may associate the term “bijection” with a
total identification between the structures (A=B), not just in terms of cardinality.
CI16) Finite versus infinite: we represent indeed finite quantities of corresponding
integer and rational numbers. This may lead the students to implicitly compare
images of finite subsets of N and Q (maybe in the same graphic representation of
intervals), concluding that N and Q cannot be composed by the same quantity of
elements, since ‘“rationals are more than integers” (see Galilei, 1638; finite
reasoning applied to infinite sets, Tirosh & Tsamir, 1996).

METHODOLOGY AND PRELIMINARY DATA ANALYSIS

To answer our research question, we collected the following data: i. the Italian
student’s explanation of her doubt in written form; ii. answers to a similar
questionnaire by an Italian university teacher and Master degree students in France
preparing the selection procedure exam to become mathematics secondary teachers.
The questionnaire was written in English and then translated into Italian and French;
it is based on the historical-epistemological analysis and on the hypothesized student
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concept images. We created different versions of the same questionnaire, modifying
them according to the two different countries’ curricula for high school and
university syllabi, and to the target of the questionnaire (university teachers or Master
students).

At the beginning of both questionnaires, we present a realistic didactical situation,
and we pose appropriate questions (see below).

We analyse one excerpt from a written interview to the Italian student, then we
comment on excerpts of the answers from an lItalian university teacher. Finally, we
provide a brief summary of the answers to a version of the questionnaire submitted to
Master students in France. To carry out the analysis of the students’ interviews,
consistently with our research question, we searched for their concept images and
concept definitions before comparing the two source groups for connections and
potential conflicts: in the case of the students, we consider personal concept images,
while in the case of the teacher we look for examples that can reveal the hypothesized
student concept images and concept definitions.

Analysis of the first student’s comment (Italy)
The student who asked the first question explained her doubt as follows:

“The doubt arose when [1] looking at the schemata that is used to [2] find a bijection
between N and Q. [image] N is [3] ordered by definition, because, starting from 0, every
element has a consecutive element, while [4] Q is not, since it is dense. But what prevents
me from saying that 3/2 is the consecutive of 4/1? According to Peano’s axiomatization,
N is an [5] abstract structure that we can apply to natural numbers but also to Q, thanks to
the bijection. I could thus say: [6] there are infinite rational numbers between 1/3 and %,
so there are infinite elements between the natural numbers associated with 1/3 and %,
using the [7] bijection in the reverse way. Reflecting more deeply, | realize that the
problem is caused by the fact that [8] the bijection between N and Q is not “ordered” like
that between N and P (pair numbers): 2 < 3, 2/1 > %. | still do not understand why Q is
dense and N is not, since we said that Peano’s axioms can be used for several models and
not just the natural numbers we already knew, but [9] if | enumerate Q with the natural
numbers, it no longer has any sense to say < or >in Q.”

The student was reasoning according to images (1,2) rather than definition and in
mentioning the definition of order (3) she said: “every element has a consecutive
element”, revealing how she is not really using a formal definition but an image of
ordering where each one is set after the other [CI2]; she was surprised that the
consecutive could not be greater [CI1], so much so as to claim that in Q the meaning
of < and > disappears. Also, she uses a representation of the bijection that she herself
mentions as an identification (5, 7), reasoning on the schemata; indeed, she said that
we can use it in both directions, identifying completely a couple of elements, one in
the first and one in the second set [CI5]- She also used the image of “infinite elements
in between” to say that N must be dense since we can image infinite elements
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between the natural numbers associated to a couple of rational numbers [CI3]. The
student tried to connect different concept images and conflicts which emerged. The
conflict that is expressed in the question, as she said, is caused by the use of images
according to which [CI2] natural numbers and rational numbers are completely
identified by means of a bijection, resulting in contradictions. It is impossible for the
following to be simultaneously true: 1. Q is dense and N is not dense and N and Q are
“the same structure”; 2. in the identification, Q loses the property that the consecutive
element is greater, while N conserves this same property.

Analysis of one university teacher’s questionnaire (Italy)

For this instance of the questionnaire, we provided the following realistic situation:
during the lesson, a teacher is interrupted by a student asking the first question. The
university teachers were explained what students are expected to have been taught
before on density, infinite cardinality and the problem of “consecutive numbers” in
Q. We asked the teachers to interpret the students’ doubts and to propose how to deal
with said situation in the classroom. We report and comment some excerpts from the
answers to the questions (1 refers to Q1, and 2 refers to Q2):

la. How would you answer the questions? How would you explain it to the whole class?

I.  “The [1] order is not linked to the state of consecutive-ness: when she speaks of
consecutive numbers we are in the domain of the [2] induction principle, which is
only valid in N. In N we have much more: it is [3] well-ordered so there are no lower-
unlimited subsets. Once the properties of N had been observed, i.e. the [4]
“smallness” of the set that must satisfy all these features, | would move to the [5]
differences between N and Q. Finally, | would observe that everything results from
the fact that we are able to say that [6] one number is greater than another and this
definition is also valid in N, as N is a subset of Q. | would say that [7] we cannot
compare two properties linked to different definitions. Also, |1 would say that [8] in N
we can give a definition of order that is linked to the induction principle but NOT
generalized to bigger sets, but | would avoid going indepth into this issue, so as not
to create confusion for the weaker students. Here, [9] the problem is that the sets are
infinite”.

II. “To be [10] dense is very different from being denumerable, | would [11] remind
them of the definitions.”

2. Do you find a possible connection between the two questions, whereby these chance

episodes could be used to help deal with some important topics in mathematics? What

further examples or explanations would you propose to the student or what activities
would you design in order to deal with such a question?

“I would [12] show that {1/n} becomes more and more dense as it approaches 0. Then |
would point out that the student should not be surprised when one proves that there is a
[13] bijection between pair numbers and N, as well as with odds, the multiples of 3, the
prime numbers, the negative integers. This is to [14] see (and prove, showing the
application) examples of sets that are in a bijection with N.”
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3. Would you take the opportunity to explain something to students that could help them
in trying to answer these kinds of questions on their own in the future?

“What we learn from these questions is that science proceeds with [15] analogies and
differences, that we [16] must always consider the definitions, and that it’s important that
these are very precise.”

On several occasions the teacher mentions definitions (6, 7, 8, 10, 11, 16), with
different goals: we can’t compare properties linked to different definitions; to be
dense and to be denumerable are not linked because they concern different definitions
(6, 7, 8, 10); we must use the definitions (11, 16).

When the teacher proposes examples, though, he uses words like show and see, and
he uses images that may cause conflicts: he refers to “greater” and “smaller” related
to infinite sets [CI5] and uses cardinality to compare N and Q. He mentions the
bijection between N and its subsets and Q by showing the application, identifying it
thus without stressing the issue of ordering [CI5]. In one case [CI2], the ordering is
consistent with the linear order and in the other not, but it is not stressed. He shows
that {1/n} becomes increasingly denser near 0, encouraging the use of images of
density [CI3, CI5]. If we think about the student’s comments, these answers would
not have clarified the point she was “struggling” with: what she thought of as
identification did not identify N and Q exactly. He mentions the definitions but, in the
examples, he uses images and never seems to connect the definition to the images.

Preliminary analysis of the data collected in France

In France, an adapted version of the questionnaire was submitted to 30 first-year
Master’s students on October 12", 2017, in the first half-hour of a teaching session on
didactic and epistemology of mathematics. No epistemological or didactic work on
this topic had been done before with these students. The answers were then discussed
later in the fall as a starting point in a session devoted to epistemological and
didactical aspects of numbers construction. For both Q1 and Q2, we asked students
(in French): 1. Have you ever asked yourself this question? If so, in what context and
how did you answer this question yourself? 2. Imagine that a student of a lyceum or
of a preparatory class for the “grandes écoles” is asking you this question. How
would you answer? Finally, the last question was: Do you find a possible connection
between the two questions, whereby these chance episodes could be used to help deal
with some important topics in mathematics? The questionnaire was anonymous. The
students were asked to indicate their previous university studies.

To the first question, 6 students answered “yes” and commented on their answer; 8
answered “no” and commented on their answers; 16 answered “no” without
comments. Some Master’s students claimed that the notion of density was still
unclear for them. In answering the second question, some of these students proposed
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an incorrect explanation for hypothetical younger students, which relied on concept
images of successor without any reference to definition:

M1-18 “the successor of an integer exists, so in Q there are elements having successors.
Thus, we can say that the successor of a rational does not ‘always’ exist rather than ‘does
not exist’”.

Several students explained that thanks to the definition of density, it is possible to
define an order, while in order to define density-in-itself, it is necessary to already
have an order, as in the example below:

M1-15 - in first year university when the set theory was introduced - | told myself that in
a dense set like Q, the notion of successor as may be imagined on N [1] does not exist,
but thanks to the definition of density [2] of a set, it was possible to define an ordering [3]
of this set and consequently order this set [4]

The student begins with reference to an image [1], then refers to the definition [2],
and concludes with the possibility to define an ordering [3], which is an inversion of
the definitions between density and order. It is noticeable that the student makes a
distinction between “ordering” and “order”, while there is no reference to the already-
known order of Q. Among the 30 answers, only one student relies on the existence of
the standard order in Q to justify that it is possible to define an order on Q. This brief
summary of the students’ answers accounts for the weakness of their knowledge of
the concept of density, and of its link with the concept of order.

Insights into the Italian Curricula and traditional didactical practices

In the Italian high school curricula from grade 9 to 13, order and density are never
mentioned explicitly; teachers are, however, advised to introduce the concept of
infinite, showing the connection between mathematics and philosophy, in grades 11
or 12 while introducing transcendental numbers. Natural, integer and rational
numbers are mentioned, but attention is focused on computation techniques,
representations of numbers (fractions, decimal numbers, points of a line) and
approximation. In the curriculum for primary school, both “sequential” and
“cardinal” sense of numbers appears. In middle and high school, students are taught
that between two rational numbers you can always find a rational number, and that it
follows that a rational number has no consecutive element. What is generally not
made explicit by high school teachers is that this is not an absolute property of Q, but
depends on the order chosen in Q. Also, numbers are usually represented in Italy on a
number line, so the discrete and the dense are distinguished using more visual than
theoretical considerations (the existence or not of “something in between”). Discrete
is often counter-posed to continuous. At the end of high school and/or in the first year
of university, the concept of accumulation point is introduced for dealing with limits
and discontinuity of real functions with real variables. The existence of an infinite
quantity of real numbers “between” two real numbers is said to be due to the density
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property of R. This kind of practice is likely to reinforce the concept images we
identified and to reinforce the habit of reasoning in absolute terms while referring
implicitly to the standard order, without stressing the dependence of the properties on
the choice of order relation.

The French context

In France, the situation is not very different. Durand-Guerrier (2016, p.341) presented
it briefly, and provides evidence of the weakness of fresh university students’
knowledge about numbers, which could be related to the curriculum. Briefly, high
school students deal with approximations, mainly with the use of calculators. In grade
12, they learn the mean value theorem for derivatives without a proof, and without
discussion about the fact that this theorem holds in the set of real numbers but no
longer applies in the sets of decimal or rational numbers. Consequently, students
beginning university generally have no idea of the differences and interplay between
finite decimal numbers, rational numbers and non-terminating decimal expansions,
and thus are not prepared for what they will be taught at university. Indeed, in many
French universities, in first-year mathematical courses, an axiomatic definition of the
set of real numbers is given, most often via “the supremum property”, without any
explicit construction. In some cases, the representation of real numbers as non-
terminating decimal expansions and the corresponding characterization of the type of
numbers are introduced, and improper expansions such as 0.9 are discussed with
students (Durand-Guerrier, 2016, p.341). A topological course is generally offered,
but it is mainly theoretical, and students have very few opportunities to connect the
theoretical concepts with their interpretation in the ordered field of real numbers.

CONCLUSIONS AND DEVELOPMENTS

A first relevant result is that the framework is suitable to interpret our data. Our
epistemological investigation and empirical data analysis do indeed help to formulate
interpretations of the conflicts which appeared in the first question, as confirmed by
the Italian student’s interview analysis. Also, we observed a total identification
between structures due to the constructions of bijections between elements of the sets,
which is implicitly present in the high school practices. University teachers
mentioned merely definitions, but, as Tall & Vinner (1981) showed in the case of
discontinuity of functions, concept definition may be largely inactive in the cognitive
structure and concept images may be used instead of the definition in order to grasp
better its meaning. In this case, in the first question (that we analysed in depth here),
the conflict emerged at the level of concept images, so definitions would not have
been sufficient to solve the students’ doubts. For the French Master students who
answered our questionnaire, this lack of awareness of the links between the concepts
of density-in-itself and order of Q might prevent them from designing appropriate
learning situations, once they pass the selection procedure exam and become
teachers. We hypothesise that, even if such questions emerge in university courses,
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the reasoning and consequent conflicts can be due to the lack of explicit reference to
the dependence of Q properties on the order relation which still exists in the high
school, a lack which calls for epistemological and didactic clarification in teacher
training. As developments, we consider it crucial to identify the curricula issues
where non-recognition could generate such conflicts, and to look for suitable teaching
strategies in high school and university to deal appropriately with these concepts.
“When the teacher is aware of the possible concept images, it may be possible to
bring incorrect images to the surface and, by discussion, rationalise the problem”
(Tall & Vinner, 1981, p. 17).
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In this paper, we analyze the answers of one group of high-school students and
two groups of first-year University students to a questionnaire designed to test
their level of recognition and understanding of the formal definition of the
concept of infinite limit. Although this empirical study is ancillary to a larger
project centered on didactic engineering, its analysis sheds light on the key issue
of the logical prerequisites for the learning of the fundamental concepts of
analysis. It also provides a new tool to investigate students’ concept-image of
limits, and assess the impact of teaching contexts and teaching paths.

Keywords: Teaching and learning of analysis and calculus, teaching and
learning of logic, reasoning and proof, definitions, limits.

CONTEXT AND RATIONALE

At the INDRUM 2016 conference, Cécile Ouvrier-Buffet and Renaud Chorlay
presented a poster outlining a medium-scale project on definitions in analysis
(Chorlay & Ouvrier-Buffet, 2016), with a focus on the formal definition of the
limit of a numerical sequence. This topic lied at the intersection of the research
interests of the two researchers: Cécile Ouvrier-Buffet is a maths-education
researcher with a strong epistemological background, whose work bears mainly
on definitions, their use, and the conditions for their genesis in teaching-contexts
(Ouvrier-Buffet 2011). Since most of her former work bore on discrete
mathematics, she wanted to investigate the extent to which the theoretical tools
she had developed in this context had to be adapted to deal with a teaching
context with very different mathematical (continuous vs discrete) and didactical
(transition from calculus to analysis) features. Renaud Chorlay is a historian of
mathematics and teacher educator with a long-standing interest in the history
(Chorlay, 2011) and didactics of analysis.

We selected the topic of limits because we felt many years of didactical
investigations had made it a mature topic; a topic about which knowledge has
accumulated to form a sound and coherent body of knowledge. Indeed, we know
a lot about limits in terms of conceptions and misconceptions (Robert, 1982);
also in terms of obstacles (Sierpinska, 1985). As far as the genesis or
rediscovery of the (or a) definition is concerned, many attempts have been made
and reported upon in details, whether in the framework of didactic engineering®
(Robert, 1983) (Bloch & Gibel, 2011) or with other research tool-boxes
(Mamona-Downs, 2001) (Przenioslo, 2005) (Swinyard, 2011) (Lecorre, 2016)
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(Roh & Lee, 2017). The tricky logical aspects were studied, in particular, in
(Arsac & Durand-Guerrier, 2005).

On this solid basis, our work on the genesis and use of definitions has so far
been engaged along three different lines of investigation; we will distinguish
between ex-ante studies — before students’ first encounter with formal
definitions of limits — and ex-post studies.

e Ex-ante 1. For year 12 (final year of secondary education), the French
curriculum requires that students majoring in mathematics and the
sciences study a definition of limits (finite or infinite) of numerical
sequences. Students are not really expected to use this definition on their
own; rather, the teacher is expected to use these definitions on a few
occasions, to show that some properties of limits can actually be proved
mathematically (in particular: any unbounded and increasing sequence
tends to +o0). The underlying idea is that early encounter with a few
rigorous definitions and proofs should ease the transition between high-
school calculus — with its combination of algorithmic procedures and
graphical intuition — and university analysis. This classroom work on the
formal definition of limits is connected to another requirement of the
current curriculum, namely that throughout high-school, the basic notions
and the standard notations of mathematical logic be gradually made
explicit. In this context, the discovery of a definition for limit, with its
specific sequence of nested quantifiers, is supposed to be the culmination
of this gradual process. In 2016, one of us (Chorlay) designed a teaching-
session in the spirit of didactic engineering, for students to gradually
formulate a formal definition of the infinite limit. We will report on this in
detail in another context.

e Ex-post 1: in 2015-2016 we studied how — if at all — prospective maths-
teachers made use of the definition of limits in order to identify and
analyze vague, informal or erroneous statements regarding limits. We
reported on this in a poster presented at the INDRUM 2016 conference.

e EXx-post 2: in 2016-2017 we designed a questionnaire in order to assess the
level of recognition and understanding of the formal definition of the
infinite limit. This questionnaire, and the answers collected with three

groups of students are be the topic of this paper.

QUESTIONNAIRE - DATA COLLECTION

The questionnaire was of the True/False type, divided in two parts. We give
below an English translation, along with indications on the correct answers.

Part I. For each one of the implications below, circle either “True” or “False”. If
you circle “False”, justify your answer.
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#1 If limu,=+0 then VAeR 3nneN suchthat , >A

T-F Justification (if “False”):

#2 If limu,=40 then VAeR VneN u,=ZA

T-F

#3 If limu,=+0 then FAe€R 3InpeN suchthat , >A

T-F

#4 If limu,=40 then 3IAeR VneN, u,=>A

T-F

#5 If limu,=+othen ¥V A e R 3 nae N such that for any integer
ngreaterthanny  u, >A

T-F

Correct answers:

#1 True: Here the consequent means “not bounded above”.

#2 False: Here the consequent is a property which never holds; hence the
implication is always invalid.

#3 True: Here the consequent is always valid, hence the implication is always
valid.

#4 True: Here the consequent means “bounded below”.

#5 True: Here the consequent is the definition, worded semi-formally.

Part Il. The four implications below are taken from part I. For each one of them,
first state its converse, then circle “True” or “False” regarding the converse.
Justify if “False”.

#1 If limu,=+c then VAeR 3naeN suchthat ,, >A
Converse :

T-F Justification (if “False™):

#3 If limu,=+0 then 3AeR 3InseN suchthat ,, >A
Converse :

T-F

#4 If limu,=4+0 then IAecR VneN, u,>2A
Converse :

T-F

#5 If imu,=+0othen YV A e R 3nae Nsuch that for any integer
n greater than na U, 2 A
Converse:

T-F

Conv. of #1 False: standard counter-examples are (—2)", (—1D)" xn ...

C of #3 False: the antecedent being always true while the consequent can be
false, the implication is invalid.

C of #4 False: being bounded below does not imply lim = +oo0.
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C of #5 True: definition.

The specific form of the questionnaire derives from its original intended use. It
was first designed to assess the didactic engineering, which focused on the
formal definition of the infinite limit. Other forms of assessment of the ability to
recognize, and of the level of understanding of the formal definition were ruled
out, in particular interviews (as in (Robert, 1982)) or proof-writing (as in (Roh
& Lee, 2017)). We felt this questionnaire would give us feedback regarding two
key features of the engineering, namely (1) the role of logic, hence the flood of
formulae with nested quantifiers in this questionnaire; (2) the fact that “not
bounded above” is a necessary condition for lim u, = +oo0 but not a sufficient
condition, hence the importance of item #1 and its converse.

We did not ask for justifications when the item was deemed “True” by the
students, mainly to save time and keep the questionnaire feasible in about 20
minutes. In addition, the justificatory task for True statements could vary a lot
across teaching-contexts and would not easily lend itself to comparison. For
instance, considering item #4 (if lim u, = +o then the sequence is bounded
below): in some contexts citing a theorem studied in class would suffice whereas
in other contexts students would have to devise and write a non trivial proof. We
also chose to drop the converse of item #2, since the fact that an implication
whose antecedent is False is considered valid is a purely logical matter.

In the spring of 2017, the questionnaire was administered to three groups of
students: Group 1 is one of the two French Year-12 classes which had
experienced the engineering; Group 2 and 3 are first-year university students in
Mons University (Belgium), with high-achieving maths majors in Group 2 and
medium-achieving® computer science majors in Group 3. In all three cases, the
guestionnaire was given several months after the course on limits had been
taught, and students had not been asked to revise anything in particular. They
were told the questionnaire was given for research purposes, and would not be
graded. They were given between 20 and 30 minutes. The number of students
was: 31 (group 1), 50 (group 2), and 17 (group 3).

We originally hoped a comparison between the three groups would enable us to
study the effects of three teaching units: our engineering (group 1), a “standard”
maths-lecturer course (group 2), and Robert’s engineering (group 3, as reported
upon in (Bridoux, 2016)). Unfortunately, we were not able to do that, since other
factors seemed to have had a more significant impact.

FINDINGS
Result #1

A first result is that this questionnaire is not unfeasible. In group 2, 14 of the 50
questionnaires were answered perfectly correctly, with relevant counter-
examples for the False statements. Some of these counter-examples had been
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studied in class (such as (—1)™ x n for the converse of #1); in these cases,
students managed to interpret “V A e R dnae N u,, > A” as “not bounded
above” and selected a relevant counter-example in a memorized repertoire. In
other cases, counter-examples had not been studied in the course on limits —
because they had nothing to do with limits — and students crafted ad-hoc
counter-examples, displaying some command of logic (for instance, to prove
that the negationof “VA e R Vnae N wu,, >A”always holds).

Result #2

A second set of results sheds light on the role of an explicit teaching of logic.
When we collected the data we first engaged in quantitative analysis, and were
pretty unhappy about the following result: in group 1 (our engineering), only
26% of the students considered #4 to be “True”, compared to 86% in group 2
and 71% in group 3. A closer look at the answers showed that in group 1, a
significant number of students had actually engaged in another task than the
prescribed task. In Fig. 1 and 2 we translated extracts of answer-sheets from
group 1:

#Z.A If limu,=-+wo then ‘W‘AER@)lEN Up = A
T-(F) dn € N such that u(n) = A =

#3 If limu,=-+w0 then CIN =R dng € N suchthat u,, =zA
T{F) [VAeR

#4  |If limuy=+ then JAeR YneN, u2A

T{F) [It's beyond some rank n

Figure 1. Student 29 of group 1

#1 If limuys=+w then YAeR 3Jng €N suchthat «, > A
) Justification (if “False™):
l;l"rue;‘. One forgot to specify ¥V n =ny

— and 3 A
This implication proves thatthere exists a term greater than v A =
R

Figure 2. Student 3 of group 1

In these answer-sheets, the students did not engage in an assessment of the
logical implications but in a comparison between the formal statements given as
consequents (in part 1) and the definition of lim u, = +o0. In these examples the
comparison can be clumsy (as for #2 for student 29, or the “and 3 A” for student
3). Nevertheless, it rests on the fact that the definition is known (correct answers
for #5 and its converse), and is seen as the relevant template against which other
guantified formulae ought to be contrasted. Moreover, the comparison is not
purely syntactical: in her assessment of #4, student 29 did not only spot that “3
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AcR VneN, u,>A”is notthe definition, but also elicited in her own
words why it could not be, namely “v n € N u, > A” does not capture “beyond
a certain rank”, which is a key element of the definition. The reinterpretation of
the prescribed task is typical of at least one third of the questionnaires from
group 1.

By contrast, only one of the 67 students from Mons University reinterpreted the
implication-assessment task as a comparison-with-the-definition task. A key
difference between group 1, on the one hand, and groups 2 and 3, on the other
hand, is that at Mons University students had studied logic in the first term,
whereas the French high-school students had only occasionally been exposed to
logic. The French students were familiar with the notion of converse, and had
some knowledge of the meaning of quantifiers ¥ and 3, but were not familiar
with sequences of quantifiers; much less with the negation of such sequences.
These formal aspects were not problematic for a large majority of the Mons
students. This does not mean that all the logical aspects were mastered by the
Mons students. In particular, when it came to proving that some formal
statement was valid, many answer-sheets showed misconceptions regarding the
use of ¥ and 3.

This sheds some light on the standard but thorny issue of prerequisites: since the
formal definition of limits involves a sequence of nested quantifiers, how much
logic should be taught (either beforehand or along the way) for students to be
able to do anything with it? Our results suggest that the answer depends on how
“do” something with a definition is construed. Using the formal definition to
design and write proofs probably requires some know-how regarding the
interpretation of hitherto unknown sequences of quantifiers, and the negation of
such sequences; for a significant proportion of the French student, their
occasional and in-context encounters with logical notations did not allow them
to acquire such know-how. However, if “do” is taken to mean “remember the
definition” and even “understand the definition”, then for a large majority of the
French students, their command of logic was adequate. For instance, we
consider the work of student 29 of group 1 (fig.1) to display some degree of
conceptual understanding of definition, namely some understanding of the
specific role of each of the three quantifiers. Student 3 is clearly able to interpret
“GAe€R VneN u,>A” This understanding does not rest on a general
ability to make sense of and formally manipulate logical formulae, but is limited
to the context of the definition of limits. Since it relies on the specific
connections between the concept-image and concept-definition of “limit”
targeted (and, apparently, stabilized) in the didactically engineered teaching-
session, this understanding is probably not only context-dependent but also path-
dependent.
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Result #3.

In the a priori analysis for the engineering, we studied the relations between
three mathematical properties of numerical sequences:

(1) lim u, = +oo;

(2) (uy) is not bounded above;

(3) (uy) is strictly increasing, at least from a certain rank onward.

Our hypothesis was that properties (2) and (3) were part of the concept-image of
(1) for most students; of a concept-image? in which all three properties are
considered to “go together”, without any specific and explicit logical
connections being part of the cognitive structure. This hypothesis was based on
the didactical literature (Robert 1982) (Mamona-Downs 2001) (Swinyard 2011),
and was perfectly confirmed during the two implementations of the engineering.
For this reason, our design aimed for conceptual differentiation, to be achieved
first through the study a few well-chosen sequences, and then through the formal
explicitation of the logical connections between (1), (2), and (3). Consequently,
we wanted our post-experiment questionnaire to help us assess to what extent
students knew that (1) = (2) is valid, while its converse is not.

Due to the significant level of reinterpretation of the prescribed task in group 1,
the data gathered do not easily lend themselves to quantitative comparison.
However, the fact that “not bounded above” (2) is a key component of the
concept image of lim u, = +oo (1) is again confirmed beyond doubt. Let us first
compare groups 2 and 3. In group 3 — the medium-achieving computer science
majors — all 17 students deemed the converse of #1 to be True. Leaving out 3
students whose answer-sheets show an inadequate command of the logical
aspects, it seems that Aline Robert’s engineering (which targeted the definition
of finite limits) had no impact on the belief that if a sequence (u,) takes on
arbitrarily large values, then lim u, = +o. In group 2, that of high-achieving
maths majors, the results were not as striking; they were telling just as well.
Among the 50 answer-sheets, let us focus on the subpopulation of those for
which all the answers to part | were correct (including relevant counter-
examples for #2), and all the converses were stated correctly. Among these 33
students, 17 deemed the converse of #1 to be False — which is the correct answer
— and all but one provided a relevant counter-example (usually (—1)" xXn
which — as the lecturer confirmed — had been studied in detail). Student 25 even
wrote: “¥A e R 7ny, e N suchthat u,, >A means that the sequence is not

bounded above, but it doesn’t mean it tendS to +oo, it may oscillate. Let’s
consider (—1)™.n (...)”. However, the other 16 students ticked “True” for the
converse of #1. The resistance of this belief, even among students with a
reasonable command of logic, who know the definition of lim u,, = +oo (item #5
and its converse), and who had been exposed to a teaching which explicitly
tackled this issue suggest that the conflation of (1) and (2) is an epistemological
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obstacle (Chorlay & de Hosson, 2016). It is probably not independent from the
belief that all sequences are monotonous, at least after a certain rank (Robert
1982), but our questionnaire offers no new insight as to this.

This confirms — in hindsight — that we were justified to take (2) into account
when designing a teaching-session on the formal definition of (1). However, it
does not tell us whether targeting the formulation of the definition of (1) through
a process fostering the conceptual differentiation between (1) and (2) was
didactically relevant — as standard constructivist tenets suggest — or just
foolhardy.

The results of group 1 allow us to be cautiously optimistic. From a purely
guantitative viewpoint, 58% of the students of group 1 deemed the converse of
#1 to be “False” — which is the correct answer — but no conclusions can be
drawn from this fact beyond that this 58% stands in sharp contrast with the 0%
of “False” on the subpopulation of OK-answer-sheets of group 3. In group 1, for
instance, the third of the students who clearly reinterpreted the task as “compare
with the definition” ticked “False”, but this does not indicate that they are aware
of the connections between properties (1) and (2), or that they were able to
reformulate “v A e R 3 nae N suchthat u,, > A” as “not bounded
above”. Answer-sheet 30 of group 1 shows, again, that some conceptual
understanding can be achieved in a formal context in spite of a poor level of
command of symbolic logic. This student systematically stated —B—=A as
converse of A=B; hence one has to study her assessment of the converse of #4
— instead of #1 — to see if she mistakes (2) for (1); which she does not, actually.
Of the 31 students of group 1, only two interpreted the task correctly and
provided relevant correct answers for the converse of #1, either with a formulaic
counter-example (—5)™ or with a graphical counter-example (of the y =
x.sin x type). However, about one fourth of the students deemed the converse of
#1 to be false, interpreted the task as “assess the implications” and provided
arguments which we could be indicative of some conceptual understanding. In
these cases, they justified their assessment not by displaying a counter-example,
but by explaining why the antecedent was not strong enough to warrant the
consequent: under the hypothesis “V A € R 3 na e N suchthat u,, >A”,
the sequence can oscillate; or: the antecedent does not imply that the sequence is
increasing. Our empirical data does not enable us to tell which of the following
is the case: either, students argue on the basis of the fact that if a sequence is
increasing and not-bounded above then it tends toward +oo (a theorem they are
familiar with); or, students conflate (1) and (3).

CONCLUSIONS AND RESEARCH PERSPECTIVES

While the questionnaire studied in this paper was originally designed to compare
the effectiveness of three teaching-modules on the definition of limits of
sequences, it turned out that they could not serve that purpose due to the
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decisive impact of another factor, namely the level of familiarity with predicate
calculus — both in terms of syntactic command, and in terms of ability to make
sense of logical formulae involving nested quantifiers. Nevertheless, we claim
that meaningful conclusions or insights can be gained from the analysis of our
empirical results.

For students with some command of logic —a command which cannot be gained
through an occasional and in-context use of logical formalism - this
questionnaire does provide insight into the connections between concept-image
and concept-definition for limits, thus providing a new investigative tool to
study this issue; a tool which does not involve conducting interviews or studying
students ability to use the definition in proofs. As far as students are concerned,
the comparison between group 2 and group 3 suggest that not all teachings on
limits are equivalent in this respect; the case of group 2 shows that — under
circumstances which call for further investigation — first-year university students
can display a reasonable command of the concept of limit.

As far as group 1 is concerned, the result show that the prerequisites in logic
may not be as high as one might expect, if what is targeted is the ability to
memorize the formal definition, and the ability to display understanding of some
key features of the concept. As far as our didactic engineering is concerned,
these results show that (1) it was not a complete failure, (2) some of its guiding
principles — such as the importance of the conceptual differentiation between
infinite-limit and not-bounded-above, or the use of logical formalism — seem
relevant. However, in this context, this questionnaire is probably not the best
tool for a fine-grained assessment of what the actual impact of this engineering
is.

1. For introduction to didactic engineering as task-design oriented research method, see (Bosch & Barquero
2015).

2. This assessment of the overall level of the groups is that of the team of maths lecturers at Mons University, as
communicated to us by Stéphanie Bridoux, who is both a member of that team and a mathematics education
researcher (LDAR). Many thanks to her for her collaboration on this project.

3. D. Tall and S. Vinner introduced the distinction between the image and the definition of a concept to stress the
difference between mathematics as a mental activity and as a formal system. “We shall use the term concept
image to describe the total cognitive structure that is associated with the concept, which includes all the mental

pictures and associated properties and processes. (...) it needs not be coherent (...).” (Quoted in (Tall 1991, 7)).
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The purpose of this paper is to explore how students may understand the link between
the formalisations through e-statements of infinite processes in the Archimedean
continuum. These processes illustrate either equality or limit. In particular, we focus
on the extent to which students perceive the formalisation of the infinite closeness
notion in the two processes. The data is collected from an extensive design research
carried out at the transition between Calculus course and Analysis course. TDS
construct of milieu is deployed to build and to analyse exploratory teaching-
experiments. The results put forward how e-statements may assist students to
reconsider their informal understanding of limit.

Keywords: e-statement, process, limit, equality, milieu.
INTRODUCTION

In the transition between Calculus and Analysis courses, formal definition of the limit
is needed not only to establish precise definitions of fundamental notions such as
differential, integral, and series, but more importantly, to build up and use formal
statements for making formal proofs. Yet, the key question of how to create a rigorous
understanding of infinite processes and initiate the use of formal statements remains a
challenging issue for researchers in the field of Calculus education.

Considerable research has been conducted on students’ difficulties to encapsulate the
infinite processes of limit into the formal limit (Tall & Vinner, 1981; Przenioslo, 2004;
Roh, 2008; Oehrtman, 2009). Most of this research highlights the impact of students’
previous use of informal statements to represent infinite processes both graphically and
numerically. Those statements usually involve expressions related to successive
computation of terms and closeness such as: the more is x close to infinity, the more is
f(x) close to I, and inversely. Several other studies have explored the complex structure
of the formal limit and have shown multiple aspects that may not help students develop
efficient interpretations of formal statements (Cottrill et al., 1996; Durand-Guerrier &
Arsac, 2005; Mamona-Downs, 2001; Roh, 2010; Oehrtman et al., 2014). Those aspects
fundamentally refer to the role of quantifiers and their order, the arbitrariness of € and
its relation to the other parameter, and the connection between the statements
expressing changes in the variables. Some other research have designed tasks to assist
students connecting informal and formal statements related to limit (for an overview
of the concerned literature, see Bressoud et al, 2016). Specifically, Swinyard (2011)
has demonstrated that students are able to reinvent limit using formal statements.
Drawing on this study and on the genetic decomposition of limit of Cottrill et al. (1996),
Swinyard & Larsen (2012) develop a six steps model of how students come to
understand the formal definition of limit. This model provides consistent arguments of
how students reason about two infinite processes: 1) the process of finding limit which
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1s associated to the first three steps (as x gets closer to a, f (x) gets closer to L), and 2)
the process of validating limit which is described by the formal limit and encapsulated
in the last step through the formalisation of the infinite closeness notion (gets closer
to) via the concept of arbitrary closeness. Swinyard & Larsen hypothesized that limit
at infinity may assist students to focus first on variation of the dependent variable and
to shift to the validating process. In addition, the focus on the variation of a single
variable may improve students’ reasoning on the infinite closeness notion. Although
we agree with those hypotheses, the empirical data does not outline how students
connect informal statements of the first process to the formal statement of the second
process. These processes encompass the cornerstone notion of infinite closeness, so
why students do not feel the need to formalise the finding process and to emphasize its
difference with the validating process and by the way, to understand why quantifiers
should be described in such a way? However, Swinyard & Larsen call for research that
could investigate students’ formalisation of infinite processes in the context of whole-
class teaching experiments and beyond the context of reinvention (p.492).

In this paper, we focus on the formalisation of two infinite processes in the
Archimedean continuum by using formal statements that we call e-statements. These
processes involve the formalisation of infinite closeness notion and illustrate either
equality or limit of function at infinity'. The research of Swinyard & Larsen has served
to structure our thought and to rigorously address our central question: to what extent
the formalizations of the infinite closeness involved in these two processes and their
link may assist students’ understanding of formal limit? The aim of this paper is to give
some insights on the potency of this link in way that somewhat guarantee students’
making sense of formal limit beyond restrictive contexts; this is why we deploy the
Theory of Didactic Situations (TDS) constructs to conduct exploratory whole-class
teaching experiments in the transition between Calculus and Analysis courses.

THEORETICAL FRAME

The TDS is a model of learning mathematical notions founded on an optimization of
the interactions taking place within the system of relationships between students, a
teacher, and a mathematical milieu which includes mathematical knowledge
(preconstructed tasks, tools, graphs, symbols, etc.), students’ prior knowledge, and
students’ informal understanding. The situation refers to the actual implementation in
a classroom of this ideal model (noted Situation with capital S) in accordance with a
targeted mathematical notion. The students’ work and the teacher management are
modelized at several levels according to the nature of the milieu. The expected
interactions are materialized through the role of both students and teacher specifically
in three particular levels: milieu for action, milieu for formulation and milieu for
validation. The efficiency of the interactions among peers is ensured by teacher’s
enrichment of the mathematical milieu. Depending on the complexity of the targeted

!'In this paper, the formal statement related to limit of function at infinity is: The limit of a function fis L at infinity if for
all ¢ > 0, there exists A > 0 such that for allx > A, L - ¢ < f(x) <L +e&.
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notion, the teacher may ask questions and provide some others auxiliary mathematical
knowledge without minimizing students’ responsibility in producing knowledge (this
is the case for example of the formal limit). As mentioned by Gonzalez-Martin et al.
(2014): "It is important to stress that the central object of TDS is not the cognizing
individual, but the Situation, which shapes and constrain the adaptive processes
students can develop, and thus the mathematical knowing which can be constructed."”
(p-118). However, the robustness of a Situation depends fundamentally on the
mathematical milieu. The elaboration of this milieu is based upon a consistent
epistemological analysis of the targeted notion; this analysis should allow students to
experiment motivating questions and to reconsider their informal understanding — test
and make conjectures, provide examples and non-examples, and refute formulations.
The aim of this research is to design situations to explore how students understand the
formalization of two infinite processes that are strongly connected to the natural root
of limit idea, and the extent to which the link between those processes may provide
some insights on the formal limit. The starting point for the building of the
mathematical milieu is the fundamental historical idea of validating equalities by
means of infinite processes. The use of those processes provides results (for example,
the area of parabolic segments, the sum of infinite geometric progressions, etc.) that
would now be dealt with by means of limits and initiates the shift towards the formal
limit. If we look to the nowadays structure of equality: a = b if for alle > 0, -e <a—b
< g, we may notice that the link between this structure and formal limit is modest. But,
this equality can be applied to a function fusing the property P: There exists A >0, for
all e>0 such that for all x > A, L - ¢ < f(x) < L + ¢. If fverifies P then for all x > A, f(x)
= L. However, if we exchange the quantifiers in P, we obtain Q: For all >0, there
exists A >0 such that for allx > A, L - ¢ < f{x) < L + ¢. Yet, if f verifies Q then the limit
of fin plus infinity is L. In this Situation, we focus on the role of € in e-statements: it
leads "at most"” to equality and "at least” to limit depending whether the involved
statement contains there exists A > 0 for all € > 0 or for all ¢ > 0 there exists A > 0. In
the following, we explain how the constructed milieu concentrates on the formalization
of infinite closeness in order to help students to recognize the utilities of formalizing
infinite processes through e—statements. In this milieu, the use of finite limit at infinity
helps students to focus on the dependent variable and on the specific role of quantifiers
in each e—statement.

METHODOLOGY
Whole-class teaching experiments

This study is based on extensive design research carried out from 2013 to 2015 at the
last year of secondary school in France involving a succession of eight situations
related to the limit notion (Lecorre, 2016). The teaching experiments were conducted
by one of the two authors serving both as the classes teacher (this author was the official
mathematics instructor of those classes) and as a researcher. The teaching experiments
took place inside classes’ allowed time; each class contains about thirty 17-18 years
old students. The teacher-researcher provided the whole-class with preconstructed
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tasks and gradually enriched the mathematical milieu asking questions to assist the
progression of students’ work and giving tools that would help students to address
problems. Data consisted of audiotape recordings and copies of students’ written work.
In this paper, we focus on the transcripts of four successive class sessions that are
related to the fifth and sixth situations of the whole design; each class session lasted
two hours. The fifth situation is based upon the graph of the monster (fig.1) and it is
supposed to destabilize students’ informal understanding of the infinite closeness
notion in the limit process and to trigger the need to formalize this process using &—
statements. The sixth situation is designed in way that students face: 1) the problems
of validating equalities and limits candidates using two infinite processes; and 2) the
individual subtle formalization via e—statement of each process depending on whether
the statement contains there exists...for all or contains for all...there exists. Prior to
taking part in the selected class sessions, the students had participated to the preceding
teaching experiments concerning the first four situations of the whole design, and they
were already familiar with whole-class discussions. Specifically, the students had
constructed informal understanding of limit of function at infinity. Building on the
graphs of paradigmatic functions (for example //x), they had investigated limits at
infinity by using expressions such as close to infinity and gets closer to. In addition,
they had explored double quantified statements and that double quantifications should
be differenced according to the order of the quantifiers and to the convention of
interpretation. However, the formal definition of limit is still not introduced to them.

A priori analysis of the monster situation

Students’ previous work on the statement f(x) is upper bounded by g(x) "in infinity" led
the teacher-researcher to formalize "in infinity" by means of There exists A > 0 such
that for all x > A. This formalization which is one of the fundamental elements of the
mathematical milieu of this situation is part of prior students’ knowledge. The central
element of the mathematical milieu is the monster (fig.1).

Figure 1: The monster
The monster is the graphical representations of two functions f and g such that f
remains below g (g which "soon" becomes a constant) except in rare but regular peaks
(every 10°) where f'is over g on small intervals (less than /0%). In addition, this milieu
contains the conjecture C3: Given two functions f and g having no infinite limits in
infinity. If the limit of f'is strictly less than the limit of g in plus infinity then there exists
A >0 such that for all x > A, f(x) <g(x). The students are asked to answer the core
question of this situation: The monster is an example, a counter-example, a non-
example of C3? The use of graphs allows students to create ideas about the limit
process; it also provides them with helpful feedbacks -even if not formal- that may
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contribute to reconsider their informal understanding (p.124). The graphs of
paradigmatic functions are given by the teacher-researcher during the debate to
reinforce the doubt about the meanings that students give to the infinite closeness in
limit process. Students’ formulations are based on their informal understanding of this
closeness. The class discussion may lead to broad agreement about the validity of C3
but some students may remain uncertain considering that it has not been proven yet.
This inquiry is not exactly a request for the formalization of the infinite closeness in
limit process, but it is the beginning of the awareness that prior understanding about
limit process are fragile and have to be formally structured.

A priori analysis of the g-statements situation

The arbitrariness of € is the keystone idea of the e-statements; it founds the equality
process and the limit process through the decreasing of € towards 0. This situation
contains three phases, they are planned in way that: the first phase focuses on the
formalization of infinite closeness using statements with the only €; the second phase
deals with the formalization of infinite closeness using statements with € and other
variables; and the third phase highlights the formalization of infinite closeness involved
in the limit process by emphasizing the role of quantifiers.
- 1 phase: The mathematical milieu contains the property P for 4 = 50 and L = 2 (P1:
For all >0, for all x > 50, 2 - ¢ < f(x) < 2 + ¢), the conjecture C4-1: If f verifies P1
then for all x > 50, f(x) = 2 and the conjecture C4-2: If f verifies Pl then
lim f(x) = 2. The students are firstly asked to say what can be concluded if f verifies

X—+00
P1. Then, the teacher-researcher has the responsibility to enrich the milieu by asking

the students whether or not: The function f(x) = 2 + I/x is an example, a counter-
example, a non-example of C4-1? Depending on the evolution of the debate among the
class students, the use of the same function should permit to study C4-2. More
precisely, students are familiar with the use of graphs to give examples in order to make
or to verify conjectures. Graphical representations of functions may lead to the
visualization of the closeness of f(x) to 2 by using several values of €. It is expected
that students’ validation of C4-1 via a reductio ad absurdum reasoning permits to focus
on the arbitrariness of € as formalizing infinite closeness involved in P1. The study of
the function f{x) = 2 + I/x which does not fit the hypothesis of C4-1 -instead of
veritying there exists A (A=50), for all >0 [ ...], this function verifies for all >0, there
exists A > 0 [...]- should support students’ formulations about infinite closeness
involved in limit process. The discussion of C4-2 should reinforce those formulations
and assists students on thinking about the link between the two processes through the
notion of infinite closeness. It is rather probable that the choice of 4 (50 in P1) will be
questioned: does any other A>0 and 4 #50 exist in way that the function f(x) = 2+1/x
fits the hypothesis? The issue related to the values of 4 will be discussed in the
following phase.

- 2" phase: The mathematical milieu contains the property P which is given for
unknown A (P2: There exists A >0, for all e>0 such that for all x > A, 2 - ¢ < f(x) < 2
+ ¢), the conjecture C4-3: If f verifies P2 then for all x >A, f(x) = 2 and the conjecture
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C4-4: If f verifies P2 then lir+n f(x) = 2. The students are firstly asked to give some
X—>+00

properties of functions verifying P2. Students’ formulations may lead to the
establishment and the discussion of C4-3 and C4-4. A validation of C4-3 based on
reductio ad absurdum proof is not expected; however, the validation will inevitably
highlight the formalization of infinite closeness within statement containing & and
another variable (4 in P2). The study of C4-4 is supposed to improve students’
formulations about infinite closeness in the limit process using the closeness involved
in P2. It isn’t expected that at this stage students will feel the need to talk about the role
of quantifiers; but, when we inverse P2 into P3: For all e>0, there exists A >0 such
that for all x > A, 2 - ¢ < f(x) < 2 + ¢, fruitful discussions about the double quantification
statements may arise among students; the third phase deals with this inversion.

- 3 phase: The milieus of the above phases are planned to bring into focus the use of
e-statement of equality to validate a limit candidate and so to stimulate students
thinking about the formalization of limit process. In this phase, the milieu focuses on
the e-statement of limit to validate a limit candidate. This milieu contains P3, the
conjecture C5-1: If f verifies P3 then there exists B>0 for all x>B such that f(x) = 2
and the conjecture C5-2: If f verifies P3 then xl_Llnoo f(x) = 2. The students are firstly

asked to say whether f(x) = 2+1/x is an example, a counter-example, neither an
example nor a counter-example of C5-1. Then the teacher-researcher has in charge to
add C5-2 and to ask the following question: what do you think about this conjecture?
It is expected that the starting point of class discussion concerns the question related to
whether f(x) = 2+1/x verifies or not the hypothesis of C5-1. Students’ formulations
may concentrate on the finding of the target A given a specific value of €; the validation
emerges from the necessity to generalize this argument for each €. The discussion of
C5-1 emphasizes the need to elucidate the link between the formalizations of infinite
closeness in both P2 and P3. It is expected that the use of f(x) = 2+1/x helps students
to catch the subtleties of this link through the inversion of quantifiers. Students’
formulations about C5-2 are supposed to concentrate on the formalization of infinite
closeness involved in limit process.

Brief description of data analysis method

In the TDS frame, the a priori analysis is important not only to control the data analysis
of the experimental situations but mainly to highlight what does not happen as expected
specifically by focusing on how students’ understanding assist them to progress or not
as planned by the situation. In the case of this research, the data analysis is conducted
in this spirit and it is organized through two major levels. The global level of the data
analysis involved reviewing transcripts paying attention to the potency of the situations
to tackle the research question. The global data analysis shows that the situations give
students the opportunity to enter on the problem and to test their understanding through
actions, formulations and even validations. The planned milieus incite students to
express and share their understanding of limit process and to progress towards formal
understanding. The social dimension of these situations succeeds to stimulate valuable
discussions among students who acted to convince their peers or to be convinced by
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them?. We take advantage of those discussions to engage on the local level of analysis
which focus on students’ understanding of infinite closeness and its formalizations in
the equality and limit processes. This study is based on the evolution of students’ work
through the three levels of the milieu (action, formulation and validation) and on the
arguments they used to explain their work. In the following section, some results of the
local level are exposed and exemplified by generic® students’ utterances that are
translated verbatim from French. We mainly focus on students’ shared understanding;
however, the individual student’s understanding is underlined when it is awkward and
deep.

RESULTS
Students’ understanding of infinite closeness in the limit process

As expected, class’s discussion about the monster put forward the diversity of students’
informal understanding of limit process. Students’ actions involve the use of
expressions related to closeness such that approaching more and more, from below,
from above, gets closer to. Yet, Students’ argumentations strengthen the need to give
more precisions about those expressions. Building on the graphics of prototypical
functions (fig.2), the following formulation gains broad agreement about how the
infinite closeness should be stated in the limit process: For this kind of sinus curve no
limit, the second, it is sometimes above and sometimes under [...] always going closer
to the limit [...] the third function [...] the peaks are shrinking and the values of the
function are getting closer to the limit each time.

Y

Figure 2: Infinite closeness through 3 graphics
The visualization of infinite closeness through graphical representations helps students
not only to share the same meanings but also to get aware of the fragility of their
informal understanding. Of course, this is not enough to ensure their engagement in the
formalization of closeness in limit process mostly because they have not yet felt the
need to validate their limit candidates.

Students’ understanding of the formalization of infinite closeness in equality
process

To examine students’ understanding of the formalization of infinite closeness in
equality, we mainly focus on the data analysis related to students’ work on C4-1 and
C4-3. In the following, the results are organized into two steps depending on whether
the statements used refer to the only € (P1) or not (P2). In both cases, students’ work
concentrates simultaneously on the process involved in the statement as a way to verify
equality as well as a way to validate equality.

2 Due to space constraints, the results of the global level of analysis are limited to this description.
3 By generic we mean that it is representative of whole class utterances.
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Students’ work involving e-statement with the only &

The use of several graphical representations assists students’ formulations about the
role of € in the statement: little epsilon, change the value of epsilon, etc. At this stage,
the arbitrariness of ¢ as formalizing infinite closeness is strongly highlighted and it
constitutes the starting point for the shift towards validating the equality. The validation
is based upon a graphical reductio ad absurdum starting naturally from x > 50 (fig.3):
To show that it's true... show that f(x) can't be different from two [...].

e+ -
s "
Figure 3: Graphical reductio ad absurdum
Students’ understanding of the formalization of infinite closeness involved in P1 (fixed
A = 50) is aided by graphical arguments and emerges from the necessity of both
verifying and validating equality.
Students’ work involving e-statement with € and A
Students’ work on P2 (any A) leads to the discussion of C4-3. The students argue on
the validity of this conjecture on the basis of the graphical reduction ad absurdum
specified for a fixed 4 (50): It is exactly the same statement with A instead of 50. This
generalization is not yet a proof that students’ understanding of the formalization of
infinite closeness in equality takes account of quantifiers in P2 statement.

Students’ understanding of the infinite closeness in limit process through its
formalization in equality process

To study students’ understanding of infinite closeness in limit through its formalization
in equality, we mainly focus on the data analysis related to students’ work on C4-2,
C4-4 and the case of f{x) = 2 + 1/x. Students’ work about whether this function fits or
not P1 and P2 is supposed to pave the way for linking equality and limit processes as
well as to underline the quantifiers and their order in P2 statement.

Students’ work involving e-statement with the only &

Students’ formulations about whether f(x) = 2 + [/x fits or not P1 are based on
numerical computations and lead soon to the necessity to invalid this example by using
the case of x = 57 and ¢ = 0.001. Students’ actions on C4-2 are mostly based on the
already stated validation of C4-1: fequals 2 and this result does not give information
about the limit of f. The use of f(x) = 2 + 1/x reinforces the doubt on the validity of C4-
2 and some students’ formulations about this case permit progressively to highlight the
specificities of the relationship between € and A = 50 in P1: here for all € there is the
same A equal to 50 from which f(x) equal 2 thus f(x) is between 2 —¢ and 2+ ¢ [...] and
so the limit is two. Yet, the involved argument does not provide successful feedbacks
among peers. However, the necessity to validate a limit candidate through the use of
the equality e-statement (P1) compels students to reorganize their understanding of the
infinite closeness in limit process by taking into account the arbitrariness of €.
Students’ work involving e-statement with € and A

Students’ validation of the statement f(x) = 2 + 1/x is a non-example of C4-4 is based
on a numerical argumentation which is expressed as follows: I would like to ask those
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who think it is true, to choose an A, any A, and I will be able each time to find a counter
example (an epsilon in fact). This argument emphasizes the order of quantifiers in the
equality process but students’ work on C4-4 is inconclusive mostly because they do
not succeed to draw upon the arbitrariness of ¢ to formalize the limit process. However,
their understanding of the infinite closeness is enhanced by the use of P2 as an &-
statement firmly consent with the limit process.

Students’ understanding of the role of quantifiers in the formalization of infinite
closeness in limit process

These results are mainly based on students’ work on C5-1, C5-2 and the case of f(x) =
2 + I/x. They are splitted into two sections: 1) students’ interpretations of quantifiers’
orders; and 2) the potential sum up of limit process into the formalized e—statement P3.
Interpretations of quantifiers’ orders

Students’ work on whether f(x) = 2+ 1/x verifies P3 or not highlights their difficulties
to perceive the distinction between P2 and P3 and progressively emphasizes the
necessity to take care of quantifiers’ orders. Students’ firstly act as for P2 to interpret
the quantifiers in P3 before focusing on a peer intervention: /...] the question is written
as for all there exists he must give us an epsilon and we have to find an A. Students’
discussions highlight the inversion of quantifiers issue and the need for convention of
interpretations. The teacher-researcher intervenes in order to help students finding the
targeted 4 for every given € and to confirm the invalidity of C5-1.

Sum up of limit process via g-statement

During the debate concerning quantifiers, students’ work with e-statements is strongly
connected to the necessity to answer those questions: given epsilon, how to give A?
Given A, how to give epsilon? In addition, students’ work on the validation of the limit
candidate involved in C5-2 leads to the formalization of the infinite closeness in limit
process. Students’ further formulations put forward the need to explore additional
question: to what extent this formalization is sufficient to sum up the formal limit?

CONCLUSION

This study examines students’ understanding of the formalisations of two infinite
processes in the Archimedean continuum by using e-statements. These formalizations
concern with the infinite closeness notion and refer to equality and limit of function at
infinity. The aim of this paper is to give data on how these formalizations and their link
may support students’ understanding of formal limit. We deploy TDS constructs to
design situations in which the milieu is built on students’ informal understanding of
limit and concentrates on the role of quantifiers to differentiate the formalizations given
to the infinite closeness in the process of equality and limit, respectively. This study
highlights three main results concerning students’ understanding of e-statements: 1) It
1s possible to organize a milieu that leads students to question their informal
understanding of limit process: in this study, the doubt emerges through several ways
used by students to perceive the infinite closeness in the limit process; 2) The only
formalization of the infinite closeness in the equality process cannot provide insights
on its formalization in the limit process. The focus on the quantifiers’ orders is crucial
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to achieve this formalization; 3) The formalization of the infinite closeness in limit
process does not ensure students’ sum up of limit process into the formalized e
statement, this issue needs further investigation. The social dimension of TDS helps
students to progressively construct meanings that will constitute the bricks of the
meaningful argument which tends to be collectively adopted. In the end, students can
admit the irrefutability of the reasoning when all their reluctances are taken into
account by their peers.
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“A function is continuous if and only if you can draw its graph without
lifting the pen from the paper” — Concept usage in proofs by
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Many students enter university having learned that the graph of a continuous function
is “in one piece” and “can be drawn without lifting the pen from the paper.”
Rigorously, a function R — R is continuous if and only if its graph is path-connected.
In this article, | examine proofs of this fact by students in a topology course. Based on
Moore (1994), concept usage of continuity and path-connectedness is analysed
through recognition and building-with of the RBC-model of epistemic actions (Dreyfus
& Kidron, 2014) in combination with a refinement of Oerter’s (1982) contextual layers
of objects. 4 “propositional” layer to describe relationships between objects used in
proofs is introduced and used to perform case studies of students’ solutions.

Keywords: Teaching and learning of specific topics in university mathematics,
teaching and learning of analysis and calculus, topology, continuity, epistemic actions.

INTRODUCTION

The concept image of a continuous real function of one real variable as one whose
graph is “in one piece” or “can be drawn without lifting the pen from the paper”
(provided that the function is defined on an interval) is held by many students in school
or university (Tall & Vinner, 1981; Hanke & Schafer, 2017).

This piece of research is intended to expand the viewpoint from students’ concept
usage of continuity from first-year analysis to higher courses and sensitise for some
students’ thinking processes. To a large extent, this paper is of philosophical nature
and suggests a refinement of Schafer’s (2010) approach to describe epistemic actions
with the RBC-model, namely by introducing a new specific layer called propositional
layer. This is relevant for the specifically mathematical procedure of deduction from
theorems about relationships between objects. This refinement is then applied to
students’ (partial) proofs of the fact that a real function defined on R is continuous if
and only if it has a path-connected graph. Thus, this study begins to fill a gap in the
literature on this highly recurring concept image and the difficulties in finding a
rigorous proof which requires some topological knowledge.

The general research question before starting this investigation was which mental
Images students use in a proof to a prevalently, vividly acceptable theorem. Here, the
aim of this article is to display students’ proofs and moot a way to dissect these
according to the levels of concreteness of the objects the students used.
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The task
The exercise in question was (translation E.H.; see Ross (2013, p. 182)):

“In school, one often says ‘A function is continuous if you can draw its graph without
lifting the pen.” Prove the following exact version of this proposition: A function f: R —
R is continuous if and only if its graph Ty = {(x, f (x)): x € R} € R? is path-connected.”

The intuition of “without lifting the pen” has to be translated into a valid statement
carefully. Path-connectedness really is required instead of connectedness, and the
theorem is no longer valid for functions from an arbitrary path-connected space to the
real numbers. It is tacitly assumed in this task that the topologies for R and R? are
Euclidean and I inherits the induced topology. Note that the graph I is the image of
the function id X f: R - R?, x » (x, f(x)). Thus, the forward implication in the
exercise follows from the facts that functions into products of topological spaces are
continuous (with respect to the product topology) if their components are continuous,
and continuous images of path-connected sets are path-connected. For the reverse
direction, continuity of f at p € R can be proven by contraposition via the &-4-
definition using the existence of a path of the form y = (¢, f © ¢) between (u, f (u))
and (v, f(v)) in Ty forsome u < p <.

Since this paper has theoretical aims next to the empirical investigation and due to page
restrictions, | omit an a-priori-analysis of different possibilities of proving this theorem
and prerequisites.

FRAMEWORK: THEORY AND METHODOLOGY
Concept usage, object layers and the model of nested epistemic actions

The concept image of a learner for a mathematical object, class of objects or procedures
is “the total cognitive structure that is associated with the concept, which includes all
the mental pictures and associated properties and processes” (Tall & Vinner, 1981,
p. 152). In contrast, (personal) concept definitions are students’ attempts to specify a
concept. Moore (1994) claims that besides “mathematical language and notation” and
“getting started” one of the major difficulties in proving is “concept understanding”
(mix of concept images, concept definition and concept usage) (p. 249): This means,
many students who fail in a proof “lack intuitive understanding of concepts”, “cannot
use concept images to write a proof”, “cannot state the definitions [properly, E.H.]” or
“do not know how to structure a proof from a definition” (Moore, 1994, p. 253). The
term concept usage “refers to the ways one operates with the concept in generating or
using examples or in doing proofs” (Moore, 1994, p. 252).

The Abstraction in Context Methodology (AiC) (Dreyfus & Kidron, 2014) offers a
theory about learning, originating in the need for a new mathematical construct, its
construction of knowledge and its consolidation taking into account a specific form of
context. In this setting, construction of knowledge means performing nested epistemic
actions (RBC-model): Recognising, building-with and constructing. Recognising is
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“seeing the relevance of a specific previous knowledge construct to the problem at
hand”, building-with “comprises the combination of recognized constructs, in order to
achieve a localized goal such as the actualization of a strategy, a justification, or the
solution of a problem” and construction “consists of assembling and integrating
previous constructs by vertical mathematization to produce a new construct” (Dreyfus
& Kidron, 2014, p. 89). The actions are nested in the sense that building-with
something requires its recognition and construction requires building-with. Hence, the
word construction is meant globally within the AiC methodology and locally in the
RBC-model. It is noteworthy that flexibility and availability of a construct does not
stem from construction itself but consolidation.

Based on Oerter’s (1982) theory of activity, Schéfer (2010) differentiated between
three layers which help to describe recognition processes of objects more precisely.
Next to objectification [orig. Vergegenstandlichung] which is the creation of objects,
objectual concern [orig. Gegenstandsbezug] towards previously constructed objects
can be classified on three layers (Oerter, 1982): On the singular layer objects are not
distinguishable from the action of an individual itself (e. g. recognising numbers in a
table); for the actor, the objects are not yet seen as objects and do not need to have
names. On the contextual layer objects are characterised by their usage — not anymore
restricted to an individual but shared within a community — and the usage is performed
within a specific contentual context and similarity of situations; the objects gain
persistence beyond singular action. Finally, on the formal layer objects are disengaged
from specific actions or context (Oerter, 1982; Schafer, 2010). The objectual concern
of previously constructed objects (of a learning process) is reflected in the way
someone can use this object. In this article, this activity theory oriented standpoint is
specified to mathematics practice in students’ attempts to prove a topological fact.

The approach to consider object layers and actions on them seems related to Sfard’s
(1991) idea of the duality of operational and structural conceptions (views of an
individual of a concept) within the process of concept formation; concept here means
a “mathematical idea [...] in its ‘official’ form” (p. 5). Structural conception considers
concepts as “abstract objects” and its dual form, the operational conception, is about
“processes, algorithms and actions”, not the notion as an object itself (Sfard, 1991,
p. 4; emph. orig.). Both of these views of conception can be seen in mathematical
practice: In the action of formal recognition as well as propositional recognition and
building-with (see below) objects are conceptualised as structural and through
operational conceptions a conclusion is achieved. Propositions themselves are
structural, and their scope is reflected in their use, allowing a deduction or justification
(not necessarily mathematically correct though).

Founded in the Anthropological Theory of the Didactic, Hausberger (2018) described
“structuralist praxeologies” which characterise mathematical justification practices
that are oriented towards replacing a statement about the particular with one about the
general: “Structuralist thinking is characterized by reasoning in terms of classes of
objects, relationships between these classes and (structural) stability of properties
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under operations on structures” (pp. 82f.; emph. orig.). What | describe here as
propositional building-with action would fall most likely under his levels 2 and 3 of
“structuralist dimension” of a proof (Hausberger, 2018, p. 81; emph. orig.) which
describe the application of theorems to a task at hand, therefore reasoning on
structuralist rather concrete object level. For example, the task of showing that an
object O (e.g. Z) possesses property A (e. g. unique factorisation domain) can be
changed to the task of showing that O belongs to a class of objects C (e. g. Euclidean
rings) in order to apply a theorem which states that each member of C possesses A
(e. g. every Euclidean ring is a unique factorisation domain). The identification of O’s
membership to C resembles in the proofs in this paper to recognition actions (of
different layers) that O possesses property C. This procedure is “illuminating as to the
‘root causes’ behind the result” (Hausberger, 2018, p. 83).

Mathematical notions such as “continuous real function” are on the formal layer for
experienced students and mathematicians, and instances thereof can be recognised as
having the general properties of elements of the class they belong to. However,
mathematical theorems can also be seen as objects on the formal layer. If they come
into use, e. g. by specialisation to a concrete situation in an exercise, they become an
object one builds-with. In fact, since the usage of objects is of particular interest here,
| claim that a new object layer should be included, the propositional layer: On the
propositional layer we find theorems as objects that describe properties of objects on
the formal layer. Thus, it does not merely contain abstract mathematical objects but
relationships between objects as own objects. These relationships can then be applied
in a propositional building-with action towards objects on the formal or the contextual
layer. [1]

In practice, the decision for which object layer occurs at which place can be guided by
the instantiation of objects (“let f be given by f(x) = x2 + 1), which mostly suggests
the singular or contextual layer, or their declaration (“let f be a function such that ...”),
which highlights an object rather on formal layer. In proofs, the identification of
propositional recognition and building-with actions may be assisted by the writer, e. g.
referencing the lecture, the number of a theorem etc. However, somebody’s “personal
mathematical toolkit” may determine which layer really is in use. The analyses below
reflect an interpretation of the written product, not the way of finding the proof.

Examples for the identification of the object layers

If one wants to show that the unit circle ST is compact, one can directly use the
definition of compactness by taking any open cover of the circle, assuming there was
no finite subcover and, using concrete, contextual properties of S, evoking a
contradiction. This way, propositional objects are not necessarily involved (except for
the definition of course, and depending on the particular argumentation). On the other
hand, identifying S* as continuous image of [0,1] - R?, t » (cos(2mt), sin(2mt)),
is a contextual recognition of S* to the context of the map, and together with the
propositional recognition of the fact that continuous images of compact spaces are
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compact the propositional building-with action of this fact to the situation at hand
yields the compactness of S*. Structurally, these two proofs are completely different.

Next, consider the above proof that the graph of a continuous function is path-
connected. First, the graph is recognised as the image of a certain map id X f
(contextual layer), and this map is recognised as a product of continuous maps
(contextual layer). The theorem that products of continuous maps are continuous is
recognised on the propositional layer and used to deduce the continuity of the map
written down in the proof (building-with on the propositional layer to further recognise
the continuity of id X f on formal layer: The concrete map is no longer important,
simply its continuity). Finally, the theorem that continuous images of path-connected
spaces are path-connected (recognition on the propositional layer) is used in a building-
with action on the propositional layer yielding that the graph of f is path-connected by
recognising that the theorem is applicable to the situation at hand. Even though this
proof is very short, many recognition and building-with actions had to be completed,
brought into order and were compressed in only two sentences.

The “if’-direction of the given task can be proved in the formal/propositional manner
as described and is a special case of the theorem “If F: X — Y is any function between
a path-connected topological space X and any topological space Y, then the graph of F
Is path-connected if F is continuous.” The main ingredient is the fact that for any path-
connected space U and any function g: U — V between topological spaces, continuity
of g implies the path-connectedness of g(U). Since the reverse directions of these two
statements are not true [2], the reverse direction of the students’ task cannot be proved
(completely) in the formal/propositional manner considering solely (path-connected)
topological spaces, continuous maps and their properties as above. Nevertheless, it is
surely possible to argue with propositional objects, e. g. using the intermediate value
theorem or the intermediate value property of functions (Ross, 2013, p. 182f.).

DATA COLLECTION

The data collection for this study took place during the spring semester 2017 at the
University of Bremen within the topology class for Bachelor students in pure
mathematics. | was not involved in this class but was informed by the lecturer about
the contents. During the third week of the semester the students had to solve (besides
others) the task presented above. Construction is not directly observable in the analyses
below because all notions involved are not new to the students. The context of the
contextual layer is understood very locally, depending on the objects already available
in the particular solution, for instance those that have been declared before.

RESULTS

The following cases are supposed to illustrate the work with the above framework (for
groups 2 and 3 only one implication is shown). Overall, the solutions were very
different regarding the approaches used. More details cannot be included here. All of
the following transcripts were translated from German respecting (unusual) syntax.
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Notational and language errors are mostly ignored. Abbreviations of German words
were often not abbreviated. Small notational errors like forgetting a closing bracket
were corrected. An open ball of radius w centred at a is denoted by U, (a).

Case study: Group 1

The following is a transcript of the solution of group 1 with a sketch redrawn by myself.
1 “="Lete >0

Ix —yl <6&:1f(x) —f(Y)I<e yeR

and thus f is continuous because ¢ arbitrary.

As a first step, the students declare a positive ¢ (line 1) which indicates that they would
like to test the e-§-definition of continuity. It looks like a recognition on the formal
layer, but it is not stated explicitly at which point they want to check continuity; most
probably it is “x”. Afterwards, the students assume that there exists a function (most
likely a path, even though not stated) [0,1] — T connecting the points (x — 8, x — &)"
and (x + &,,x + £)T. It is not clear why these points should lie on the graph of f but
this should be the case since the path lies in Ix by their assumption (recognition on
contextual layer) (lines 2-3). Interpreting the students’ sketch of the graph, which they
do not refer to, I hypothesise that they actually mean the points (x — &y, f(x) — &)T
and (x + 8,, f(x) + )T, and &, and &, are chosen such that x — §; and x + &, are
preimages of the corresponding second components of the points on the graph under
f. Thus, the path is recognised on contextual layer using false assumptions. Then, the
students choose the minimal of these §s to implicate that f fulfils the e-§-definition of
continuity in line 5 (lines 4-6). This is a building-with action on contextual layer since
taking the minimum of the s is quite a standard technique in analysis. However, if the
function is not “nice enough” between x — §; and x + &, for example monotonically
increasing on [x — &;,x + &,] as indicated by the students’ figure, then the interval
(x —6,x + 8) is not necessarily mapped into the interval (f(x) —¢, f(x) + ¢€).
Hence, the building-with action does not lead to the needed conclusion in line 5. Even
if there were preimages of f(x) + € (only to the left or right of x according to the sign
of &), one had to choose §; = inf{6 > 0: f(x — &) = f(x) — €} and &, = inf{& >
0: f(x + 8) = f(x) + €}, and would need to show that these are different from 0. Since
functions often encountered are “nice enough” or monotonically increasing, this wrong
argumentation might originate in students’ “met-befores” (McGowen & Tall, 2010).

7 “=”Letl; = {(x, f(x)):x € R} c R? be the graph of the continuous function f.
8  Let(x,f(x)", (0, f(3))" €Ty (wlog x < y)

9  Toshow 3y:[0,1] - I} path.

10 Letz € [x,y]. Since f is continuous, it holds that

11 Ve>036>0:|z—a|<6:|f(z) —f(a)l|<e (a€R)

2 Since I is path-connected, there exists y: [0,1] — I ,,,‘{" | s

3 withy(0)=(x—-6,x—&)Tandy(1) = (x + 8, x + )T ('E/ LA Ly
4  Choose § = max{6;, 6.}, then it holds that =T "Tj‘“-‘ -t
6
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12 No matter how small the neighbourhood U,(f(z)) is chosen, the values of f(a) €
Ug(f(z)) fora € Us(2).

13 =I7= {(a,f(a)): a€(z—-6,z+ 5)} c Us(z) x Ug(f(z))

14  Since R is connected, the neighbourhoods are also connected.

15 = Itexists a path y:[0,1] — I}

16 withy(0) = (x, f()"  y(1) =W, fO)"
The solution starts with the definition of the graph of f and the students choose two
points on the graph (lines 7-8). They want to show the existence of a path in I (line
9), presumably that links the two points, although they do not state it. This is contextual
recognition since the path is adjusted to the concrete setting and formal recognition
would be hypothetical because the definition of path-connectedness is not completely
adapted correctly to the given problem. Afterwards, they recognise the definition of
continuity of f at some point z between the first components of the given points on the
graph (lines 10-11) on the formal layer (independent of a concrete f). Next, they
recognise on the formal layer a topological version of continuity via neighbourhoods
(line 12) and built-with on the contextual layer the implication that a part of the graph
lies inside the product of the neighbourhoods Us(z) and U, (f(x)) (nevertheless, one
has to mention that the neighbourhoods have never been instantiated because € and &
only appear within quantifiers) (line 13). Afterwards, the recognition of R as a
connected space is formal (proven property in the lecture) but the deduction of the
connectedness of the neighbourhoods (likely those in lines 12-13), or their product, is
not justified (line 14) (possibly, the students also mixed up connectedness with path-
connectedness here). As a last step, the group now directly concludes that there exists
a path in Ty joining the points on the graph chosen in the beginning (lines 15-16). It can
be interpreted that the students believe that subspaces of path-connected sets are path-
connected and apply this to Ty c Us(z) x Ug(f(z)) without making clear that the
neighbourhoods are path-connected, not only connected. Under this interpretation, the
building-with action would be propositional, but since the group’s claimed implication
does not seem to be logically connected to their previous proof steps, their thinking
cannot be ascertained.

Case study: Group 2

17  “=”Let f: R = R be continuous. Note that R is path-connected.
18 Now let (a, f(a)) and (b, f (b)) € I}.
19 Since R is connected, there is a path y such that y(0) = a,y(1) = b.

20 Then, g = (y, f o y) is continuous because the composition of continuous maps is
continuous.

21 g isalso a path from (a, f(a)) to (b, f(b)) because:
22 g(0) = (y(0), (f °¥)(0)) = (a,f (a))
23 g() =y, o) = (b, f())

24 thus, I is path-connected since g is continuous.
On the formal layer, the students recognise that R is path-connected (note that no
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additional information of R is used) (line 17) and that they have to find a path between
two arbitrary points in the graph which is indicated by the declaration of two points in
[r (line 18). On the propositional layer, they build (which means they state its
existence) a path y between the first components of the chosen points using that R is
connected (in fact, they should have used that it is path-connected; it is not clear
whether this is just a notational error since they recognised before that R is path-
connected) (line 19). Next, the students recognise on the propositional layer that
compositions of continuous functions are continuous and build-with this fact on the
propositional layer that the product function g = (y, f ¢ y), contextually recognised as
a product of continuous maps, is continuous (their argument lacks the fact that the
continuity of the components implies the continuity of the product map) (line 20).
Recognising that they have to plug in 0 and 1 for verification (formal layer of a part of
the definition of path-connectedness), they conclude that g is in fact a path between
the initial points (lines 21-23) (singular/contextual layer in lines 22-23 because the
concrete form of g is used). The last line contains again a propositional building-with
action since the graph of £ is (presumably) shown to have the property that any two of
its points can be linked with a path (even though not explicitly stated).

Case study: Group 3

25 “&” Approach: If one can show, let it be supposed that there exists a path between
two points of the graph of a function, then there also exists an injective path, it follows

*)

26  Suppose, f not continuousat x ER=>3e > 0:Vd > 03X € R: X € Us(x), f(X) ¢
U:(f ()

27 By assumption there is a path wu:[0,1] - I} with u(0) = (% (%)), u(1) =
(x’,f(x’)).

28 Wlog ¥ < x < x'.

29 By (*) there exists an injective path . Now let t:[a,b] — [0,1], T(x) := (x —
a)/(b — a), is continuous!

30 = myofioT = fiqp), Where 1, is the projection of the second component.

31 Namely, for x € [a, b] it holds:

32 m, (ﬁ(r(x))) =m,(fi((x —a)/(b — a)) = m,y(x, f(x)), since there is only one
possibility for an injective continuous map in the first component of i in

33 question. m,(x, f(x)) = f(x).// % to f not continuous

The group begins a proof by contradiction in line 26 and therefore the students
recognise the negation of the e-§-definition of continuity of f at some x on the formal
layer, relying on the notation with neighbourhoods from the lecture. The students built-
with on the contextual layer a path from two points on the graph whose first coordinates
X and x’ surround x, the point where the function is assumed to be discontinuous (lines
26-28) (however, x' is not explicitly declared). Taken for granted that one can construct
an injective path linking two points given any path between these two (line 25) —
admittedly, the group does neither argue how this may work nor state explicitly that
this injective path has to have the same start and end point or domain — the students use

51 sciencesconf.org:indrum2018:171761



such a path i and compose it with the above 7 which is recognised on contextual level
as continuous (line 29), to perform a building-with action deducing that i, o fi o T iS
equal to f restricted to the interval [a, b] (lines 29-30). The map t is used here to
transform the path defined on the unit interval to a path fi o 7 in I defined on [a, b]
which shall function as the domain where f can be applied (likely, the students actually
meant a = X and b = x'). In lines 30ff., the students try to justify that the second
component of i o T is fi4 p1- Here, the students believe to recognise the first component
of fi ot as the identity on [a, b] because there shall be only one possibility for an
injective path between two real numbers (lines 32-33). This is wrong. However, this
mistake could formally be resolved by performing a “velocity change of paths” which
makes the first component of fi o 7 equal to the identity on [a, b]. The second equal
sign in line 32 is then only justified by this erroneous recognition of the only injection
[a, b] - [a, b] being the identity. Obtaining 7, (x, f (x)) as solution of the calculation
in line 32 is a building-with action on the singular/contextual layer; singular here refers
to the special situation — the assumption in line 25 — the students find themselves in.
As a last step of the proof, I hypothesise that the students recognise f|i4 ) (they write

f in line 33 though, which clearly agrees with f on [a, b]) to be continuous (at x) (a
contradiction to their assumption in line 26). Their justification is however not directly
observable; they may have used the composition of the continuous maps t, i and .
This is recognised as a contradiction to the assumption of discontinuity of f at x on
formal layer (line 33). Finally, the end of the proof is obtained as the result of the
propositional building-with action that finding a contradiction to the hypothesis of the
contraposition of the statement to prove is equivalent to the original statement.

DISCUSSION & CONCLUSION

The notion of propositional layer of objects refines the three layers of objects Schéfer
(2010) used to analyse the epistemic action of recognising. In particular, this new layer
describes the building-with action of applying a proposition about relationships
between objects on the formal layer. In the case studies, it turned out that the
recognition and building-with actions usually succeeded when the prerequisites of a
definition or theorem in use had been successfully recognised. However, the
recognition of the non-satisfaction of necessary conditions for the application of a
theorem failed several times because of insufficient mental imagery of continuity (e. g.
“local niceness” in the “only if’-proof of Group 1) or paths (e. g. injectivity of paths
with group 3) and wrong properties attributed to the objects to be acted on.
Nevertheless, subsequent building-with actions on the propositional layer were often
carried out coherently based on these wrong assumptions.
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NOTES

1. Of course, in definitions previously defined concepts are usually specialised, thus definitions may also be seen as
objects on propositional layer. Seeing what makes up a definition or whether something satisfies a definition is regarded
as a recognition action here, and objects which are recognised to satisfy a definition will be on formal layer.

2. The graph and the image of arg: S* — R, e% — 0 (with 0 < 6 < 2m) are path-connected but arg is not continuous.

REFERENCES

Dreyfus, T. & Kidron, 1. (2014). Introduction to abstraction in context (AiC). In A.
Bikner-Ahsbahs & S. Prediger (Eds.), Networking of theories as a research practice
in mathematics education (pp. 85-96). New York: Springer. doi:10.1007/978-3-
319-05389-9 6

Hanke, E. & Schéfer, I. (2017). Students' view of continuity: An empirical analysis of
mental images and their usage. In: T. Dooley & G. Gueudet (Eds.), Proceedings of
the Tenth Congress of the European Society for Research in Mathematics Education
(CERMEZ10, February 1-5, 2017) (pp. 2081-2088). Dublin, Ireland: DCU Institute
of Education and ERME.

Hausberger, T. (2018). Structuralist praxeologies as a research program on the teaching
and learning of abstract algebra. International Journal of Research in
Undergraduate Mathematics Education, 4, 74-93. doi:10.1007/s40753-017-0063-4

McGowen, M. & Tall, D. (2010). Metaphor or met-before? The effects of previouos[!]
experience on practice and theory of learning mathematics. Journal of Mathematical
Behaviour, 29, 169-179. doi:10.1016/j.jmathb.2010.08.002

Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in
Mathematics, 27(3), 249-266. doi:10.1007/BF01273731

Oerter, R. (1982). Interaktion als Individuum-Umwelt-Bezug. In E. D. Lantermann
(Ed.), Wechselwirkungen (pp. 101-127). Gottingen, Germany: Verlag fur
Psychologie.

Ross, K. (2013). Elementary analysis. The theory of calculus (2nd ed.). New York:
Springer. doi:10.1007/978-1-4614-6271-2

Schéfer, I. (2010). Towards a refinement of epistemic actions: A case study of
processes of recognition on spirolaterals. In M. F. Pinto & T. F. Kawasaki (Eds.),
Proceedings of the 34" Conference of the International Group for the Psychology
of Mathematics Education, Vol. 4 (pp. 161-168). Belo Horizonte, Brazil: PME.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on
processes and objects as different sides of the same coin. Educational Studies in
Mathematics, 22(1), 1-36. doi:10.1007/BF00302715

Tall, D. & Vinner, S. (1981). Concept image and concept definition in mathematics
with particular reference to limits and continuity. Educational Studies in
Mathematics, 12(2), 151-169. doi:10.1007/BF00305619

53 sciencesconf.org:indrum2018:171761



Learning complex analysis in different branches

— Project Spotlight-Y for future teachers
Erik Hanke! and Ingolf Schéafer?

tUniversity of Bremen, Faculty 3 of Mathematics and Computer Science, Germany,
erik.hanke@uni-bremen.de;

2University of Bremen, Faculty 3 of Mathematics and Computer Science, Germany,
ingolf.schaefer@uni-bremen.de

At the University of Bremen in teaching complex analysis, we split the last part of the
lecture into two branches according to profession: While future mathematicians
deepen their understanding in a branch for them, future teachers take a branch of the
lecture where they prepare a task with dynamical geometry software for pupils which
is based on phenomena of complex analysis. Here, we describe the design of the
course, some general aims and first results obtained from the branch for future
teachers.

Keywords: Novel approaches to teaching, teaching and learning of specific topics in
university mathematics, specialised content knowledge, teacher training, complex
analysis.

INTRODUCTION

More than one hundred years ago, Felix Klein (2016) acknowledged that there is a
“double discontinuity” in teacher education in mathematics. When a pupil enters
university he or she does not see the connection of elementary mathematics taught in
school with the formal mathematics in university, and when teaching in school he or
she does not see how the university maths informs his or her practice (Hefendehl-
Hebeker, 2013; Vollstedt, Heinze, Gojdka, & Rach, 2014). Within mathematics
courses at university, it is thus necessary to highlight connections between the
mathematics future teachers are taught in lectures at university and the mathematics
they will teach in schools (Prediger, 2013).

The project “Spotlight-Y” aims for an institutional link of mathematics and
mathematics education and at providing students with the experience to relate content
from the lecture in complex analysis to their future teaching practice. By helping
them to design tasks for pupils with mathematics from a “higher standpoint” (Klein,
2016), the students get the opportunity to try out these tasks with pupils from local
schools.

THEORETICAL CONSIDERATIONS

Ball, Thames, and Phelps (2008) proposed to distinguish the mathematical content
knowledge (CK) of teachers further into common content knowledge (CCK) and
specialised content knowledge (SCK). The first is mathematical knowledge that does
not depend on a specific profession and is known to pure mathematicians as well as
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teachers and others, and the latter is mostly useful only for teaching mathematics. So
for a teacher, not only pedagogical content knowledge (PCK) is important and unique
for the profession but also SCK.

The international study TEDS-FU established that PCK is the most important factor
to judge the didactical problems and opportunities of a classroom situation and that
CK is the most important factor to assess the utterances of pupils (Blomeke et al.,
2014).

Thus, teaching mathematics requires an interplay of different kinds of knowledge for
the teacher and it seems worthwhile to try to specifically address SCK when doing
teacher education programs at university.

Winsloew and Grenbzk (2014) proposed to study the phenomenon of the second
discontinuity by the study of different mathematical praxeologies between university
and high school. In their paper, they are able to identify certain challenges for this
transposition. For university students, one of these challenges is the establishment of
a school praxeology for a problem typically solved with a university maths
praxeology (their example is the method of least squares for simple linear regression).
The authors claim that the main related difficulties lie in spawning capacities for
students’ autonomous research and handling (ir-) relevant literature. This is where
Spotlight-Y is situated. Our approach can be seen as complementary: Instead of
focusing on how the mathematical praxeologies may change and what challenges
may hinder, we try to focus on how the didactical praxeologies are combined with the
mathematical praxeologies from university.

Research question

In this paper, we want to foster the understanding of the combination of PCK and
SCK by the Y-model that structured the lecture (see next section). We try to address
the following question: “In what ways do students combine specialised and
pedagogical content knowledge within the preparation and implementation of their
learning environments?”” For this purpose, we will describe example projects.

OVERVIEW OF THE PROJECT

At the University of Bremen the lecture in complex analysis is the final course in
mathematics for future teachers. Historically, many teacher students in Bremen are
known to view this as a course you have to pass to get through your studies, but
which is thought of having no direct connection to what is taught in school. From the
standpoint of the designer of the curriculum of teacher training in mathematics,
complex analysis was seen as a course which brings different aspects of mathematics
together and may help to get a more holistic view on various areas of the subject, e. g.
polynomials, trigonometric functions, power series or conformal mappings. As such,
it should be a good starting point to get a “higher standpoint” as Klein (2016) put it.

“Spotlight-Y” is a design research project within the project “Schnittstellen gestalten”
at the University of Bremen, funded by the German Federal Ministry of Education
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and Research (BMBF) that started in fall 2016. Its general aim is the interlock of the
scientific disciplines of mathematics and mathematics education. Our students shall
see that elements of school mathematics, in particular all relevant classes of
functions, can be understood from the complex setting which explains more than the
real picture. In three design cycles we develop

1) the structure of the lecture on complex analysis,

2) the specific branch for future teachers with a focus on identifying phenomena
of complex analysis relevant for teaching mathematics in upper classes of
secondary schools and creating exploratory learning environments, and

3) a day for eXperimental Mathematics (XMaSlIl) which local pupils from upper
classes of secondary school (Sekundarstufe 1) attend to work on the learning
environments by the teacher students.

It was mandatory for our students to use the free dynamical geometry software (DGS)
GeoGebra (https://www.geogebra.org/) for implementation because we assumed that
this would make difficult concepts easier to present and provide a suitable technology
to really be able to explore a phenomenon. Besides, our students get an opportunity to
create authentic materials, plan and structure group work with pupils from secondary
schools in 11™ or 12" grade and gain experience in working with them. In particular,
they get experience with pupils outside internships and their practical semester
teaching mathematics for rather gifted learners.

Some of the general research questions in the project are: How do students combine
mathematics from the complex analysis course, their general knowledge on
mathematics education taught earlier in their studies and simultaneously to the course
on complex analysis (a seminar on task design)? In which ways do they handle their
learning environments and the material for the pupils? How do the future teachers see
mathematics education, do they consider it as a scientific discipline or rather a
collection of methods to teach school mathematics?

After about two years, we will report on our design principles, experiences and
empirical data we collect during the design project to establish a transfer package for
other mathematics lectures. In the second year, we perform a first transfer to the
stochastics lecture in the Bachelor for future mathematicians and mathematics
teachers.

Structuring a mathematics lecture: The Y-model

In “Spotlight-Y” we adopt a Y-shaped model for the course in complex analysis. The
course takes place in the fall semester and is attended by pure/applied mathematics
students in the Bachelor as well as teacher students in their first year of the Master
programme. The course takes one semester and the participants are split up around
Christmas after two thirds of the semester (see Figure 1a). The part for everyone
covers the introduction of holomorphic and conformal mappings, line integration and
Cauchy’s theorem up to the residue theorem. The specific branch for future
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mathematicians continues with more advanced topics like invariance of integrals with
respect to homotopy or homology of paths, analytic continuation, the Riemann
mapping theorem or the prime number theorem etc., depending on the lecturer. In the
branch for teachers we cover geometric properties of complex functions and an
introduction to Riemann surfaces. Furthermore, we give the students time to work on
their learning environments. The course is finished with a written or an oral exam.

Branch for teachers \

Last third

seminar in maths
education

heuristics for
experimental task design

complex analysis
(common branch)

mathematical knowledge

Second third

complex analysis

(teacher branch)

specialised mathematical
knowledge for teaching

First third

4

Figure 1: a. Lecture with Y-model and seminar on task design (left), b. The different
components that support the task design process (right)

In fall 2016/2017, the first design cycle in the course on complex analysis started and
the next semester was used to start analysing data we gathered during the first
implementation. In fall 2017/2018, the second design cycle lead to improvements
with respect to the profession-specific branch for the future teachers. In fall
2018/2019, the last cycle will start: A third run during the course on complex analysis
will be devoted to the final answers to our research questions and in summer 2019 a
second transfer to the course on stochastics will be performed.

Elements of the task design process

In order to prepare the tasks for the pupils, the students have to bring input from three
different components together (cf. Figure 1b). They make use of the mathematical
CK from the general branch of the lecture, they activate their SCK from the branch
for future teachers and bring those branches together with their PCK, i. e. heuristics
on task design from their seminar on mathematics education.

Methodology

For the whole project we collected several data. First, the students had to write a
“preflection”, a short reflection which is not after an action on an action but rather the
anticipation of actions, aims and sequences: They should fix which phenomenon they
want to discuss in their learning environment, what the pupils are supposed to
discover, the planned sequence of events, expected difficulties and the mathematics
from the lecture that is directly used. Immediately after the implementation of
XMasSll, the students filled in a questionnaire named “Ad-hoc notes” to write down
own executed actions, recapitulate the execution and match it with expected or

57 sciencesconf.org:indrum2018:171762



anticipated occurrences. In order to pass the course, the students also needed to write
a reflection on their project and their learning. They had to discuss their topic and
how they found it, describe detailed the phenomenon to be explored by the pupils, the
organisation of their tasks, the schedule of the implementation etc. In a final section,
we explicitly asked whether there were certain elements of the course on complex
analysis that changed the relationship of the students to mathematics as a science and
mathematics as a school subject. In total, 19 students participated in the study. We
also conducted guided interviews with two students of four groups each to get more
insight to the aspects above (and some more). We omit details here since this paper
deals mainly with the learning environments the student groups created.

EXAMPLE PROJECTS

We describe two case examples. Group A created a learning environment called
“Differentiation as lineariSation” and Group B worked on “Polynomials of infinite
degree”. Two members of Group A have also been interviewed. Two other groups
created tasks for spherical geometry, another one introduced complex numbers and a
sixth group also worked on power series. As mentioned above, the tasks themselves
focus on phenomena that are rooted in complex analysis and can be explored by the
pupils from high school by the means of a DGS.

“Differentiation as linearisation”

Group A looks at real differentiation, i.e. differentiable functions defined on
(subsets) of the real numbers to the real numbers. The students concentrate on the
image that a differentiable function locally looks like a straight line by magnifying
the graph around a given point, say (p, f(p)). The students emphasise that the
derivative at a point can be interpreted as the slope of the function, respectively of the
tangent at the graph of the function, at this point (which is CCK). They create a
sequence of tasks and subtasks within their learning environment that aim at
magnifying the graph of a function (use of PCK) and lead to answer the question
which exponential function has itself as a derivative. However, the students do not
explicitly clarify what this has to do with linearisation besides the optical appearance.
These two “Grundvorstellungen” (“basic mental models”, Greefrath, Oldenburg,
Siller, UIm, & Weigand (2016, p. 101)) of the derivative at a point, “tangent slope”
and “local linearity”, are usually distinguished in mathematics education literature
(see e.g. Greefrath et al. (2016) who also discuss “local rate of change” and
“amplification factor””). However, we do not see this as a lack of understanding of
different Grundvorstellungen with the students. Rather, group A focuses on a
geometric point of view and many of their tasks focus on the idea of zooming into the
graph of a function to get a more and more straight line (PCK, SCK) on the computer
screen (e. g. “Plot with GeoGebra the function f(x) = x3 - 0.75x2 - 9x + 1. Then draw
the point A(1, f(1)) [...] Zoom in the neighbourhood of point A into the drawing.
What do you notice? Try to describe your observation.” In a later task: “Describe
with this magnified image how to calculate the slope in point A approximately (Hint:
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Remember the slope of a secant).” (own translation)). In other subtasks, group A
provides the pupils with GeoGebra worksheets they have prepared before, where they
had plotted several functions and their “slope function”, and wants the pupils to make
observations about these. In another task at the end of the task sequence, they display
an exponential function f(x) = a* and its slope function with a parameter a which can
be changed with a slider and ask for which a these functions coincide.

The definition of derivative at a point with limits of difference quotients is not
stressed in detail but the GeoGebra worksheets nicely implements that when zooming
into the graph two points on it approach the point (p, f(p)) (one from left, another
from right) to show that the slopes of the secants through these points eventually
yield the slope of the tangent, no matter if one approaches from left or right.
However, since the students do not provide counterexamples, it does not seem very
likely that the concept of derivative can be fully understood, since the class of
functions the students used are pretty standard and “friendly” in the way that they all
really look locally straight (e.g. s given by s(x) = x2sin(1/x), s(0) = O, is
differentiable at 0 but oscillates very much around the origin and therefore hardly is
locally straight).

An additional task in the learning environment is about rotation-dilation, which is an
interpretation of the complex derivative discussed in detail in the first third of the
lecture and exercise classes (SCK). A hexagon and two points are displayed in the
Cartesian plane and pushing around the points changes the hexagon according to the
multiplication by the complex number associated to the points (see Figure 2a, SCK).
However, such a multiplication is not made explicit in the task. Rather, the pupils
shall measure distances and angles, and the task seems rather unrelated to
differentiation. Not even a function is in play. The complex interpretation of
derivative is transformed into a task about rotation-dilation, but not related to the
previous tasks on differentiation. This is not surprising since the idea of magnifying
pursued in the real approach does not shed any light on dilation-rotation. In the
interview with two of the three group members we asked for an intuitive, vivid
meaning of a holomorphic function. The students were unable to argue and did not
even respond with the keyword of (local) rotation-dilation.

Thus, in terms of our framework, the connection of SCK and PCK did not happen as
was hoped for. One problem seems to be that the necessary SCK for the complex
derivate could not be utilised by the students, while they argue very well about
prerequisites the pupils should have for their learning environment such as secant,
tangent, linear functions etc. (SCK for the real derivative). The students of group A
did not take part in the parallel seminar on task construction. Therefore, we
hypothesise that they followed an alternative strategy to construct tasks: They
scrolled through mathematics education literature to find a suggestion on how to fill
the aspect of local linearity with life. In the interview, one of the students said,
roughly speaking, “From the ecarlier lectures [in maths education] one knew at least
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where to research, because it is clear that one cannot have everything stored [in one’s
mind] and fetch it up immediately, so one needs to do research” (own translation).

From a real point of view in terms of concept formation, the learning environment
seems rather unproblematic. We believe this is the case since didactic aspects of real
functions and derivatives are very present in the courses on mathematics education
the students in Bremen are required to take. However, there does not seem a thorough
idea on how to relate the complex interpretation of the derivative of a complex
function to the real setting. Thus, intuition of differentiation is not coherently
transported from one to the other setting. Also, group A does not argue whether their
real images of derivatives find their counterpart in the complex setting.

R .
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,,,,,,,,,,,,,,,,,,,,,,, ¢ e '
._.\{ b /\

Figure 2: a. Dilation-rotation of a hexagon (left, from group A’s GeoGebra worksheet),
b. -In(1-x) and its sixth Taylor polynomial at 0 (right, from group B’s GeoGebra
worksheet).

“Polynomials of infinite degree”

Group B has two general aims with its learning environment about power series
which they steadily call “polynomials of infinite degree”. Firstly, in school
polynomial functions form a very frequently used class of functions (PCK) and
power series seem a quite direct generalisation of it (CCK). Secondly, nearly all
functions that appear in school can be represented by power series (even though this
is usually not made explicit in schools, PCK). For a motivation why power series can
be useful for pupils, group B argues that using power series one may be able to
explain easily why the derivative of the exponential function is itself and the
derivative of the sine function is the cosine function etc. (PCK, SCK).

As necessary mathematical background from the complex analysis course group B
recognises holomorphic functions, power series and their derivatives, entire and non-
entire functions, radii of convergence of power series and the power series expansion
theorem. They relate all these ideas in a correct manner to each other. Nevertheless,
the language the students use in their written reflection and on the task sheets for the
pupils is quite tenuous: The words polynomial and power series are not clearly
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differentiated. It may be possible that the students wanted to use the same word
“polynomial” with the addition of “finite degree” or “infinite degree” because it is
known to the pupils. Group B recognises that the distinction of entire and non-entire
functions is relevant for school and illustrates this with examples like -In(1-x) and
(x+1)Y2 (see Figure 2b, PCK and SCK).

In their preparation and reflection the students raise the question to what extend
convergence issues of power series or why Taylor approximation works (CCK)
should be covered (PCK), but they consider this too difficult and not anymore
relevant for the discovery of the phenomenon for the pupils that previously known
functions — and basically all encountered in school — can be expressed differently. In
fact, the group recognises that arguing in whatever way that Taylor expansion
requires differentiation and defining elementary functions by their series expansions
may lead to circular reasoning (CCK).

The mathematics background is well explained with a few mistakes mostly in
language and notation. Group B’s learning environment really allows to discover one
of the fundamental phenomena of complex analysis, namely that every holomorphic
is at least locally a power series, in the real and school-related setting. In the
GeoGebra environment, several functions and their Taylor polynomials of varying
degree, adjustable with a slider, are presented. This shows a creative part in the work
of our student group, since it visualises very nicely the approximation of a function
by its Taylor polynomials. However, the distinction of entire and non-entire functions
is mathematically deep and relevant for school (SCK). The question of why the
representation of a function by a power series is relevant for pupils is answered with a
deepening of their insights into higher mathematics and the application to calculate
derivatives similar to the procedure with polynomials. Unsurprisingly, as described
above, the problem of convergence is left aside.

Nevertheless, the task sheets for the pupils lack rigor and do not provide consistent
language at certain places. For example, in a “remember box” group B writes “A
function f(x) is an entire function if it is a polynomial of degree n or is a function

which can be written as a polynomial of infinite degree P(x) for every xR
[grammatical errors deleted, E.H.]”, and in another box they write “A function f(X) is
a non-entire function if it is NO polynomial of degree n but can be approximated by a
polynomial of infinite degree. However, this polynomial of infinite degree
approaches the function f(x) only in some interval. It [the function] is not defined for

all x&R or does not have a tangent everywhere [slight grammatical adaptions, E.H.]”.
The absence of the domain of f is usual in school and probably left out for this reason.
It could have been stressed more detailed that a power series expression for an entire

function is globally valid, i. e. that P equals the given function on the whole of R. In
the definition of non-entire functions, on the other hand, the local approximation by a
power series is mentioned correctly (assuming that the group meant that the sequence
of Taylor polynomials approximates the original function) but it is not clarified that
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this power series actually equals the function in some interval containing more than
one point. Also, it should have been stressed that this local phenomenon is valid for
every point in the domain of the non-entire function but the corresponding power
series may change. Another problem is the mentioning of tangent. Tangents do never
show up in the learning environment nor in the students’ reflection again and it is
very unclear what the students wanted to say.

In this case the connection between SCK and PCK seems to be working much better,
although there are some flaws in the formulation of the definition. These problems
may be rooted in misconceptions in the CCK.

FINDINGS

The learning environments differ heavily in mathematical rigour, creativity and
recognisability of complex phenomena in either a real setting or else. In the section
on the example projects we described that Group A showed little understanding of the
geometric meaning of the derivative of holomorphic functions (SCK) (or, at least,
they did not implement this well) but otherwise provided a nice example driven and
exploratory environment. Group B, on the other hand, translated the notion of power
series representation of entire and non-entire functions to real examples and made a
complicated phenomenon accessible to pupils (PCK and SCK). Due to the
complexity, arguments on why and where power series converge and how to find
Taylor series expansions have not been dealt with (CCK). The written report is
mostly correct, however the material for the pupils needs improvement with respect
to consistency in language, mathematical exactness on the level of pupils and
correctness from a formal point of view.

Still in evaluation phase, i. e. coding the interviews, we are nevertheless already able
to state first results regarding our design process:

1. Most students seemed more engaged in creating the tasks than in the lecture.

2. One has to make connections between SCK and PCK explicit, many students
fail to see them on their own.

3. It has been evident from the interviews that basic mathematical content
knowledge in complex analysis was not available two months after the exam,
but the content of the tasks they created was.

4. One needs to clarify and guide how to implement a topic from complex
analysis when complex numbers are not available for pupils or shall not be
introduced.

5. A possible improvement for XMaSlIl could be to restructure the day into
different sessions or workshops: 1) Introduction to complex numbers and
geometry of the complex plane either by the lecturers or some student groups
and then 2) working groups dealing with different phenomena from complex
analysis.
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On students’ understanding of Riemann sums of integrals of functions
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APQOS (Action-Process-Object-Schema) Theory is used to pose and test a conjecture
of mental constructions that may be used to understand the relation between integrals
of two variable functions over rectangles and corresponding Riemann sums.
Interviews with ten students who had just finished a multivariable calculus course
showed that the conjectured mental constructions are necessary.

Keywords: Functions of two variables, APQOS, integral calculus

Multivariable functions and multivariable Calculus are important in engineering and
the natural sciences as a tool for modelling. Their learning has received more
attention lately from the Mathematics Education community. Starting with the
analysis of students’ understanding about two-variable functions (for example:
Trigueros and Martinez-Planell, 2010; Martinez-Planell and Trigueros, 2012)
researchers have documented students’ difficulties and have shown that the transition
from one-variable Calculus to multivariable Calculus is far from being smooth.
There are few studies in the literature that deal with students’ difficulties and
understanding of the integral multivariable Calculus (Jones and Dorko, 2015;
Martinez-Planell and Trigueros, 2017). In one of these few studies, McGee and
Martinez-Planell (2014) showed that a course based on lectures did not promote
students’ understanding, while activities introducing the use of semiotic chains and
the development of synergy among representations helped students understand this
concept. The research questions are:

What constructions relating double integrals and Riemann sums are evidenced by
students who finished a Multivariable Calculus course based on lectures?

What constructions may be needed to relate double integrals and Riemann sums?

THEORETICAL FRAMEWORK

APQOS theory (Arnon et al. 2014) is used in this study to analyse possible mental
constructions by students who have already taken a course on multivariable calculus.
We only summarize the main structures of this theory. An Action in APOS Theory is
a transformation of a previously constructed mathematical object that the individual
perceives as external in the sense that students need some guidance and are not able
to justify what they do. When an Action is repeated, and the individual reflects on
what he or she does, it may be interiorized into a Process. A Process is perceived as
internal in the sense that it has meaningful connections to other mathematical
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knowledge of the individual. A Process allows the individual to imagine doing the
Actions without actually doing them, to omit steps, anticipate results, and to justify
the Process. Different Processes may be coordinated to form new Processes. When
the individual needs to apply Actions on a Process, it can be encapsulated into an
Object. When an individual shows a Process or Object conception of a mathematical
notion we say that the individual “understands” the notion. A Schema is a coherent
collection of Actions, Processes, Objects, and other Schemas, that the individual uses
to work with problems related to some mathematical notions. Schemas are not used
in this paper.

To analyse students’ work using APOS Theory, a conjecture of those constructions
that may be used to understand a specific mathematical notion is designed. This
model, called a genetic decomposition (GD), does not pretend to be unique and needs
to be tested with research data. The GD may be revised and expanded in successive
cycles of research, teaching material development, and implementation. This research
cycle makes it possible to use APOS theory to be better suited to future research
needs to study the multivariable integral calculus.

GENETIC DECOMPOSITION

We only present a portion of the GD of integrals of functions of two variables over
rectangles. Its development is based on mathematics, on the researchers’ teaching
experience, and data from the research literature: mainly, ideas about representation
registers (Duval, 2006) described in the study by McGee and Martinez-Planell (2014)
and the ideas of “orienting pre-layer” and “product layer” described by Sealy (2014),
which stress the need of attending to the individual meaning of the product f(x)Ax

and its components in the construction of integrals of one-variable functions.

The GD starts with pre-requisite constructions which include: a Process conception of
two-variable functions and volume of prisms as Object.

Actions are performed on a given two-variable function in any representation with
domain restricted to a rectangle, to produce the geometric representation of the
restricted domain as a subset of 3D space. Actions are performed on the same
function to obtain values of the function on the given domain and to represent them in
the space as points and/or curves in the graph of the function. These Actions are
interiorized into a treatment or conversion Process to represent the graph of the
function over the given rectangle together with the rectangle so that the student can
imagine the relation between function and rectangular domain as a graph in space.

Actions of evaluating the given function of two variables at a specific point of a given
sub-rectangle of its domain, multiplying it by the length and width of the rectangle to
form a product of the form f (a,b)AxAy are done. These Actions are interiorized into a
Process which can be coordinated with conversion Processes between different
representations of function, rectangle, and given point, to imagine the product as the
volume of a rectangular prism in space.
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Given a continuous function in different representations defined on a rectangle, with
the function simple enough so that its maximum and minimum values on the
rectangle may be recognized without doing any explicit computation, the Action of
obtaining an overestimate and an underestimate of the product f(a,b)AxAy is taken.
These Actions may be interiorized into a Process that enables to imagine the
existence of points (a,b) where underestimate and/or overestimate of the product
f(a,b)AxAy are attained. This Process is coordinated with a treatment or conversion
Process to draw a rectangular prism corresponding to over and/or underestimate in
space. Actions are performed to change the chosen point to construct a prism that
better approximates a given exact value of the integral. These Actions are interiorized
into a Process that enables the recognition that for such continuous function, there is a
point somewhere on the rectangle that will produce the exact value of the volume
between the graph of the function and its rectangular domain.

Given two small specific positive integer numbers, n and m, the Action of
subdividing given intervals [a,b] and [c,d] into subintervals of equal length both
numerically and geometrically is done to obtain a subdivision of the rectangle
[a,b]x[c,d]. These Actions are interiorized into the corresponding Process. Given a
continuous function f defined on the rectangle, the Action of choosing a prescribed
point (x,y;) on each sub-rectangle of the given partition and producing the products

f(x.y;)Axay, and the corresponding sum, interpreting this sum geometrically,

numerically, symbolically as an extended sum, symbolically using sigma notation,
and verbally, may be interiorized into a Process that enables imagining forming such
sums in different representations for the collection of sub-rectangles in any partition
of any given rectangle.

METHOD

Ten students were chosen by their professor to be interviewed at the end of a
multivariable calculus course selecting four over-average, three average, and three
under-average. The course was completely based on lectures. The interviews lasted
46 minutes on average. Students answered a set of questions designed in terms of the
GD and also related to what was covered during the course, and produced a written
response while sharing their thoughts out-loud. The interviews were recorded,
transcribed, individually analysed, and results were negotiated by the two researchers.
Students’ responses were analysed according to the GD, while keeping notes on
unexpected responses and other difficult to classify observations. These were the
questions used:

l1a. The following is the complete graph of function z = f(x,y). Represent the domain
of fin the figure (Figure 1).

1b. Let g(x, y) = x* + y be a function with domain restricted to 0 <x<2 and 1 <y <2. Use
the coordinate system given in the following figure to represent the domain in three-
dimensional space [An empty drawing of the first quadrant was given].
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1c. The above functions f and g are the same [Figure 1 was given again here and in
the rest of the problems]. If Ax=2 and Ay=1, what is the numerical value of

f (0,1)AxAy ? What does it represent geometrically?

Figure 1: (repeated in each part of problem 1 except 1b)
1d. Let Ax=2 and Ay=1. How does f(0,1)Axay compare with ” f(x,y)dA? [No
D

numerical computations are needed in parts d, e, f, and g.]
1le. How does f(2,2)AxAy compare with j j f(x,y)dA?
D

1f. Is there any point (a,b) in the domain D of f such that f(a,b)Axay is equal to
j j f(x,y)dA?

D

1g. Let Ax=1 and Ay =1/2. Consider the Riemann sum f (0,1)AxAy + f (0,1.5)AxAy +
f (1,1)AxAy + f (1,1.5)AxAy of the integral _U f(x,y)dA. What does the Riemann sum
D

represent geometrically and how does its value compare to that of ” f(x,y)dA?
D

Note that problems 1a and 1b are essentially the same in different representations.
They both test the portion of the GD dealing with recognition of rectangle and
function. Problem 1c gives information on the portion of the GD dealing with
forming one term of a Riemann sum. Problems 1d, 1e, and 1f relate to the portions of
the GD dealing with underestimate, overestimate, and exact value. Problem 1g gives
information on the portion of the GD dealing with a partition and Riemann sum.

RESULTS
On function and domain of a function

Many students showed they had not constructed the concept of two-variable function.
They gave evidence of considering these functions in terms of a correspondence rule,
and showed difficulty interpreting functions given graphically. Moreover, these
students also showed not to have constructed the concept of domain of the function.
Most of them considered that the domain of a two-variable function should include
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information about the function, since it had to be represented in 3D space. Eight
students showed difficulties similar to those of Luis, as exemplified in the following
discussion with the interviewer (in Problem 1a):
Luis: I can tell you what the domain is but if I don’t have a function I don’t think
I can tell you the exact point where each of the points in the graph is...

Interviewer: So, is the graph part of the domain?

Luis: No, the domain is obtained from the graph. | can obtain the domain having
the function but to do so I have to define the function.

After some discussion:
Interviewer: So the domain, is it only x and y or may it also include z?
Luis: The domain may include the z.

This example shows how Luis needs a correspondence rule to determine the domain
of the function. It also evidences that he considers the function itself should be part of
the domain of the function. Other students showed this difficulty.

Students’ responses pointed to a need to pay attention to the different representations
of functions in 3D space and to have students do treatments and conversions between
representations. In Problem 1a, some of them quickly represented the rectangular
domain as part of the given figure in 3D space. However, when the function was
given symbolically their notion of domain seemed to change. This shows that
recognizing the domain of a two-variable function is a construction that needs the
interiorization of Actions on functions given in different representations. These
difficulties as well as the counterfactual belief of teachers that students may easily
generalize concepts for one-variable functions to multivariable functions have been
reported before (Martinez-Planell and Trigueros, 2012).

Area and volume

Students also showed an unexpected confusion between area and volume when they
described graphs of functions in 3D-space. This difficulty surfaced in Problem 1c.
All students were able to calculate the value of that product; however, they were in
trouble when explaining its geometrical meaning. Brian, for example, explained:
Brian: ... this part, f(0,1) would be a point in this graph here. Change in x, change
iny, I am not a hundred percent sure... that would be an area then, of the
surface, or the entire function...

And later:
Interviewer: Can you tell me what does the double integral of f(x,y)dA represents?

Brian: dA is the area of the function, the area of this figure,
Interviewer: The area of the surface?
Brian: Yes... of the surface on the given domain....

Other students, as Luis, showed confusion:
Luis: The area of the figure, that is, the area of the function which in this case is that
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figure [referring to the graph in Figure 1].
Interviewer: Like the area of a surface?

Luis: Exactly

Interviewer: So if it had units would it be like square inches or square centimetres? What
units would the double integral have if x, y, and z had units?

Luis: Cubic

Interviewer: Cubic; then, would it be area?
Luis: It would be volume...

After some discussion:

Interviewer: ...Let’s suppose that this other paper that I am raising here is the graph of
the function [He raised a sheet of paper] What volume are we talking
about?

Luis: ...The volume is the one of this paper...since I have a function and I’'m
integrating in the values of the function then what I’'m going to get are z,
small z’s of what the function is, I’d be getting the volume of the figure.

Interviewer: ... So you pointed to the paper that is floating. But, does it have a volume?

Luis: ... Yes, it has a change in x, it has a change in y, and the z is the one from
the function, so | say that it has a volume.

Other five students showed the same confusions. The above excerpt exemplifies that
a student can describe the individual components of f (0,1)AxAy but might not be able
to do the Action of putting them together to interpret it as the volume of a rectangular
prism, even if they can calculate the result of the product by doing the Action of
substituting the given values in the expression, as conjectured in the GD. This
difficulty is possibly related to the fact that these students have not constructed space
as an Object, which does not allow them to imagine what their teachers mean when
they talk about a surface in space and the double integral as related to the volume
under a surface (Trigueros and Martinez-Planell, 2010).

As considered in the GD, these difficulties make it impossible for students to do the
necessary Actions on the function restricted to a rectangle to represent the domain
geometrically as a subset of space, and to interiorize the Process to imagine the
relation between a restricted region on the domain and the function. The lack of all
these constructions becomes an obstacle to understand other related concepts,
including double integrals, as will be shown below. Students who do not show these
constructions may not follow teachers’ explanations; they would be confused and
resort to memorization to respond to exam questions.

Only one student, Farid, gave evidence of the pre-requisite constructions described in
the GD. He was successful in explaining Riemann sums and double integrals.
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Riemann sums, underestimates, overestimates and double integrals

Most students had many difficulties working with problems dealing with Riemann
sums and their relation to double integrals. Even after the interviewer explained to
some of them that f(0,0)AxAywas a volume and drew it, their difficulties did not
enable them to make the whole construction as Brian showed in Problems 1d, le, and
1g:
Brian: So the Riemann sum would be the approximation of the area [sic] under this
figure [referring to the graph in Figure 1], obviously it wouldn’t be as
precise as the value of the integral. Let’s see... so geometrically 0,1, X, Y,
let’s draw a square here like this [he is now evaluating and drawing
rectangular prisms]... 0, 1.5, maybe another square closer this way, higher...
1,1 we are still at x 1 and even higher here... like this, change in x change in
y... change in y being 1/2, I don’t think we get from 1 to 2 with 1/2 [He
seems to believe that since Ay=1/2 the prisms will be restricted to the
region 1<y<1.5. He might think of Ay as “change in y” were the “change”
is taken from the initial y value in point (0,1).], so the integral would give
this area [sic] here, a figure more or less like this...

Interviewer: You said area...

Brian: [Interrupting] Volume, | mean volume, sorry... yes, volume of the integral.
This would give us something more stepwise... let’s see if I can draw it here
like this... 1,2,3,4, like this, a series of cubes like this, stepwise,
approximating, not all of this, but only this half here... [See Figure 2].

Interviewer: Do you mean the left hand part of the solid?

Brian: Yes, the left hand part of the solid would be what is approximated with this
Riemann sum.

Although Brian was able to construct the meaning of volume, his construction was
not right, the boxes he drew filled only the left-hand side of the rectangle. It seems
that Brian could do the Actions to construct the prisms but he did not interiorize those
Actions into the Process that would enable him to imagine all the constructions
needed to relate Riemann sums and double integrals.

An interesting result of this experience was that even though students showed many
difficulties during the interview, some of them, like Brian, showed evidence of doing
some of the expected constructions during the interview. Others reflected during the
interview and constructed meaning. This was the case of Victor who had considered
f(0,0)AxAy as an area. When discussing Riemann sums, and after being told that this
product represents a volume he explained:

Interviewer: So you drew a little box.

Victor: Exactly a little box as we know that delta x would be 2 and delta y 1; a
rectangle with width 2, eh, length 2 with 2 and height 1.
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Interviewer: Then how do you compare those volumes.

Victor: Ok, now | understand, this f(0,1) delta x delta y is only the volume up to
this point, | mean up to a certain height, and then, the double integral on
that same area that we put on xy is, let’s say, the same box but with a height
that varies with the function. Now this is it!

X

Figure 2: Brian’s drawing for Problem 1d, le, 1g (respectively)

Interviewer: But which is larger, what is smaller, are they equal?

Victor: No, no, they are completely different, the larger is that obtained from the
double integral since the height is higher.

Victor: f(2,2) delta x delta y is the box with dimensions over D...and then this is the
same equation as before, but f(2,2) is higher so the volume there is larger.

Victor could do the Actions needed to compare volumes of prisms obtained from
different values of the function. Another student, Farid, evidenced he could imagine
forming one term of a Riemann sum, as discussed before. He also showed to have
done the constructions necessary to imagine volumes of prisms and their role in
Riemann sums. When comparing the volume of the prism in Problem 1d with the
double integral:

Interviewer: And what does that represent? [Referring to the double integral.]
Farid: That represents the volume between the surface and the plane, the domain...
Interviewer: Then, how do those two numbers there compare?

After some doubts:

Farid: Represented this part [referring to the product], now, this product would be
smaller, than the double integral, because this here is a, | represented it as a
cube, given the value of f at that point, while this is the double integral of
everything, of all the function x,y over D, so this value seems bigger

Interviewer: Which one?
Farid: The value of the double integral over D of f(x,y)dA

He was able to compare the volume of the prisms with the double integral. When he
had to decide if there would be a prism with volume equal to the value of the double
integral, a problem that was impossible for all the other students, he explained:
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Farid: ... The thing that comes to my mind when thinking on an inequality is the
sandwich theorem...that there... must exist then a value for x and y that
could be named a and b that is equal to the double integral on dA.

When discussing Riemann sums with a specific partition, most students could not
work with the problem, even with help from the interviewer. As was shown by Brian
in the previous example, some students, including Victor, imagined drawing several
prisms or boxes that shared the base, and only had different heights. Those students
showed they could do the Action of changing the height of a given prism but not that
of partitioning the domain into small areas of the same size. Victor could describe the
sum of the prisms’ volume, at first he said that the Riemann sum was always an
approximation to the volume under the surface, although later he reconsidered:
Victor: No, the Riemann sum is an approximation and if you take more
subintervals, ah! If you take more subintervals, those were the squares, that
one uses, the Riemann sum is a closer approximation and that
approximation would be closer with more subintervals, and the double
integral is the exact value.

Only Victor and Farid seemed to have interiorized the Action of forming a partition
into a Process they coordinated with the Process of selecting heights for each
subrectangle into the Process of calculating the volume corresponding to the prisms
to approximate the volume under the surface.

DISCUSSION AND CONCLUSION

Results from this experience show that most of these students demonstrate a very
limited understanding of two-variable functions and of those concepts associated to
the construction of the double integral of a two-variable function and its geometrical
interpretation. Only two students showed some understanding, although one of them
relied mostly in memorized facts that he could use appropriately in most cases. This
student seems to have constructed meaning for some of those facts during the
interview. Students’ responses show the importance of the predicted constructions
included in the Genetic Decomposition. In this investigation we related observed
difficulties with specific mental constructions in the GD that students seemed to lack.
The importance of the pre-requisite constructions in learning this difficult topic was
underscored. Its lack became an insurmountable obstacle to understand even the most
basic ideas leading to the learning of the double integral.

A more encompassing understanding of function in different representation registers
proved to be indispensable. Results indicate that students who could only perform
Actions constructed a confusing network of concepts where the properties learnt
about one-variable function are not well differentiated from those of two-variable
functions. This inhibits their possibility to make those constructions involved in the
understanding of 3D space, functions, and their domains. Fluency in operating within
and across different representations plays an important role in the construction of
two-variable functions as an Object, instead of considering them as simple
correspondence rules containing one or more variables.
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These results emphasize once more the importance of spending more time on helping
students to construct the notion of two-variable function. But, even when two-
variable function has been constructed as a Process, the notions of volume under the
surface and the role of the Riemann sum in the construction of the double integral
constitute fundamental constructions in the learning of double integrals.

The genetic decomposition proved useful in determining and underscoring those
mental constructions that are needed to learn double integrals with meaning. It also
reveals the subtleties involved in learning the double integral. After classroom use of
specially designed activities, future studies may reformulate the same interview
problems and also extend them to explore other ideas of the integral calculus.
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We developed a digital tool aiming at introducing the concept of — local - continuity
together with its formal definition for Tunisian students at the end of secondary
school. Our approach is a socioconstructivist one, mixing conceptualisation in the
sense of Vergnaud together with Vygotski’s concepts of mediation and ZPD. In the
paper, we focus on the design of the tool and we give some flashes about students’
productions with the tool and teachers’ discourses in order to foster students’
understanding of the continuity.
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teaching, continuity, digital technologies

The definition of continuity of functions at a given point, together with the concept
of continuity, remains a major difficulty in the teaching and learning of analysis.
There is a dialectic between the definition and the concept itself which make
necessary the introduction of the two aspects together.

The definition of continuity brings FUG aspects in the sense of Robert (1982). This
means first that it permits to formalize (F) the concept of continuity. But it also
allows to unify (U) several different images (or situations) of continuity encountered
by students: in Tall and Vinner (1981), several emblematic situations of continuity
are established (see below) and the definition aims at unifying all these different
kinds of continuity. Moreover, the definition of continuity allows generalisations (G)
to all other numerical functions, not already encountered and not necessarily with
graphical representations, or more general functions inside other spaces of functions.
As Robert (1982) stresses for the definition of limit of sequences, notions which
bring FUG aspects must be introduced with a specific attention to mediations and
especially the role of the teacher.

Our ambition is then to design a technological tool which allows on one hand
students activities concerning the two aspects of continuity and, on the other hand,
allows the teacher to introduce the concept of continuity with its formal definition,
referring to the activities developed on the technological tool. As it was noticed in
the first INDRUM conference, papers about introduction of technologies in the
teaching of analysis remain very few.

We first come back to well-known concept images and concept definitions of
continuity. Then, we explain our theoretical frame about conceptualisation and
mathematical activities. This theoretical frame leads us to the design of the
technological tool which brings most of the aspects we consider important for the
conceptualisation of continuity. Due to the text constraints, the results of the paper
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are mostly in term of the design itself and the way the tool encompasses our
theoretical frame and our hypotheses about conceptualisation (with tasks, activities
and opportunities for mediations). Then, we can give some flashes about students’
activities with the software and also teachers’ discourses to introduce the definition
of continuity, based on students’ mathematical activities on the software.

CONCEPT IMAGES AND CONCEPT DEFINITIONS OF CONTINUITY

No one can speak about continuity without referring to Tall and Vinner’s paper about
concept images and concept definitions in mathematics, whose particular reference is
about limits and continuity (Tall and Vinner, 1981). Tall considers that the concept
definition is one part of the total concept image that exists in our mind. Additionally,
it is understood that learners enter their acquisition process of a newly introduced
concept with preexisting concept images.

Sierpinska (1992) used the notion of epistemological obstacles regarding some
properties of functions and especially the concept of limit. Epistemological obstacles
for continuity are very close to those observed for the concept of limit and they can
be directly relied to students’ concept images, as a specific origin of theses
conceptions (El Bouazzaoui, 1988). One of these obstacles can be associated to what
we call a primitive concept image: it is a geometrical and very intuitive conception of
continuity, related to the aspects of the curve. With this concept image, continuity
and derivability are often mixed and continuity means mainly that the curve is
smooth and have no angles. Historically, this primitive conception leads Euler to
introduce a definition of continuity based on algebraic representations of functions.
This leads to a second epistemological obstacle: a continuous function is given by
only one algebraic expression, which can be called the algebraic concept image of
continuity. This conception has led to a new obstacle with the beginning of Fourier’s
analysis. Then, a clear definition is necessary. This definition comes with Cauchy
and Weierstrass and it is close to our actual formal definition.

We also refer to Bkouche (1996) who identifies three points of view about continuity
of functions which are more or less connected to the epistemological obstacles we
have highlighted. The first one is a cinematic point of view. Bkouche says that the
variable pulls the function with this dynamic concept image. The other one is an
approximation point of view: the desired degree of approximation of the function
pulls the variable. This last point of view is more static and leads easily to the formal
definition of continuity. These two points of view are also introduced by Robert
(1982) when she studies the introduction of the formal definition of limit (for
sequences). A third point of view is also identified by Bkouche that is the algebraic
point of view, which is about algebraic rules, without any idea of the meaningful of
these rules.

At last, we refer to more recent papers and specifically the one of Hanke and Schafer
(2017) about continuity in the last CERME congress. Their review of central papers
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on concept images about students’ conceptions of continuity leads to a classification
of the eight possible mental images that are reported in the literature: | : Look of the
graph of the function : “A graph of a continuous function must be connected” -1l :
Limits and approximation : “The left hand side and right hand side limit at each
point must be equal” - III : Controlled wiggling : “If you wiggle a bit in x, the values
will only wiggle a bit, too” - IV . Connection to differentiability : “Each continuous
function is differentiable” - V : General properties of functions : “A continuous
function is given by one term and not defined piecewise”’- V| . Everyday language :
“The function continues at each point and does not stop” - VIl : Reference to a
formal definition : “I have to check whether the definition of continuity applies at
each point” -VIII : Miscellaneous

We can recognize some of the previous categories, even if some refinements are
brought. Mainly, concept images I, Il, IV and VI can be close to the primitive
concept image whereas VII refers to the formal definition and V seems to refer to the
algebraic approach of continuity.

CONCEPTUALISATION OF CONTINUITY

We base our research work on these possible concepts image and concepts definition
of continuity. However, we are more interested in conceptualisation, as the process
which describes the development of students’ mathematical knowledge.
Conceptualisation in our sense has been mainly introduced by Vergnaud (1990) and
it has been extended within an activity theoretical frame developed in the French
didactic of mathematics. These developments articulate two epistemological
approaches: that of mathematics didactics and that of developmental cognitive
psychology as it is discussed and developed in Vandebrouck (2018).

Broadly, conceptualisation means that the developmental process occurs within
students’ actions over a class of mathematical situations, characteristic of the concept
involved. This class of situations brings technical tasks — direct application of the
concept involved - as well as tasks with adaptations of this concept. A list of such
adaptations can be found in Horoks and Robert (2007): for instance mix between the
concept and other knowledge, conversions between several registers of
representations (Duval 1995), use of different points of view, etc. Tasks that require
these adaptations of knowledge or concepts are called complex tasks. These ones
encourage conceptualisation, because students become able to develop high level
activities allowing availability and flexibly around the relevant concept.

A level of conceptualisation refers to such a class of situations, in a more modest
sense and with explicit references to scholar curricula. In this paper, the level of
conceptualisation refers to the end of scientific secondary school in Tunisia or the
beginning of scientific university in France. It supposes enough activities which can
permit the teacher to introduce the formal definition of continuity together with the
sense of the continuity concept. The aim is not to obtain from students a high
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technicity about the definition itself — students are not supposed to establish or to
manipulate the negation of the definition for instance. However, this level of
conceptualisation supposes students to access the FUG aspects of the definition of
continuity.

Of course, we also build on instrumental approach and instrumentation as a sub
process of conceptualisation (Rabardel, 1995). Students’ cognitive construction of
knowledge (specific schemes) arise during the complex process of instrumental
genesis in which they transform the artifact into an instrument that they integrate
within their activities. Artigue (2002) says that it is necessary to identify the new
potentials offered by instrumented work, but she also highlights the importance of
identifying the constraints induced by the instrument and the instrumental distance
between instrumented activities and traditional activities (in paper and pencil
environment). Instrumentation theory also deals with the complexity of instrumental
genesis.

We also refer to Duval’s idea of visualisation as a contribution of the
conceptualisation process (even if Duval and Vergnaud have not clearly discussed
this point inside their frames). However, the technological tool brings new dynamic
representations, which are different from static classical figures in paper and pencil
environment. These new representations lead to enrich students’ activities — mostly
in term of recognition - bringing specific visualization processes. Duval argues that
visualization is linked to visual perception, and can be produced in any register of
representation. He introduces two types of visualization, namely the iconic and the
non-iconic, saying that in mathematical activities, visualization does not work with
iconic representations (Duval, 1999).

At last, we refer on Vygotsky (1986) who stresses the importance of mediations
within a student’s zone of proximal developmental (ZPD) for learning (scientific
concepts). Here, we also draw on the double approach of teaching practices as a part
of French activity theory coming from Robert and Rogalski (2005). The role of the
teacher’” mediations is specifically important in the conceptualisation process,
especially because of the FUG aspects of the definition of continuity (as we have
recalled above).

First of all, we refine the notion of mediation by adding a distinction between
procedural and constructive mediations in the context of the dual regulation of
activity. Procedural mediations are object oriented (oriented towards the resolution
of the tasks), while constructive mediations are more subject oriented. We also
distinguish individual (to pairs of students) and collective mediations (to the whole
class).

Secondly, we use the notion of proximities (Bridoux, Grenier-Boley, Hache and
Robert, 2016) which are discourses’ elements that can foster students’ understanding
— and then conceptualisation - according to their ZPD and their own activities in
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progress. In this sense, our approach is close to the one of Bartolini Bussi and
Mariotti (2008) with their Theory of Semiotic Mediations. However, we do not refer
explicitly at this moment to this theory which supposes a focus on signs and a more
complex methodology than ours. According to us, the proximities characterize the
attempts of alignment that the teacher operates between students’ activities (what has
been done in class) and the concept at stake. We therefore study the way the teacher
organizes the movements between the general knowledge and its contextualized
uses: we call ascending proximities those comments which explicit the transition
from a particular case to a general theorem/property; descending proximities are the
other way round; horizontal proximities consist in repeating in another way the same
idea or in illustrating it.

DESIGN OF THE TECHNOLOGICAL TOOL

The technological tool called “TIC-Analyse” is designed to grasp most of the aspects
which have been highlighted above. First of all, it is designed to foster students’
activities about continuity aspects in the two first points of view identified by
Bkouche: several functions are manipulated — continuous or not — and for each of
them, two windows are in correspondence. In one of the window, the cinematic-
dynamical point of view is highlighted (figure 1) whereas in the second window the
approximation-static point of view is highlighted (figure 2).

On considére une fonction £ [R. — IR donnée par sa courbe et son expression
(ci-contre) et on considére le réel TR 2

Consigne: 2501

On aimerait étudier le comportement de la fonction f au voisinage de x

Exploiter les options de l'animation et notamment celle de "pas a pas", du
choix de la "vitesse" et le tableau de valeurs ci-dessous pour:

i N . 195 -
Compléter le commentaire suivant: N ° ® Couleur:

!
L]
Commentaire: * ) -
105 1326 -
ILorsque x prend des valeurs de plus en plus proche de xy =2, 11 1,403
115 1,481
12 1.56 Epaissey)
125 1641
13 1722
135 1.806
14 189 . 2
Enregistrer |a réponse 145 1978 EF | Rt
15 2,062
155 2,151
16 224
165 233
17 2422

175 2516 " 2 Refresh Capture
= racer

1:5 g:;s vitesse: 5

19 2.802 '

alors ..

195 290 Tendance par valeurs inférieures Approche Formelle
<« Animer >
Refaire Tendance par valeurs supérisures Pas & pas - m

Figure 1: two windows for a function, the dynamic point of view about continuity

The correspondence between the two points of view is in coherence with Tall’s idea
of incorporation of the formal definition into the pre-existing students’ concept
images. It is also in coherence with the importance for students to deal with several
points of view for the conceptualisation of continuity (adaptations).
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. v ) ) . p=08 x=06ety= 64
Soit f IR —-> IR, une fonction donnée par sa courbe et son expression et soit x, =2 2

Paramétres:
Etant donné un intervalle J de centre f(x ) etderayonp >0, » |
] : L ’ (]
flxg)-B  fixg)  fxg)+B - L]
On cherche I'existence d'un intervalle I de centre X, et de rayon o. > 0 tel que: f(xa)
_ |
f(I)ct L
Explpoiter I'étude locale et notamment les curseurs o et p. et visualiser ['image de
I'intervalle I par f puis: [ LT
J [ =
1) Remplir le tableau suivant: -5 o 1 x L 5
p= 01 | s ®
2) Compléter le commentaire suivant: !
Pour tout béta positif. il existe alpha positif tel que ... 5
3

o=1
Enregistrer |2 réponse: ' Actualiser m

Résuitats:

F= [T+ +x/2)?
w3

Figure 2: two windows for a function, the static points of view about continuity

In second, the functions at stake in the software are extracted from the categories of
Tall and Vinner (1981). For instance, we have chosen a continuous function which is
defined by two different algebraic expressions, to avoid the algebraic concept image
of continuity and to avoid the amalgam between continuity and derivability. We also
have two kinds of discontinuity, smooth and with angle.

There is an emphasis not only on algebraic representations of functions in order to
avoid algebraic conceptions of functions. Three registers of representations of
functions (numerical, graphical and algebraic) are coordinated to promote students’
activities about conversions between registers (adaptations).

On considére une fonction f IR — IR donnée par sa courbe et son
(ci-contre) et on considére le réel T 2 \\ =
-
AN
Consigne: \\ i
On aimerait étudier le comportement de la fonction f au voisinage de x \\ -
om
Exploiter les options de I'animation et notamment celle de "pas 4 pas", du \\
choix de la "itesse" et le tableau de valeurs ci-dessous pour: N 1,95
Compléter le commentaire suivant: - Codleur
N -
2.4 4
Commentaire: * & 245\ Fieone -
108 1,55 [ |
Lorsque X prend des valeurs de plus en plus proche de x, =2, 11 16 =
alors f(x) se rapproche de -2.5 et de -2. ca dépend par valeur 115 165
inferieur ou superieur ] is 1 35 Epaisse
13 a8 i -
135 185 _
14 18 A
145 195 -x-1/2 si x <2
Enregistrer la réponse 15 2 F(x)= x4 six =2
1,55 205
16 21
1,65 215
17 22
175 225 Refresh Capture
1 23 x0= 2 Tracer *
185 23 vitesse: 5
19 24 '
s 28 Tendance par valeurs inféreures
<< | | Animer || >
Refaire Tendance par valeurs supérieurss Pasi pas B 3

Figure 3: example of commentary given by a pair of students in the dynamic window
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The design of the software is coherent with the instrumental approach mostly in the
sense that the instrumental distance between the technological environment, the
given tasks, and the traditional paper and pencil environment is reduced. However
the software produces dynamic new representations — a moving point on the curve
associated to a numerical table of values within the dynamic window; two static
intervals, one being included or not in the other, for the static window — occurring
non iconic visualisations which intervene in the conceptualisation process.

. x=84ety=563
Soit f IR --> IR, une fonction donnée par sa courbe et son expression et soit x, =2 .B_ 03

N Paramétres
AN
Etant donné un intervalle J de centre f(x ) et derayonp >0, AN |
1 I N o
1 1 [ . |
fixg) - B fixg) fixg) + P » N |
On cherche l'existence dun intervalle I de centre x, et de rayon c. > 0 tel que: \\ =
f(Iyct AN
Ezxplpoiter I'étude locale et notamment les curseurs o et B, et visualiser ['image de \
lintervalle I par f puis: \\ -
T =
1) Remplir le tablean sufvant: 5 o L 5
N +
p=| 08 || 07 ][ o5 || [ oz [ o2 |j[ o1 e L, \\ "
| - wat,
2) Compléter le commentaire sufvant: !
T n " 2
il existe béta positif, pour tout alpha positif tel que f{i) non & 5
completement dans j 3
f n'est pas continu b
=001 Copier
Enregist
Ainsi: pour 5 =0,7: il existe . =0,18: tel que: “ x-1/2 si x< 2 —
Pourtout x & Df, [x-2« oc = [f(x)--2,5< B F(x)= { vl six 22 e
o Pour p= 0,5 =
Aucun voisinage de 2 dont limage est incluse de locate (IS 2 —
dans le voisinage de -25:1-25-6; 25+B [ ELe oo} =[ 25 | Capture |

Figure 4: example of commentary given by a pair of students in the static window

The software promotes students’ actions and activities about given tasks: in the
dynamic window, they are supposed to command the dynamic point on the given
curve — corresponding to the given algebraic expression. They can observe the
numerical values of coordinates corresponding to several discrete positions of the
point and they must fill a commentary with free words about continuity aspects of
the function at the given point (figures 1, 3). In the static window, they must fill the
given array with values of a, the £ being given by the software (figures 2, 4). Then,
they have to fill a commentary which begins differently according to the situation
(continuity or not) and the a they have found (figures 4, 5).

As we have mentioned in our theoretical frame, students are not supposed with these
tasks and activities to get the formal definition by themselves. However, students are
supposed to have developed enough knowledge in their ZPD so that the teacher can
introduce the definition together with the sense and FUG aspects of continuity.

STUDENTS ACTIVITIES AND TEACHER’S PROXIMITIES

The students work by pair on the tool. The session is a one hour session but four
secondary schools with four teachers are involved. Students have some concept
images of continuity but nothing has been thought about the formal definition. The
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teacher is supposed to mediate students’ activities on the given tasks. Students are
not supposed to be in a total autonomy during the session according to our socio
constructivist approach.

i i ; p B=0,1 x=-3.]ety=55
Soit f IR --> IR, une fonction donnée par sa courbe et son expression et soit x, =2 ! 2
Paramétres:
Etant donné un intervalle J de centre fix ) et derayonp >0, |
3
] : L -
fi)-p  fix) M) +D -
On cherche I'existence d'un intervalle I de centre x,, et de rayon o > 0 tel que: » e =
f()cJ
Explpoiter I'étude locale et notamment les curseurs o et B, et visualiser limage de
I'mtervalle I par f puis: .
I i
1) Remplir le tableau suivant: .5 lo 1™ 3
p=[ 20 ] (o ] 1 adaries »
o= 038 ||[ 035 ||[ 020 ||[ 014 ||[ vos | S0
. . . 1
2) Compléter le commentaire suivant:
Pour tout béta positif, il existe alpha positif tel que (i) est inclu dans 5 :
l'interval j 3
F :
Enregistrer la réponse Actualiser m 2
Enregistrer
" 2
Fo= [1+(1+2) .
— Pourp =0,1 Repére
On a trouvé un voisinage V de XO de rayon o = 0,04
vérifiant: f(]2 -0,04 ;2 + 0,04[) = [3-01;3+0,1[ e
Ainsi: pour B =0,1: il existe o = 0,04: tel que Etude locale (TR | 2 \
Pour tout x = D, [x-2]< . = [f(x)- 3|< B _ P
f fxo <[ 3 | bl
" | [ qitter |

Figure 5: example of commentary given by a pair of students in the static window

We have collected video screen shots, videos of the session (for each schools) and
recording of students’ exchanges in some pairs. Students’ activities on each tasks are
identified, according to the tasks’ complexity (mostly kinds of adaptations), their
actions and interactions with computers and papers (written notes), the mediations
they receive (procedural or constructive mediations, individual or collective, from
the tool, the pairs or the teacher) and the discourses’ elements seen as “potential”
proximities proposed by the teacher.

It appears that the teacher mostly gives collective procedural mediations to introduce
the given tasks, to assure an average progression of the students and to take care of
the instrumental process. Some individuals mediations are only technical ones (“you
can click on this button”). Some collective mediations are most constructive such as
“now, we are going to see a formal approach. We are going to see again the four
activities (ie tasks) but with a new approach which we are going to call formal
approach...”. The constructive mediations are not tasks oriented but they aim at
helping students to organize their new knowledge and they contribute to the aimed
conceptualisation according to our theoretical approach.

As examples of students’ written notes (as traces of activities), we can draw on
figure 3 and 4. A pair of students explains the dynamic non-continuity with their
words “when x takes values more and more close to 2 then f(x) takes values close to -
2,5 and -2. It depends whether it’s lower or higher ” (figure 3) which is in coherence
with the primitive concept image of continuity. The same pair of students explains
the non-continuity in relation to what they can observe on the screen: “there exists 5
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positive, for all a positive — already proposed by the tool in case of non-continuity -
such that f(i) not completely in j... fis not continuous”. \We can note that the students
are using “completely” to verbalize that the intersection of the two intervals is not
empty. However, the inclusiveness of an interval into another one is not expected as
a formalized knowledge at this level of conceptualisation. Their commentary is
acceptable. Students are expressing what they have experimented several times : for
several values of g (6 = 0,3 in figure 4), even with a very small (« = 0,01 in figure
4), the image of the interval ]2- a, 2+ a[ is not included in ]-2,5- g, -2,5+ pI.
Concerning a case of continuity, the students are also able to write an acceptable
commentary (figure 5) “for all g positive, their exists a positive — already proposed
by the tool in case of continuity — such that f(i) is included in j.”

Students’ activities on the given tasks are supposed to help the teacher to develop
proximities with the formal definition. It is really observed that some students are
able to interact spontaneously with the teacher when he wants to write the formal
definition on the blackboard. This is interpreted as a sign that the teacher’s discourse
encounters these students’ ZPD. Then the observed proximities seem to be horizontal
ones: the teacher reformulates several times the students’ propositions in a way
which lead gradually to the awaited formal definition, for instance “so, we are going
to reformulate, for all £ positive, their exists a positive, such that if x belong to a
neighbour of « ... we can note it xo— a, Xo+ a....”

Of course, it is insufficient to ensure proof and effectiveness of our experimentation.
The conceptualisation of continuity is an ongoing long process with is only initiated
by our teaching process. However, we want to highlight here the important role of
the teacher and more generally the importance of mediations in the conceptualisation
process of such a complex concepts. We only have presented the beginning of our
experimentation. It is completed by new tasks on the tool which are designed to
come back on similar activities and to continue the conceptualisation process.
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This paper focuses on the problem of the ecology of mathematical modelling
practices at university level through the systematic variation of teaching institutions.
Our aim is to deal with the variety of constraints appearing when modelling is
implemented in university classrooms, and to study the way new teaching proposals
can overcome them. Within the framework of the anthropological theory of the
didactic, a teaching and learning proposal in terms of study and research paths in
tertiary education shows new possibilities to surmount some of these constraints. The
paper presents the design and successive adaptations of an SRP about an urban bike-
sharing system according to the specificities of different university institutions and
the reactions obtained by the students and lecturers.

Keywords: Modelling; anthropological theory of the didactic; research and study
path; ecology; institutional relativity.

INTRODUCTION

The starting point of this research is delving into the problem of studying the variety
of constraints appearing when mathematical modelling proposals are implemented in
university classrooms, impeding their regular development, and to study the way new
teaching proposals can overcome them. Several research projects have highlighted
the existence of strong constraints impinging on the large-scale dissemination of
mathematics as a modelling activity in current educational systems at all school
levels (Doerr & Lesh, 2011; Kaiser & Maaf, 2007). We use the term ecology to refer
to the institutional conditions allowing and the constraints hindering the way a given
activity is produced, transposed, taught and learned in a given educational setting.

In previous research developed in the framework of the anthropological theory of the
didactic (ATD), we propose the use of a general frame to detect and place the
institutional constraints hindering the possible large-scale dissemination of modelling
activities based on a hierarchy of levels of didactic co-determinacy (Chevallard,
2002). In Barquero, Bosch and Gascon (2013), we use this general frame to detect
constraints appearing at different levels, from the specific ones related to how
mathematical contents are proposed to be taught at school, to the more general ones
regarding the general organisation of school activities and the role assigned to
schools in our societies. This ecological analysis shows how institutional constraints
are anchored in deep-rooted practices and are difficult — for teachers and also for
researchers — to notice since they appeared as “the natural way of doing”. For
instance, Barquero et al. (2013) characterise and empirically contrast the
predominance of “applicationism” as the dominant way of interpreting, describing
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and conceptualizing mathematical modelling in natural sciences university degrees.
Under its influence, modelling is understood as a mere application of previously
constructed knowledge, as if the construction of knowledge were independent of its
use. At a more general level, in many schools the prevailing pedagogy is still strongly
influenced by the paradigm of “visiting works” (Chevallard, 2015), according to
which school knowledge organisations are presented as interesting monuments to
visit, instead of as useful tools to provide answers to problematic questions.

In this paper, we focus on going one-step to study the ecological relativity of
modelling practices in university institutions. As it is described in Castella (2004) and
Sierra (2006), each institution endures an institutional relation with knowledge, in
particular, with mathematical knowledge. Consequently, each institution establishes a
set of specific conditions and constraints that can favour or, on the contrary, prevent
certain teaching and learning processes and knowledge constructions to be
appropriately developed. It is in this aspect where we want to look more carefully.
Therefore, we focus on analysing the emergence, persistence and scope of the
conditions and constraints for development of modelling through a variation of
university institution. In our research, we work on the use of the study and research
paths (SRP) as epistemological and didactic model (Chevallard, 2015; Winslow et
al., 2013; Barquero et al., 2018) where mathematics are conceived as a modelling tool
for the study of problematic questions. We here present an SRP based on an urban
bike-sharing system inaugurated in Barcelona in 2007 that has been experimented in
three different university settings. The starting point of this SRP is the difficulty to
get a homogeneous distribution of bicycles in a city with many sloping streets. We
present the successive transformations of the SRP to three different university
settings, according to the specificities of each institution, and to the reactions from
students and lecturers. Some of the commonalities found show the stable constraints
hindering the development of the SRP, whereas the differences detected bring new
insights about the conditions to surmount them.

DESIGN OF AN SRP ABOUT A SHARING-BIKE SYSTEM

In the following we describe the initial design of the study and research path (SRP)
about the sharing-bike system whose starting point is the generating questions (Qo)
about how to improve the distribution of bikes in the ‘Bicing’ system to provide a
better service to users. When working with the a priori design of the SRP, there are
foreseen several derived questions from Q) that needs from a progressive modelling
process. In general terms, the modelling project was organised around the following
questions that structured the two phases the Bicing project:

O): How can we describe the daily flow of bikes between stations? What is the
natural behaviour of the system when it is left alone (without redeployment)?

O@): How can we predict the bikes’ redeployment needs? Which changes can be
proposed to improve the current policy of bikes redeployment in the city?
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Linked to these questions, we consider real data from Bicing about the distribution of
bikes among the different bikes’ stations. We, the researchers and the experts who
collaborated with us, agreed to organise these data in certain city areas according to
the similarities different stations shared on the pattern of daily bikes trips and routes
followed. Finally, we decided to present the data organised in six areas (as shown in
Table 1), which corresponds to the origin-destination matrix (OD matrix) containing
the potential number of daily bikes’ uses. Each number {od;} means the average of
the amount of bike traveling in a day from area j and arriving to area i.

ARRVALS| 21 2 23 24 25 26
‘ _DEFARTURES Z _ALTA N _BARRIS |EIXAMPLE | S MONTJUIC | C VELLA | V_OLIMPICA
26;::: 21| zZALTA 2009 297 2084 1088 589 646
22 | N_BARRIS 207 2356 424 29 149 701
23 | EIXAMPLE 1153 401 4332 1900 2263 179
z4 |s_moNTJUIC| 886 32 1649 2594 1071 153
6.vila |25| c vELLa 196 113 2072 895 3572 1264
Olimpica | 76 | v_oLIMPICA 101 462 1058 504 1004 2151

Table 1: Origin-Destination matrix with daily bikes’ trips

To face the first question Qya), and going beyond the descriptive analysis of the data
contained in the OD matrix, models based on recurrent sequences of order d > 1 can
be considered, which are equivalent to matrix recurrent sequences X (n)=f (X(n-1)))
where X (n) = (x; (n), x2(n), ..., x¢ (n)) is the vector with the bike distribution in each
of the six areas at time n. Next we summarize the a priori design in terms of
hypothesis (H), questions (Q) and answers (A4) delimited by the researchers about the
models that might be used in an implementation of the SRP.

One of the easier assumptions we can work with is considering that:

Hayi: There i1s no redeployment of bikes in the system and the bike flows between
stations is the same every day.

Oayi.1: Then, if we deploy different amounts of bikes in each station, what will be the
distribution of bikes after 1, 2, 3,..., n days?

The model that can be considered under these assumptions is:
X(n)=MX(n-1)> X(n)=M".X(0)forn>0 (1)

where M is the transition matrix (or transition probability matrix) obtained from the OD
matrix, where {m;;} is the percentage of transition between two areas. That is, the potential
number of daily travels with origin in j and arriving to i {(od;j)} divided by total amount of
departures from j (d(j)). When working with this first model, several questions can appear:

Oayi 2 Working with the transition matrix and with different X(0) at the beginning of the
day, which traits from the trajectory of X(n) can be underlined?
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Oayi 3: Does it exist any fixed point X f to which the sequence X(n) converges to? Do all
X(n) converge towards a fixed point X7 ? Is it possible to calculate X/ in advance?

O(ay1.4: Which relation there exist between X /and the n-power of the transition matrix?

And, it can easily appear questions about the limitations of the hypothesis assumed and
models built, such as:

Oayis - How can include other factors that are important for Bicing, such as: the total
amount of trips made by a bike, the potential demand of bikes, the available bikes?

Introducing questions about how to improve our hypothesis and the models to be more
realistic with the system we want to analyse can open many possibilities. One possible new
reformulation of the hypothesis we can work with is:

Hay: We assume that (1) each bike trip takes about # minutes, (2) the entire fleet of bikes
does not move every ¢ min, (3) the total number of bikes that moves in period ¢ depends
on: (a) the potential demand for bike trips, and (b) the amount of bikes available.

At this point, there appear more complex models where it is important to frame the time ¢,
for instance, ¢t = 30 minutes (which it is the average of a bike trip in Bicing). Then, we can
define B;(f) as the number of bikes in an area at time ¢ and
B(f) = (B\(?), By(), B3(t), Bu(f), Bs(), Be(t)) as the vector with the bikes distribution in each
area. Then, if we define the departures as D(¢) = (D1(¢), Dy(¢), Ds(t), D4(t), Ds(t), De(t)) and
the arrival as A(¢) = (A4:(2), Ax(¢), A3(f), A4(t), As(t), Ae(?)), B(¢) can be modelled by:

B(t +1)=B(f) - D() + A(t +1) 2)

where D(f) = min [demand_trips(30 min), B(¢)] and A(t+1) = M-D(¢), with M the transition
matrix in time periods z. When this second model is considered, several questions can guide
the study process:

Oay.1 - Using this model (2), and considering different initial distribution of bikes at the
beginning of the day B(0), which will be the bike distribution B(¢) at the end of the day?
And, if the system is left alone, after 2, 3, 4, ..., 30 days?

O(ay2.2 - Which traits can we underline about the trajectory of B(#) through the simulation
of model (2)? Are there also some fixed points to which the sequence B(¢) converge?

O(ay3 - Is there any relation between the fixed points X / we reach with the ones detected
with model (1)?

O(ay.4. Which relationship is there between the first and second models, defined in (1)
and by (2)? Which of the two models do integrate more realistic conditions about Bicing?

In the next section we retake this a priori design of the SRP in terms of Q, and the likely
hypothesis and derived questions Q(a), to analyse the particular implementation of the SRP
about Bicing project in the different university institutions. Besides underlying the
adaptations that were necessary to the SRP in each university institution, we focus on the
most important conditions (common or not) that favour the development of the SRP, and
consequently of the modelling practice. In most of the occasions, these conditions and
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constraints were phrases by the students and lecturers involved in the implementations or by
the survey and interview done at the end of each implementation.

ECOLOGICAL ANALYSIS OF THE SRP IN DIFFERENT UNIVERSITY
INSTITUTIONS

First SRP adaptation: The ‘Bicing project’ at the University of Copenhagen

The first implementation of the SRP about the bikes’ distribution in the Bicing system
took place in the University of Copenhagen (UC). Twenty-three students participated
in this implementation. They were taking the course called MathMod (Mathematical
Modelling), which was an optional course in the third year of the Mathematics
degree. The course run over seven weeks, plus two extra weeks to prepare their final
team project. The course had three weekly sessions of two hours each. In general
terms, the first session was a lecture, the second was a practical or exercise-based
session to practice the content introduce in the previous lecture and, the third one, to
work in teams in the computer room to simulate by Mapple some models introduced
along the course or to work on the team final project. The teaching course proposal
was based on the realization of four short projects (mini-projects), linked to some
practical activities. These mini-projects mostly consisted of being introduced to some
pre-existing models in the lectures sessions to then asked students to put them into
practice in the practical sessions. Some example of the project composing the course
are: “Mini-project 1: Using the Malthusian and logistic models to predict population
evolution” or “Mini-project 4: The Lotka-Volterra models™.

In the academic year 2009/10, the author of the paper participated in this course as
researcher and the lecturer offered the opportunity of implementing the SRP about
Bicing. 1t was integrated as the fifth (and last) project of the course. The SRP
implementation ran over two weeks, with six sessions of two hours. At the end of
each week, students working in teams had to deliver a report with their temporary
results of the Bicing project. It was necessary to break with the above-mentioned
organisation of the course sessions and to set up time for the presentations by the
lecturer-researcher and for students’ presentation. There, students could compare
their proposals and to collectively agree how to follow. During the first week, once
the generating question Qy was presented by the lecturer-researcher, students agreed
to firstly focused on Qys) from where students developed most of the path described
in the previous section about model (1). In the second week, we (students and
instructors) worked on how to reformulate the Hy, and Q(ay, as most of the groups
noticed that in model 1 there were considered some unrealistic assumptions. Due to
time restrictions, we could not go further the second model. Finally, each team had to
deliver a report one week later the ending of the project with some suggestions for
Bicing about how to improve their bike replacing system, Qym). Figure 1 summarizes
the path followed in this first implementation.
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Figure 1: Summary of the path follow in the first implementation of the SRP at UC

We counted on different conditions that favour that the SRP progress fruitfully. First,
as it was the fifth project of the course, and the course was explicitly focus on
modelling, students and lecturers shared a common discourse to refer to modelling.
This was an important condition for modelling to be noticed (Barquero et al. 2013).
Secondly, the second mini-project was about Leslie matrices and transition matrices.
It thus facilitated that students autonomously posed many new questions, such as
O3 and Qay 4 and, thanks to the previous work developed with Maple, students
easily worked on calculating and simulating sequences and studying their
convergence. On the contrary, there were also some constraints that were manifested
by students mostly at the beginning of the SRP implementation. When we started
with the Bicing project, students were astonished by the new responsibilities that they
were asked, such as: formulating hypothesis, looking for and building models, testing
models’ appropriateness, formulating new questions, writing a report without any
predetermined structure, etc. Although their initial confusion, consequence of a big
rupture with the didactic contract established in the course, they started assuming
these new responsibilities. In the previous activities of the course, students were only
asked to “apply” the models they had been introduced to. So that, breaking some
rules of the didactic contract and make students responsible of several new tasks in
the modelling process were the main constraints we had to surmount. In fact, the
course organisation shown many traits (and constraints) derived from
“applicationism” (Barquero et al. 2013). For instance, it was assumed (throughout the
course organisation) that the mathematical models had to be introduced in advanced
and then applied to different situation, models that are rarely questioned and hardly
reformulated. When the Bicing project started, many students’ resistances appeared
that reflected the implicit assumptions about what modelling was suppose to be and
what we (as students and as lecturer) were asked to do. At the end of the course,
when students were asked through a survey and with the interviews with some of
them, they stated how interesting it was this last project for several reasons. Some of
main reasons mentioned by the students were: the openness of the questions, the
possibility to delimit the questions to face, the necessity of clearly understanding the
modelling process (the hypothesis assumed, the models’ construction and their
validation), the possibility to compare teams’ proposals and results with the rest of
the groups who could have been working differently, possibilities to discuss the
limitation of the models proposed and make them evolve.
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Ecological relativity of the second SRP adaptation implemented at UAB

The second implementation of the SRP was the following academic year at the
Universitat Autonoma de Barcelona (UAB). There was a course called
“Mathematical modelling workshop” which started in 2009/10 with second-year
students of Mathematics degree. It was the first edition of the course, which was
compulsory, with a total of 45 students participating. The didactic organisation of the
course was different from the previously described at the UC. The main aim of the
course was to develop a project in working teams (composed of 4-5 students) that
students selected from a list provided by the lecturers of the course. Running in
parallel, there were planned some short activities about modelling. The first year this
course was implemented, one of the modelling activities planned was the ‘Bicing
project’. It ran over 5 weeks, with two 2-hour sessions per week. We invested more
than the double of time than in its first implementation. Similarly, students were
asked that at the end of each week they had to deliver a report with a synthesis of
their advances in term of: (a) questions they had focused on, (b) hypothesis assumed
and mathematical models considered, (c¢) temporary answers and (d) new questions to
follow with). At the end of the Bicing project, each working team had to deliver a
final report as summary of the whole modelling work developed. In general terms,
the modelling process students and instructors followed in this occasion was not so
different concerning Qy), although now none of the students” working team tackled
the second phase of the project with Qy), or posed any questions about the properties
of the n-power of transition matrices, such as: Qa1 4 or Oay.3.

[ (0. 47)
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Figure 2: Summary of the path follow in the second adaptation of the SRP in UAB

One important novelty (and extension of the SRP) was that some students asked
about the possibility of working with partial matrices, for instance, by considering
different OD matrix to describe differently the bikes’ flow in the morning and in the
afternoon. Students had checked in the web how many bikes were available at
different time frames and they had concluded that there were different patterns of
bikes disposition depending in the daily time frame. The instructors asked to the
experts we worked with about the possibility of having these new data. The external

91 sciencesconf.org:indrum2018:174869



experts provided us two new matrices: one for the morning pattern, from 05:00h to
14:30h, and the other for the afternoon, from 14:30h to 00:00h. With this new data,
the modelling process concerning Qys) was extended towards the construction of a
third model, built upon the two previous ones (1) and (2), and taking into account
these two different OD matrices. Figure 2 summarizes the path followed in this
occasion and the extension it supposed for the first phase of the Bicing project.

If we focus on analysing the conditions and constraints we detected in the second
implementation of the SRP, we have to mention that in this occasion it was the
lecturer of the course who expressed more clearly some important constraints. He
expressed, in an interview at the end of the implementation, that we had invested too
much time with the project. He manifested that students needed to work more
independently and there was no need of planning common discussions among all the
working groups. His main request was to let students work independently and ask
them to present their finding at the end of the course. Reactions that were on an
opposite sense than the ones expressed by the Danish lecturer, who expressed that the
activity was too open and too less guided for students. We can say that these
reactions corresponded to their spontaneous teaching models that both lecturers
implicitly defended. In this second implementation, it shared traits of a modernist
teaching model (Gascon, 2001), by considering knowledge construction as an
individual process, also private. That is why the lecturer preferred not planning any
teaching device where to share and collectively talk about the modelling work
developed, and where to question, debate and agree about the questions, tools and
strategies to follow along the modelling process. As the course organisation at the
UAB showed, each team was supposed to work most of the time independently in
their project, and it was not until the end of the course when they explained their
results. We could observe several inconveniences, linked to important constraints,
which were more evident in the following courses when the lecturers planned short
modelling activities as complement to the working group project of the course. First,
students showed a lack of terminology and of a common discourse (shared with
lecturers) to talk and write about the modelling activity developed. Second, the main
outcome from the students modelling work was their final presentation of the project
at the end of the course. It was delivered as a report that mostly contained the final
models and models simulation, as if all the intermediate modelling work may remain
in the private space of each group. Consequently, most of final reports showed a poor
progression of the models considered and of the tools to contrast and validate them.

CONCLUSIONS AND DISCUSSION

It has to be highlighted that the two adaptations of the SRP presented in this paper
were done under advantageous conditions. First, it was experienced with students of
the Mathematics degree who were taking a course on mathematical modelling and
with lecturers who are experts on modelling. Second, in both cases, the schedule and
programme of the course were flexible and we had longer sessions (2-hour sessions
two or three times per week) than the prevailing university settings use to offer.
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Nevertheless, one could think that we may detect similar conditions and constraints in
these two university setting, but it is important to see how different institutions
established different relations with the knowledge at the stake, in this case, with the
teaching of mathematics modelling. Then, for example, some conditions that appear
in the first implementation can become strong constraint for the second one. For
instance, it was the case of the necessity of sharing a common discourse to talk about
and analyse modelling practices, which was an important condition underlined in the
first implementation, becoming a constraints in the second one.

But, if we move away from these “optimal” university conditions, do we find similar
constraints? Which of them are sensitive to be surmounted? How to overcome some
of the most important constraints? To face these questions, and follow enquiring into
the institutional relativity of the conditions favouring and the constraints hindering
modelling practices, we proceeded with the third adaptation of the SRP. It was
redesigned and later implemented with first-year university students of business and
administration degree (4-year programme) in IQS School of Management of
Universitat Ramon Llull in Barcelona (Spain) during the entire academic year
2013/14. In this occasion, the Bicing project was extended (called now “Cycling
project”) to become the central project developed along the three terms of the
mathematics first-year course. The SRP was broken into three branches. The one
described in this paper (in section 2) was implemented during the third term, only
focusing on the first model (1). During the entire course, not only the initial structure
of the SRP was extended, but also we pay special attention to which teaching devices
and strategies could help to overcome some of the most common constraints for
modelling and to create appropriate conditions for modelling and for the SRP. We are
in the process of analysing them in depth with the aim of extending our knowledge
about the ecology of the SRP and its institutional relativity.
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C’ (X) = C(x+1)-C(x)? - Students’ connections between the derivative
and its economic interpretation in the context of marginal cost

Frank Feudel
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The derivative concept plays a major role in economics. Therefore, students of
economics should have a proper understanding of the concept and its application in
economics. One important competence for these students is to interpret the
derivative in economic contexts. In books of economics the derivative is commonly
interpreted as amount of change while increasing the production by one unit.
However, from a mathematical point of view, this interpretation does not directly
correspond to the derivative. In the study presented here, it was investigated to what
extent students can make an adequate connection between the derivative as a
mathematical concept and its economic interpretation mentioned above.

Keywords: derivative, students of economics, economic interpretation, concept
image, marginal cost.

INTRODUCTION

The derivative plays an important role in economics. It is used to solve optimization
problems, to describe and characterize economic functions, and in marginal analysis,
in which the impact of small changes from the current state is examined (example:
the effect of small changes in the price of a product on the demand) in order to make
optimal decisions. Hence, students of economics should have an adequate
understanding of the derivative concept in order to be able to use it in economics in a
reflective manner. The study presented here focuses on students’ of economics
understanding of the derivative after their Calculus course with special emphasis on
its economic interpretation, which is essential for the ability to apply the concept in
economics. It is part of a larger research project about the understanding of the
derivative in mathematics for students of economics (my PhD-thesis, supervisor:
Rolf Biehler) at the Centre for Higher Mathematics Education in Germany (khdm).

LITERATURE REVIEW AND EMBEDDING OF THE RESEARCH

There is a lot of research about students’ understanding of the derivative. Concerning
the interpretation of the slope and the derivative in contexts, different difficulties are
documented. Typical mistakes are the slope/height confusion or the graph-as-picture
error (Beichner, 1994; Cetin, N., 2009; Carlson, M., Oehrtman, M. & Engelke, N.,
2010). An interesting study, which included a task to interpret the derivative in the
context of motion explicitly, was conducted by Bezuidenhout (1998). He asked
students to interpret S'(80)=1.15 if S(v)is the stopping distance of a vehicle in metres
in dependence of the velocity in km/h. Many students overgeneralized that the
derivative is the acceleration or the velocity itself. Many also had problems with the
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units. These students did not understand the derivative as rate of change of the given
function s properly.

While there is some research of students’ understanding of the derivative in physical
contexts (examples mentioned above), there is little research related to economic
contexts. Wilhelm & Confrey (2003) showed that students cannot automatically
transfer their knowledge about rate of change from a physical context to the context
of money. Hence, an economic interpretation of the derivative should be explicitly
taught in a Calculus course for students of economics. But even if an economic
interpretation of the derivative was covered in the students’ Calculus course,
problems occur. Mkhatshwa & Doerr (2015) showed that many students talked about
marginal cost (the derivative of a cost function) as amount of change when solving
economic problems, although it was underlined in the Calculus course that the
derivative is a rate. This indicates a rather superficial understanding of the
connection between the derivative as a mathematical concept and its economic
interpretation. A similar result is also found in Feudel (2017). Students’ answers in a

task to interpret P'(73):0.2%(GE = units of money, ME = units of quantity) of a

profit function P economically indicated that many students were not aware of the
numerical differences and the differences in the unit between the derivative and its
economic interpretation as additional profit. However, in these two studies the
students were not obliged to reveal their ideas about the connection between the
derivative as a mathematical concept and its economic interpretation explicitly. The
study presented here directly focuses on this connection.

THEORETICAL BACKGOUND OF THE STUDY
The economic interpretation of the derivative

To be able to use the derivative in economics, students need to be able to interpret its
values in economic contexts. However, understanding the interpretation of the
derivative commonly used in economics is a special challenge for students because it
does not directly correspond to any of the usual representations of the derivative as
limit of the difference quotient, slope of the tangent line, local rate of change, or as
instantaneous velocity. If C:[0;00) —[0;0) is a cost function (the variable x represents
the output of a product), the derivative C'(x), called marginal cost, is often
interpreted as additional cost of the next unit. However, if one takes this
interpretation literally it corresponds to the difference C(x+1)-C(x), which differs
from the derivative in its unit and in its numerical value. Since the students already
have previous knowledge about the derivative from school, e.g. as slope of a
function at one point, this might confuse them. Hence, the economic interpretation of
the derivative should be carefully connected to the students’ previous knowledge,
and justified for economic contexts in the students’ of economics Calculus course. A
typical justification is via the approximation formula C(x+h)-C(x)~C'(x)-h for
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h~0. Since h=1 can be considered as small in economics, the numerical values of
C'(x) andC(x+1)—C(x) are close to each other, and they can be identified (a more

detailed explanation can be found in Feudel (2016)).

The above mentioned perspective on marginal cost as being defined as derivative
and interpreted as additional cost of the next unit coincides with what is taught in
mathematics courses for students of economics (see e.g. (Sydseater and Hammond,
2013)) and with what is presented in some books of economics like Breyer (2015).
However, marginal cost can also be defined as additional cost of the next unit like in
Blum (2003). In this case the derivative is viewed as method of calculation of the
additional cost. Nevertheless, the problem to justify the identification of the two
different mathematical objects in economic contexts also remains in this approach.

The notion of concept image to describe students’ conceptual knowledge

The economic interpretation of the derivative and its connection to the pure
mathematical concept, as it was explained above, should be part of students’ of
economics conceptual knowledge of the derivative concept. To describe students’
conceptual knowledge I will refer to the notion of concept image by Tall & Vinner
(1981), which describes the total cognitive structure associated to a concept. This
includes all mental pictures, properties and associated processes. In the case of the
derivative students’ of economics concept image should contain its representations,
the differentiation rules, its connection to the concepts of monotonicity and
convexity, its use as a tool for optimization problems, and in particular an adequate
economic interpretation of the derivative. Since the common economic interpretation
of the derivative as amount of change while increasing the production by one unit is
a different mathematical object, it should be in particular carefully connected to the
rest of the students’ concept image, called synthesizing in literature (Dreyfus, 2002).

Knowledge concerning the derivative covered in the students’ Calculus course

In the Calculus course for students of economics in which the study took place
(University of Paderborn 2015, Germany), the sessions involving the derivative
began with the definition of the derivative as limit of the difference quotient.
Alongside with the symbolic definition, its representations as slope of the tangent
line (tangent line introduced as limit of secant lines) and as rate of change were
introduced. Afterwards, the unit of the derivative in the case of a cost function C
was discussed and justified via the symbolic definition of the derivative. In the
second lecture the economic interpretation of the derivative in the context of
marginal cost was introduced, which is essential for the study presented here. Two
possible economic interpretations of the derivative were presented in the lecture:

1. Interpretation as approximation of the additional cost of the next unit

This interpretation was justified via the approximation formula AC ~C'(x)-Ax, which
was derived from the definition of the derivative by using the approximation aspect
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of the limit. The terms ACand C'(x)-Ax were also visualized on the board with the
help of the tangent line.

2. Interpretation as additional cost of the next marginal unit

It was visualized that the mistake between AC and C'(x)-Ax becomes smaller if
Ax—0. This results in the asymptotic equation dC =C'(x)dx in which the lecturer
called the “fictive infinitely small quantities” dx and dC marginal units.

Some lectures later the concepts of monotonicity and convexity and their connection
to the derivative were discussed. The sessions finished with optimization problems.

All the topics covered in the lecture were also practised in small groups, in which the
students had to solve problems. Relevant for the study presented here is, that these
problems also included a task to interpret the value C'(5) of the cost function
C(x) =8x*+10x+700 in an economic context (in the way presented above).

METHODOLOGY OF THE STUDY

The study aimed to find out to what extent students of economics can make an
adequate connection between the derivative and its economic interpretation after
their Calculus course. Hence, eight economics students who successfully completed
their Calculus Course at the University of Paderborn were interviewed. Each
interview lasted about 30 minutes. The interviews were structured by four tasks:

1. Consider the cost function C that is given by the following equation:

C(x) :ﬁﬁ —%xz +21x+500, x > 0. The output x is given in units per quantity, the

cost C(x) is given in Euro. Determine the marginal cost for an output of x=100
units of quantity. Determine the unit (of the marginal cost), too.

2. Is the derivative C'(x) the same like the additional cost while increasing the
production from x units of quantity by one unit? Justify yours answer.

4C(x) y 244 C(x)
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Figure 1: Graphs of the cost function from task 1 and the cost function from the task,
in which the additional cost for the 11" unit had to be determined
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3. Justify with the picture (left graph of figure 1) why the numerical values of C'(x)
and C(x+1)-C(x) of the function C from task 1 are almost identical (for x=100).

4. Justify with the definition of the derivative why it can often be assumed in
economics that the values of C'(x) and C(x+1)—C(x)are almost identical.

The tasks were not always presented to the students in written explicitly, but were
sometimes given by the interviewer verbally during the interview process.

Task 1 was an introductory task with the aim to find out which of the two
mathematical objects (C'(x) or C(x+1)-C(x)) the students associated first with the
term “marginal cost”. Task 2 was central in the interview. It aimed to find out to that
extent students knew the differences between the derivative and the additional cost
of the next unit. If the students claimed both objects to be equal they got the
additional task to determine the additional cost of the 11" unit of a function, which
was only given graphically (see right graph of figure 1). Its aim was that the students
could no longer use their algorithm to determine the derivative and would use the
difference C(x+1)-C(x) instead. This should make the students’ concept image of
marginal cost incoherent and provoke a cognitive conflict to make them rethink their
ideas about the identity of the derivative and the additional cost of the next unit, and
to reorganize their concept image. With the interviewer’s help the students were then
led to the differences between the derivative and the additional cost of the next unit.

Task 3 had the aim to find out if the students could justify the identification of C'(x)
and C(x+1)—C(x) within the graphical representation with the help of the tangent line

(similar to the visualization presented in the lecture). Task 4 finally aimed to find out
to what extent the students have internalized the justification of the identification of
C'(x) with C(x+1)-C(x)in economics symbolically via the approximation formula

C(x+h)-C(x) ~C'(x)h for h~0 (as it was taught in their Calculus course). The results
of tasks 3 and 4 are not discussed in the paper in detail due to limited space.

The interviews were recorded, transcribed, and interpreted. First, individual cases
were interpreted line by line. Later the results between different individuals were

compared. To ensure reliability, the author’s interpretations were discussed with
colleagues of the Centre of Higher Mathematics Education in Germany (khdm).

SOME DETAILED RESULTS

Altogether eight students were interviewed. Due to limited space, two students
(Holger and Lisa) with different understandings of marginal cost were chosen, whose
interview parts referring to the tasks 1 and 2 are presented here in detail.

Holger’s understanding of marginal cost
Holger immediately solved the first task to determine the marginal cost at x =100 for

the function C(x) =$x3 —%xz +21x+500, x > 0 by calculating C'(200). This means his

99 sciencesconf.org:indrum2018:174442



first association of marginal cost was the derivative and not its economic
interpretation. His result was C'(100)=1. He did not mention a unit himself. After
having been asked for the unit by the interviewer explicitly he mentioned “Euro”, but
could not justify it. This shows that he had an incoherent concept image of marginal
cost: he associated the derivative for calculations but did not think of marginal cost
as a rate (otherwise the unit would have to be Euro per unit of quantity).

In the next part of the interview Holger was explicitly confronted with the question if
a definition of marginal cost as additional cost of the next unit would represent the
same mathematical object like the derivative. He started thinking about it and then
agreed. Therefore, the interviewer tried to provoke a cognitive conflict by giving
Holger the task to determine the additional cost while increasing the production from
10 units by one unit (see right graph of figure 1). Holger first wanted to use the
derivative again, but then started to think about the task again:

32 Holger: You would have to imagine the derivative. Then you would see the
additional cost. The derivative is nothing else than the slope at a point.
If we take any point.

33 Interviewer: Here is one explicitly given. We search for it at a particular point.

34  Holger: Here is one given, 10 units of quantity. So we have x=10 where the
total cost is 21. Now we need the cost if one more is produced. Well,
but we do not need this because if we are at 11 the cost is 22 point
something. So the additional cost has to be one point, yes 1.1.

Holger now used the difference C(x+1)-C(x) to solve the task. To the following
question of the interviewer if the value would have been the same by using C'(x),
Holger agreed. He then determined the slope at x=10 graphically and got the
solution “round about one” (correct value: 1, see right graph in figure 1). After the
interviewer emphasized that Holger just said “round about”, Holger claimed that he
cannot determine the value exactly by graphical means. Hence, the interviewer asked
Holger afterwards to determine the cost difference for the cost function C from task
1 given by an equation. He now got the result 1.051 and justified the “error”
compared to C'(100)=1 as follows:

77 Holger: One nearly gets [1], but only nearly. This is probably due to rounding.

One can see that Holger was really convinced that the derivative and the additional
cost of the next unit are exactly the same, even if the calculated values differed. The
interviewer now emphasized that there was no rounding involved. He then pointed to
the graph of the cost function (left graph in figurel) and underlined that one can see
the error in the graph, too. After the interviewer had asked Holger again to determine
the value of the derivative by graphical means, now for the cost function of task 1
(left graph in figure 1), Holger found for himself a resolution of the conflict:

94 Holger: Oh, the reason is, because it is not exact. The origin of the derivative was to
determine the slope at a point. To achieve this you take one point left and
one point right of it, which have the same distance, and the slope between.
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Afterwards you try to make this distance as small as possible, as you could
think of, but we cannot reach the one point, but in our mind we want to
reach it. And | assume this the very small rounding mistake, no, not
rounding mistake, but this small difference is due to the fact that you do not
reach the point exactly.

Two misconceptions of the derivative occurred here. Holger did not imagine the

derivative as limit of slopes of secants through (x,, f(x,)) and (x,+h, f(x,+h))for
h—0 but as limit of secants through (x,—h, f(x,—h)) and (x,+h, f(x,+h))for h—>0.
But the important misconception that now prevented him from questioning the
identity of C'(x) and C(x+1)-C(x) was his opinion that the “true slope” at a point x,
was not reached by taking the limit. He imagined the derivative to be the slope of a
secant through (x,—h, f(x,—h)) and (x,+h, f(x,+h)) with a very small h>0 (he

repeated this several times later, even more explicitly than in the lines above).

To sum up, at the start of the interview, Holger identified the derivative C'(x) with
its economic interpretation as additional cost of the next unit. During the interview a
conflict occurred due to different numerical values of these two. But instead of
questioning the identity between the derivative and the additional cost of the next
unit he made his concept image coherent again by attributing this error to an error
between the “true slope at a point” and the derivative as result of a limiting process.

Lisa’s understanding of marginal cost

Similar to Holger, Lisa also immediately solved the task to determine the marginal
cost at the output x=100 by using the derivative. Unlike Holger she stated as unit
“Euro per unit of quantity”, a unit of a rate. So Lisa also associated the derivative
with the notion of marginal cost first. When confronted with the definition of
marginal cost as additional cost of the next unit she replied:

20 Lisa: Yes, | really thought about this last semester. In the economic subjects we
really learn it this way. [...] And I always had to say: If you increase x by one
unit, y increases by these many units, eh? This is really the case. But | have,
since | had mathematics last semester, always thought that you learn it
differently in mathematics. In mathematics you say, if you increase x by one
marginal unit, y increases by these many marginal units.

Unlike Holger, Lisa did not identify the derivative with the cost of the next unit. She
even felt a conflict between the knowledge about marginal cost she learned in her
maths course and the actual use of marginal cost in econometrics. Her remarks point
out that she was of the opinion that marginal cost is not the additional cost of the
next unit but of the next marginal unit. In which way she understood the term
“marginal unit” was not clear yet. Therefore, the interviewer asked about this term:

21 Interviewer: Now the question, what is a marginal unit?
22  Lisa: Well, a marg/ Shall | draw it?

The interviewer gave Lisa the graph of the function of task 1 (left graph in figure 1).
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32 Lisa: Well, one unit could be from 100 to 101 we said. So you increase x by
one unit from 100, eh? From the actual output. Then | would be here
[pointing on C(101)].
After the interviewer’s comment to determine the accurate value by calculation she
got C(101)-C(100)=1.051 (compared to C'(100)=1), and continued as follows:

48  Lisa: And a marginal unit | imagine very, very small. Here | would go a
right very, very little bit to the right and then a very little, little bit
upwards.

We see here that Lisa understood a marginal unit as a very small, but finite unit. This
understanding is also found in books of economics (and differs from the way a
marginal unit was taught in the maths course as a “fictive infinitely small quantity”).
After Lisa’s explanation of the “marginal unit”, the interviewer tried to induce a
cognitive conflict by asking Lisa if the additional cost of such a small unit should not
be close to zero. She then explained the following:

52 Lisa: This has to do with the slope you have. For the derivative you

calculate the slope of the tangent line. The slope of the tangent line is
what you calculate, isn’t it?

53 Interviewer: Right, the slope of the tangent line, yes.

54  Lisa: Yes, and this is also what | get if you increase x by a marginal unit,
starting at 100. Ah, what do | get? No, if you increase x by one
marginal unit, the marginal cost still increase by one. I think the slope
still remains one, right?

This shows that Lisa understood the additional cost of a marginal unit as C'(200+ dx)

with dx being a very small, but finite unit. This is in her opinion numerically the
same like C'(100) because the slope stays the same at 100+dx . The interviewer again

asked if additional cost and slope are the same whereat Lisa agreed.

To sum up, Lisa knew that the derivative is not the additional cost of the next unit.
She remembered the interpretation of the derivative to be the additional cost of a
marginal unit from her Calculus course. She imagined a marginal unit dx to be a
very small, but finite unit (and not in the way it was taught in the course as a “fictive
infinitely small quantity” in the asymptotic equation dC =C'(x)dx) and identified the
additional cost of a marginal unit in her mind with C'(100+dx), which is in her
opinion the same like C'(100). She did not recognize the different nature of the
derivative being a rate of change and the additional cost being an amount of change.

SUMMARY AND DISCUSSION

Just like in the cases of Holger and Lisa presented in detail here, the study showed
that the students had difficulties to make an adequate connection between the
derivative as a mathematical concept and its economic interpretation as additional
cost. The author considered a connection as adequate if the students were aware of
the differences between C'(x) and the additional cost of the next unit, and were able
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to justify their identification in economics (it did not matter if they associated
marginal cost with the derivative or the additional cost of the next unit first).

At the beginning of the interview no student could make an adequate connection
between the derivative and the additional cost of the next unit. The majority just
declared these objects to be exactly the same (like Holger).

During the interview, all students recognized the question concerning the identity of
the derivative and the additional cost of the next unit as very relevant and became
aware of differences between these two with the interviewer’s help. However, in the
process of leading them to these differences on the graphical level via the tangent
line, several problems occurred (not discussed here in detail due to limited space):

1. Misconceptions concerning the derivative concept (like Holger’s misconception
about the derivative being not the “true slope” at the point)

2. Incomplete concept images (example: knowledge of the geometric representation
of the derivative as slope at a point but no association of the tangent line)

3. Problems in determining the slope of a linear function

Only one student could make a connection on the symbolic level via the formula
C(x+h)—C(x)=C'(x)-h for h~0 like presented in the Calculus course.

Furthermore, most participants of the study had not thought about the differences and
the connection between the derivative and its economic interpretation as additional
cost before the interview, although these were presented in their Calculus course.

A solution to these problems in a traditional Calculus course for students of
economics, in which the concept of derivative is taught first, an economic
interpretation afterwards, could be to confront the students with the two different
notions of marginal cost in the tutorials of the course directly, and to provoke a
cognitive conflict, just like in the interview. Afterwards, one could let them try to
connect the derivative and the additional cost of the next unit by themselves or in
small groups, and help them individually if misconceptions or incomplete concept
images of the derivative occur. Another solution could be to start with the concept of
marginal cost as additional cost first, which can be approximated by the derivative as
linear approximation. However, an understanding of the mathematical concept of the
derivative as slope of the tangent line is also necessary in this approach.

Concerning future research, one has to emphasize that the study presented here relied
on one perspective on the connection between the derivative as a mathematical
concept and its use in economics: additional cost as interpretation of the derivative.
This perspective is important because students of economics are often confronted
with it their maths course and in courses about economic theory (it can be found in
respective books of economics). But as explained in the theoretic part of the paper: it
is not the only one. Other perspectives may further enrich the knowledge about
students’ of economics understanding of the derivative and its use in economics.
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Weekly homework quizzes as formative assessment for Engineering
students are a fair and effective strategy to increase learning?
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A strategy to apply online weekly homework quizzes as formative assessment for
Engineering students was designed and tested in order to study if it increases
student’s learning. The strategy was to make optional weekly online quizzes with
questions not randomly generated that students may retry over and over again until
to reach the correct answer, they contribute to 10% of grade but only if students get
45% or more in usual pencil and paper assessment.

The quizzes were applied to two different mathematics courses (Single and
Multivariable Calculus) of two different Engineering degrees, each one to around
100 students and during a semester. Student’s adherence was very high, nearly all
students refer quizzes as fair and useful to learning. Students’ grades were compared
with several other years.

Keywords: The role of digital and other resources in university mathematics
education, Assessment practices in university mathematics education, Teaching and
learning of analysis and calculus.

INTRODUCTION

Frequent online quizzes have been suggested as a strategy to enhance learning by
several institutions and researchers. The National Centre for Public Policy and Higher
Education in the U.S.A (Twigg, 2005) consider computer based continuous
assessment and feedback to be a key strategy for quality improvement in learning.
According to Gibbs (2000), student assessment is an effective way to increase
understanding and online quizzes force students to spend more time working
productively outside of class. Tuckman (1998) refers this as being especially valuable
to procrastinators. One method that can be used to address the crisis in college
mathematics, according to Thiel, Peterman, and Brown (2008), is to ‘provide regular
assessment of progress’ and they state that ‘online homework and quizzes with online
grading provide students with immediate feedback, the opportunity to correct their
homework mistakes, and ongoing assessment of their success in the course’. Booth
(2012) considers that homework should be given out at regular times, over regular
intervals, on a weekly basis; proposing that learning is work and students should
develop regular work habits in order to succeed. Feedback is crucial for student
success but giving adequate feedback with large class sizes is difficult and therefore
automated systems are a useful solution to the large class size problem.

Quizzes are part of several successful approaches with different kinds of students,
both in top universities and in other higher education institutions. Examples include:
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TEAL (Dori & Belcher, 2004) at Massachusetts Institute of Technology (MIT);
SCALE-UP (Beichner, et al, 2007) at North Carolina State University; Peer Teaching
(Lasry, Mazur, & Watkins, 2008) at Harvard University.

Particularly, in higher education mathematics teaching, several approaches have been
raised but literature is not yet in agreement about the effectiveness of quizzes to
enhance learning (Siew, 2003; Varsavsky, 2004; Myers & Myers, 2007; Blanco,
Estela, Ginovart & Saa, 2009; Lim, Thiel & Searles, 2012; Broughton, Robinson &
Hernandez-Martinez, 2013; Shorter & Young, 2011).

CONTEXT

This research took place in two mathematics’ courses to Engineering students of
Instituto Superior de Engenharia de Lisboa, Portugal, each during a semester. In those
semesters, weekly online quizzes on Moodle (the learning management system of the
institute) were made available for a week each. The AM2 course in 2013/14 was
about Multivariable Calculus, the MAE course in 2015/16 was about Single Variable
Calculus. Around 100 students and 3 teachers were involved in each course.

The quizzes were called ‘Mini-tests’ to reinforce their relevance. The ‘regular’
assessment involved two face-to-face tests or the First Exam or the Second Exam.
For AM2, the quizzes scored up to two values proportional to the best 12 (out of 14)
grades in the quizzes and it was added if the student scored more than 9.0 values (out
of 20) in ‘regular’ assessment. For MAE, it was slightly different: the quizzes valued
10% of the grade if the student scored more than 9.0 values (out of 20) in the
‘regular’ assessment and if this grade was better than the ‘regular’ grade. In both
cases the quizzes were optional.

The aim of the quizzes was not to assess students, it was to make them study more,
not to postpone, not to study first the other subjects that were naturally more pleasant
for them (since they belong to their study area); to make students more aware of their
level of understanding (often students only realise that they cannot solve the exercises
when they go to the first test, in the middle of the semester). Students are usually
optimistic about their capabilities (Wandel, 2015). It was written in Moodle and
teachers repeatedly reminded students that the aim of the quizzes was to make
students study more and be aware of their level of understanding; that students could
copy all quizzes but, probably would not get the 9.0 values required in ‘regular’
assessment and therefore, it not be worthwhile.

THE QUIZZES

The quizzes were produced through the ‘Moodle activity: test’. It allows the
introduction of images and mathematical symbols using LaTeX (see Fig. 1). The
possibility of creating questions with different instances for each student was
considered, but it would take much more time to create questions and students also
know how to solve a problem with a constant instead of a number, so it did not seem
worthwhile.
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The plot of the function £(x) is the red one. The plot of the function g(x) = /(1) dt is | i Which of the following sets refer to the figure:
a) {yer:z=2-1<x<1,0<y<3}

b) {xWeRr: y==2 -1<x<1,0<y<3)}

o) {@ner:z=2+ -1<x<1,0<y<3}

d) {(x,}')eﬁ.z: z=)2 -1<x<1,0<y<3}

Submeter a) ®) °) 9 e e){xyeRt:z=—% —1<x<1,0<y<3)}
Figure 1. Multiple-choice questions including a figure and mathematical text, MAE
and AM2 example. (Translated)

Whenever it was possible, we used numeric or short answers instead of multiple-
choice answers since in multiple-choice answers, with a few tries, students could get
the correct answer. The type of questions that we most used was ‘embedded
answers’, because this enables a teacher to embed more than one sub-question and
those sub-questions may be chosen from all the different question types: numeric,
short answers, multiple-choice, true or false, etc. The ‘embedded answer’ question
type allows the teacher to evaluate the student through their pathway and not only
their final result (see Fig. 3). The feedback does not show the correct answer.

Consider the function

0 se(x,y) = (0,0)
TEN=N £ w@n#0.0

§'§ 0,0) =1 (use two decimals in answer)

7 0,00=F ] (use two decimais in answer) The expression

2 2
x+3\“
Then, to study the diferentiability of f(x, y) at (0,0), by the definition, we must study the limit ( T + y + 1 > 4
of point =

li —hZk
a) limg, - (0,0) W)

n2i2

b im0 G777 represents| the innerpartofa 4 |X [ ellipse s)
2
©) limi k)-(00) Tr b7z ; . . .
e centered in (a, b) with a=x. b=[| , horizontal radii EX
d) limg k)—(0,0) [7,__3}_7—’:‘_%;:
And the value of that limit [do not exist_~ and vertical radii X

And it makes that the function differentiable at (0,0).

Figure 2. A question with multiple embedded questions along the path (including
numerical answers), an AM2 and MAE example. (Translated)

RESEARCH DESIGN, DATA AND RESULTS

This research design is a quasi-experience (not an experience since not all variables
could had been controlled) where two sets of quizzes were applied to two
mathematics courses. The research question of this study is: are the quizzes (applied
with this strategy) a fair and effective tool to increase students’ learning? The strategy
for application of the quizzes is that they are weekly, online, non-mandatory, count
towards grades if students achieve a certain level on traditional assessment, are not
randomly generated and students may resubmit without penalty. This research
question was split into four sub-questions:
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RQ1: Did the students adhere to the quizzes?

RQ2: What was students’ perception of the quizzes?
RQ3: Did students felt quizzes as unfair?

RQ4: Did the quizzes increase students’ grades?

The instruments utilized were: a students’ survey about the quizzes; data from the
answers to the quizzes; and course grades over several semesters. The quizzes were
applied to two mathematics courses: AM2 with 104 subscribed students and MAE
with 108.

The anonymous survey on Moodle was addressed to all students for each edition. The
sample of students who answered the survey was reasonable. From the 104 students
subscribed to AM2, all subscribed to Moodle, 65 answered the survey. From the 108
students subscribed to MAE, 94 in Moodle, 61 answered the survey. Moreover, by
splitting the students by their grade at the first test (the survey was applied before the
second test), the number of students answering the survey with a given grade
reasonably correlates to the number of students in general who achieved that grade.
Pearson correlation coefficients are p= 0.6 and p= 0.5 respectively.

Students of the institute do not have precedencies among courses and may be
subscribed to a large number of courses, so it is usual that students subscribe to many
courses where, in fact, they do not attempt to achieve success. We may verify this, for
example, by noticing that from the 108 students subscribed to MAE only 94 were
subscribed to Moodle, so the 14 remaining students did not access anything from the
course: syllabus, slides, quizzes etc. Since there is no simple and fair way of
identifying these students, in this research we always use the subscribed students to
make measures. However, it is relevant to have in mind that it includes those ‘ghost
students’.

RQ1: DID THE STUDENTS ADHERE TO THE QUIZZES?

AM2 had 104 subscribed students, 79 attempted regular assessments and 76 students
attempted at least one quiz. All but one of the approved students answered at least
one quiz. The final quiz grade was the average of the best 10 out of 14 grades in
quizzes, so it was natural that the last four quizzes had lower attendance (and for this
reason we modified this rule for MAE, where the best 12 grades were chosen).
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Chart 1. The number of students that answered AM2 quizzes split by grade.

MAE had 108 subscribed students, 103 completed regular assessment and 93 students
attempted at least one quiz. All approved students answered at least one quiz. The
final quiz grades were the average of the best 12 out of 14 grades in quizzes, so it is
natural that the last two quizzes had a lower attendance (this rule changed from
AM?2). It is important to note that, for example, in Q5 the number of students with a
total grade was lower than in the other quizzes and the number of attempts to solve
the quiz was higher than in the others (326). This shows that students were, in fact,
trying to reach the correct answers (this test was particularly large and complex).
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Chart 2. The number of students that answered MAE quizzes split by grade. The
number of attempts to answer the quiz, registered by Moodle, is in parenthesis.

A large portion of students got a very high grade, but this was natural since students
may retry without penalty and the questions were equal to all students, so it was
expected that students talk to each other and reach the correct answer.

The quizzes were not mandatory and improved the grade if the student got more than
9 out of 20 values in regular assessment, so it could be expected that many students
decided not to take it. However, on a regular basis, nearly half of the subscribed
students answered the quizzes.

An objective result was, despite of the optional policy, that students strongly adhered
to quizzes. The percentage of subscribed students that answered one quiz was
93/108=86% and 76/104=73%. All the quizzes had a high rate of attendance. Among
the students that undertook ‘regular’ assessment, almost all took a quiz and a large
percentage got high average grades on the quizzes.

RQ2: WHAT WAS STUDENTS’ PERCEPTION OF THE QUIZZES?

Table 1 shows that, according to the survey, none of the students thought that the
quizzes were of no interest and did not care about the quizzes, while a large
percentage believed that the quizzes reminded them to study, showed them the level
that they were reaching and encouraged them to learn new things; some of those
things they thought they understood but in fact they did not.
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Quizzes remind me to study the subject every week. 55

_100% _100%
_ 85% 8%
Quizzes show me there are things I thought I knew but
I didn’t 48 >3

Quizzes help me to have a better perception of the
level I'm reaching.

I learn new things answering to quizzes.

Quizzes have no interest. 0 0

I do not care for quizzes, I just copy the results. 0 0% 1 | 2%
I do not care for quizzes, I not even copy the results. 1 0

3 s, 35 ST

|98

Table 1. Students’ answers to ‘Select ALL the statements that you agree with’ in both
surveys.

AM2 (65) MAE (61)
3% 2% 0%

6% 2% 0% W Useful (60)

B Useful (57)
i Indifferent (4) i Indifferent (2)

& Unusefull (1) & Unusefull (0)

92% N.R. (0) 5% N.R.(2)

Chart 3. Percentage of students answers to ‘The quizzes were...’ in both surveys.

Summarising, more than 90% of students found quizzes useful (Chart 3); that they
study more due to the quizzes. Students agree that quizzes remind them to study,
show them that there were things that they thought that had understood but did not,
encouraged them to learn new things and gave them a better perception of level that
they were reaching.

RQ3: DID STUDENTS FELT QUIZZES AS UNFAIR?

In daily life as a teacher, teachers tell several times that one reason why they do not
use online quizzes is because students may be cheating and it may generate
unfairness. To avoid that problem, it was strongly emphasised to students that quizzes
were much more relevant as formative assessments than summative assessments;
students could resubmit the quiz without penalty to stimulate them to try to answer by
themselves without fear of being penalised; and a clause was included that the
quizzes only count towards grades if students get 9.0 values (out of 20) in regular
assessments, as in Varsavsky (2004). As result, the answers in the survey to the
question ‘Quizzes generate unfairness?’ show that very few students perceive quizzes
as unfair (see Chart 5).

110 sciencesconf.org:indrum2018:174631



AM2 (65)

0%

0,
‘“’ 18%

29%

B Alone (12)

W Alone, then
colleagues (33)

E Together (19)

Copy (0)

ENR. (1)

MAE (61)

0, 0,
0% 0% 15%

31%

—

H Alone (9)
H Alone, then

colleagues (33)
u Together (19)

Copy (0)

EN.R. (0)

51%

Chart 4. Percentage of students answers to ‘How do you answer to quizzes?’ in both
surveys.

AM2 (65) MAE (61)
90, 2% 6%
B No (63) B No(53)
HYes (1) W Yes (4)
= N.R. (1) = N.R. (4)

96%

Chart 5. Percentage of students answers to ‘Quizzes generate unfairness?’ in both
surveys.

When questioned in the survey, no student stated that they had copied the results (see
Chart 4), despite it being reinforced in that question that the survey was automatically
anonymous.

Therefore, with this approach, the level of unfairness of quizzes is not considered as
relevant.

RQ4: DID THE QUIZZES INCREASE STUDENTS’ GRADES?

Since the goal was that all students achieve a total score in all quizzes, is was
expected that quiz grades would not correlate to final grades. This did occur and it
was verified using the non-parametric Spearman Rho for AM2 (p=0.34, N =54, p =

0.01) and for MAE (p=0.28, N =61, p = 0.03), since data were not normal (Kolmogorov-
Smirnov, p <0.01).

According to Chart 6, around 70% of students that answered the survey, believe that
quizzes helped them achieve a higher grade.

AM2 (65)
5% 0%

MAE (61)
11% 3% 16%

N

22% H Better (0) H Better (2)

B The same (14) B The same (10)

H Worse (48) H Worse (43)

2\
R

70%

N.R.(3) N.R.(6)
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Chart 6. Percentage of students’ answers to ‘Without quizzes, I’ve scored...” in both
surveys.

The data of Tables 2 and 3, relate to six responsible teachers/approaches and ten
different teachers. The syllabus was essentially the same across the semesters but the
approaches were naturally different. In the intervention semesters, the responsible
teachers were also different. So, the quizzes were not the only different variable in
that semester, thus we cannot attribute grade differences directly to the quizzes. For
AM?2, the pass rate nearly doubled in that semester, the average grade also increased
significantly.

AM2 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16
S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2
Subscribed students 101 200 128 153 90 123 80 104 56 66 56 108
|Approv. students 27 38 31 41 20 23 12 54 10 19 16 33
IAverage appr. grade 11.7 11.8 12.3 11.7 13.9 12.4 11.5 11.7 11.5
Pass/Subscribed 27% 19% 24% 27% 22% 19% 15% 52% 18% 29% 29% 31%
F+G K+ K+
Professors A+, A+, A+, A+, A+B A+C D+E D+F D+l
+H IL I

Table 2. Grades of AM2 students across ten semesters, the letter representing the
coordinator teacher is underlined and the experimental semester is shaded.

The MAE course had, in some editions, five or six quizzes in class. It is curious to
note that in the year that there were no quizzes, the pass rate was much lower. And
the MAE pass grade and the average grade had the highest value in the experimental
semester. However, it may have been a coincidence, we do not have enough data to
reach any conclusions, it is just a positive indication.

MAE

2011/12-SI

2012/13-SI

2013/14-SI

2014/15-SI

2015/16-SI

Subscribed students

73

109

121

125

108

Pass students

17

30

58

56

61

Average pass grade 12.7 12.2 13.5 12.7 13.5
Pass/Subscribed 23% 28% 48% 45% 56%
Number of quizzes 0 6 in class 5 in class 5 in class 14 online
Professors A A A A+B B+A

Table 3. Grades of MAE students across five semesters, the letter representing the
coordinator teacher is underlined and the experimental semester is shaded

Summarising, as expected, quiz grades do not correlate to final grades; around 70%
of respondents to the survey state that due to the quizzes they achieved a better grade.
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The pass rate and the average grade increased significantly in the semesters that the
quizzes were applied, which is a positive indicator but cannot be directly attributed to
quizzes.

CONCLUSIONS

Two sets of 14 weekly quizzes on Moodle were available to all the engineering
students on two mathematics courses (Single and Multivariable Calculus). The online
quizzes were not mandatory, counted to grading if the student had more than 9 out of
20 values on traditional assessments, were not randomly generated and students could
resubmit without penalty. The research question is ‘Are the quizzes (applied with this
strategy) a fair and effective tool to increase students’ learning?’

In the answers to the survey, more than 90% of students found quizzes useful; more
than 60% stated that studied more due to the quizzes; students agreed that quizzes
reminded them to study; showed them that there were things that they thought they
understood but did not; made them learn new things and gave them a better
perception of the level that they were reaching.

The quizzes were not mandatory so students may have just ignored them. Although a
large proportion of students attempted quizzes and kept answering them until the last
ones.

Quiz questions were not randomly generated, so all students got the same questions
and naturally, students shared the solutions with each other. To avoid unfairness, it
was strongly emphasised that quizzes were important to students’ formative
assessment, to allow them to test themselves and get feedback on their level of
understanding. Moreover, quizzes only contributed to grades if the students got more
than 9 out of 20 values in ‘traditional’ assessments. Moreover, if a student copied
many quiz results, probably would not achieve the minimum grade and it would not
be worthwhile. The result was that, in the answers to the surveys, very few students
stated it as being unfair. Over 70% of respondents to the surveys stated that due to the
quizzes they achieved a better grade. The pass rate and the average grade increased
significantly in the semesters that the quizzes were applied, which is a positive
indicator, but it cannot be directly attributed to the quizzes.

This research suggests that these quizzes, with this strategy, are a fair and useful tool
to increase students learning.
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The use of integrals in Mechanics of Materials textbooks for
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Research has reported on the difficulties engineering students face in relating the
content of their mathematics courses to what is taught in their professional courses.
One way to address these difficulties is by better understanding how mathematical
notions are used in professional engineering courses. This paper analyses how the
notion of first moment of an area — which is defined as an integral — is used in civil
engineering courses. Basing our analysis on elements from the anthropological
theory of the didactic, we are currently analysing a classic Mechanics of Materials
book. Our findings indicate that although first moments are introduced as an
integral, the textbook’s tasks do not require students to use techniques typically
introduced in a traditional calculus course.

Keywords: Mathematics for engineers, teaching and learning of analysis and
calculus, textbooks, anthropological theory of the didactic, first moment of an area.

INTRODUCTION

Engineering courses are usually organized into two groups: basic science courses
(which are taught in the first two years, including foundational skills in mathematics
and physics), and technical courses (which appear later in the programme and are
more specific to each field of engineering). However, research in engineering
education and mathematics education indicates that engineering students encounter
many difficulties in their mathematics courses in the first years of study, which can
lead to high failure rates, and in many cases, result in students dropping out of
engineering programmes (Ellis, Kelton, & Rasmussen, 2014). In this sense, “poor
mathematics skills are a major obstacle to completing [...] engineering programs”
(Fadali, Johnson, Mortensen, & McGough, 2000, p. S2D-19).

Researchers have identified some negative situations for students who pass these
mathematics courses. One situation is that these students often find it difficult to
relate the learned mathematical content to the content of the professional courses.
For Flegg, Mallet, and Lupton (2011, p. 718) “without the explicit connection
between theory and practice, the mathematical content of engineering programs may
not be seen by students as relevant”. Another situation is that in spite of having
passed the mathematics courses (with a rather rigid structure and rare concrete
applications relevant to engineering), students must apply mathematics in their
engineering courses, where many new mathematical notions appear without having
been encountered in the previous mathematics courses (Hochmuth, Biehler, &
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Schreiber, 2014, p. 694). Faced with these problems, the mathematics and
engineering education communities have been engaged in research and discussion on
“how to improve engineering students’ mathematics learning, and hence their service
teaching” (Bingolbali, Monaghan, & Roper, 2007, p. 764).

Our current research program investigates how calculus notions are used in
engineering courses, aiming at identifying possible ruptures between how notions are
first introduced and used in calculus, and how they are later used in professional
courses. First, we analyse how engineering textbooks present these notions, working
under the principle that most tertiary instructors organise their teaching using
textbooks as an important resource (e.g., Mesa & Griffiths, 2012). The manner in
which mathematics notions are used in professional courses has not been the subject
of much research. However, we believe this type of research could help bridge the
gap between two communities. On the one hand, mathematics lecturers in
engineering programs could benefit from knowing how their course content is used
in professional courses; on the other hand, professional course instructors could
benefit from a critical analysis of their use of mathematics, to help their students
make connections between the content of mathematics and professional courses. For
example, our analysis of the way integrals are used to define bending moments for
beams in strength of materials textbooks for civil engineering reveals different uses
of “the same” object (Gonzalez-Martin & Hernandes Gomes, 2017a). Although
bending moments are defined as an integral, the tasks, techniques, and justifications
used in calculus courses are very different from the ones presented in professional
engineering courses; this may result in students not recognising “the same” object in
two different courses, and they may question the relevance of integration techniques
that are not used in tasks concerning bending moments. In this paper we develop the
content of Gonzélez-Martin & Hernandes-Gomes (2017b) as we explore the use of
integrals to introduce another engineering notion: first moment of an area. We aim to
address two questions: how is the content related to integrals used in engineering to
work with first moments of an area, and how does this use relate to the content in
calculus courses?

Defining first moment of an area

Moments of areas are topics commonly taught in engineering courses that cover
strength of materials. Due to space limitations, in this paper we focus on the first
moment of an area. In civil engineering, for example, to solve bending problems one
must take into account some specific geometrical characteristics of cross-sections of
a bar, which is the general term for structures that include beams (Feodosyev, 1973).
In this situation, the notion of first moment of an area is used to calculate the
centroid of an area and the shearing stresses in transverse bending. The centroid of
an area A is its geometrical barycentre and is the point C of coordinates X and ¥ such
that the following relationships hold true: ij dA = AX and jA ydA = Ay.
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y Let A be an area situated in the xy plane (Figure 1), using x
. and y as the coordinates of an element of area dA.
B According to Beer, Johnston, DeWolf, and Mazurek
i (2012, p. A2), the first moment of an area A with respect
to the x axis (resp. y axis) is mathematically defined as the
integral Q, = [, ydA (resp. Q, = [ xdA). In both integrals,

the index A in the integral sign indicates that the integral is
calculated over the whole cross-sectional area. Both
integrals characterize the sum of the products of each
element of area dA and its distance to the respective axis

Figure 1: General area
A with infinitesimal area
dA in the xy plane (Beer
etal., 2012, p. A2).

(x or y) and are measured in cubic units (Beer et al., 2012).
When an area possesses an axis of symmetry, the first moment with respect to that
axis is zero, since every element of area dA of abscissa x (resp. ordinate y)
corresponds to an element of area d4°’ of abscissa —x (resp. ordinate —y). This implies
that when an area possesses an axis of symmetry, its centroid is located on that axis.
For instance, in a rectangular cross-section (two axes of symmetry), its centroid C
coincides with its geometric centre. Determining the position of the centroid is
important, since several forces in a bar pass through its centroid.

To illustrate these definitions and their calculation with an [~
- : N
example, let us consider the case of a bar with a
rectangular cross-section (Figure 2). If we consider the dA = b. dy
expression above, Q, = jA ydA, we can take dA asthearea | n

of the grey rectangle, whose dimensions are b and dy. ,
Substituting dA in the integral, we have that
Q, =L ydA=jA ybdy. Calculating this integral throughout

A 4

all the vertical extension of the rectangular cross section,

. h ] . Figure 2: Determination
we obtain: szj'o ybdy. Calculating the integral, we

of the first moment with
"2 o2 h2 respect to the x-axis of

= b? - b7 , therefore Q, = b? : an area with rectangular
cross-section.

2
obtain: Q, = by7

0

THEORETICAL FRAMEWORK

As stated above, we are interested in analysing how calculus notions are used in
professional engineering courses, aiming at identifying possible breaks from the
content in calculus courses. For our research, we use tools from the anthropological
theory of the didactic (ATD - Chevallard, 1999) because it considers human
activities as institutionally situated. In this sense, knowledge about these activities
and their raison d’étre is also institutionally situated (Castela, 2016, p. 420). In
particular, ATD offers a general epistemological model of mathematical knowledge,
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where mathematics is seen as a human activity through which various types of
problems are studied (Barbé, Bosch, Espinoza, & Gascon, 2005, p. 236).

The key element we use in our analysis is the notion of praxeology (or, in our case,
mathematical organisation or mathematical praxeology — MO hereinafter), which is
formed by a quadruplet [T/1/0/®] consisting of a type of task T to perform, a
technique t which allows the task to be completed, a discourse (technology) 6 that
explains and justifies the technique, and a theory ® that includes the discourse. The
first two elements [T/t] are the practical block (or know-how), whereas the
knowledge block [0/@] describes, explains, and justifies what is done. These two
blocks are important elements of the ATD model of mathematical activity that can be
used to describe mathematical knowledge. Furthermore, ATD distinguishes different
types of MO: punctual, which are associated with a specific type of task; local, which
integrate multiple punctual MOs that can be explained using the same technological
discourse; and regional, which integrate local MOs that accept the same theoretical
discourse (Barbé et al., 2005, pp. 237-238).

Praxeologies, like knowledge in general, may move from the institution where they
emerge to other institutions that find them useful (Castela & Romo Vazquez, 2011).
This is the case, for instance, of mathematical notions that are used to solve
engineering problems. In this process, there are transposition effects on the
concerned praxeologies (Castela & Romo Vazquez, 2011; Chevallard, 1999). We
consider the work of Castela (2016), who identified that “when a fragment of social
knowledge, produced within a given institution I, moves to another one Iy in order to
be used, the ATD’s epistemological hypothesis states that such boundary crossing
most likely results in some transformations of knowledge, called transpositive
effects” (p. 420). In this boundary-crossing process, some (or all) elements of the
original praxeology may evolve. Therefore, it is important to analyse the types of
tasks and techniques as well as the discourses and theories employed. To that end,
our research identifies specific local MOs present in professional courses; we analyse
how calculus notions are used (practical block) and whether this use relates to the
way the notions are usually presented in calculus courses (knowledge block).

METHODOLOGY

It is worth noting that, in order to understand how calculus notions are used in
engineering courses, we have had several exchanges with an engineering teacher
holding bachelor’s and master’s degrees in civil engineering, with more than 28
years of experience teaching a variety of professional engineering courses at
Brazilian universities. This teacher has explained notions related to his field and has
helped us identify course content in which first-year calculus notions are used.

At this teacher’s university, first moments of area are introduced during the third
semester of the programme (second year), in the Strength of Materials for Civil
Engineering course (students take calculus in their first two semesters). The course’s
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reference book is Beer et al. (2012). First moments are initially cited in chapter 4
(4.2. Stresses and deformations in the elastic range). We proceeded in two stages:

o First, we analysed the general structure of the content related to integrals in the
calculus courses. We identified the main tasks proposed to students, grouping
them according to the technological elements needed, identifying therefore the
main local MOs that structure this content.

e Second, we started our analyses of the reference book for the Strength of
Materials course. We identified all instances where first moments appear in the
book (using key words to search in an electronic version of this book). For
each occurrence of this notion, we are currently analysing the tasks presented
in the book where first moments are used. For each task, we are analysing the
techniques and discourses (technologies) the textbook uses. As the notion of
first moment is used in different chapters of the book, where different
professional notions are introduced and explained, the technological
discourses are quite varied, giving place to various MOs. The next section
provides specific details of our analysis.

DATA ANALYSIS AND DISCUSSION

Calculus is taught in the first year of the program over two semesters in two courses:
Calculus I and Calculus Il. Up until a few years ago, integrals appeared only in
Calculus Il, but some content was moved to Calculus | because Physics Il (a course
in the second semester) requires a knowledge of integrals. Integrals appear towards
the end of the first course and are the main topic in the second course (the second
author of this paper has taught Calculus I for 15 years and Calculus 11 for two years).
The content covers indefinite integral (antiderivative of f), Riemann sum and definite
integral, applications for the calculation of areas, integration by substitution,
volumes (Calculus 1), and integration techniques, improper integrals, and arc length
(Calculus Il). The main source for the calculus courses is the classic book by Stewart
(2012). The content concerning integrals is basically structured using two local MOs.
The first, MOy, introduces techniques for calculating indefinite integrals
(immediate integration to begin with, followed by various integration techniques);
however, theoretical elements justifying the different integration methods are mostly
absent and those present are explained without a proof. The second MO, MOy;,
introduces Riemann sums to formally define integrals and interpret them as areas,
and leads to the Fundamental Theorem of Calculus and the calculation of definite
integrals using Barrow’s rule; this leads to some applications of the integral (area,
volume ...). Many of the techniques used in MOy, are derived from MOy;.

We are currently analysing the use of first moments and centroids in the engineering
textbook (Beer et al., 2012), which numbers more than 800 pages. So far, our first
analyses indicate that although this content is introduced as an integral, the
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techniques employed do not call for integration. Our ongoing analyses of the use of
first moments in the textbook are summarised in Figure 3.

Description of use

Terms used

Chapter — Sections

The term appears in a theoretical
explanation. It appears with an
expression using the integral sign,
but no calculation is required.

First moment;

First moment

of an area; Q;
centroid

4.2 (p. 245); 4.2 (p. 245); 4.4 (p. 262); 4.6 (p. 274)

6.1 (p. 421); 6.1 (p. 421); 6.3 (p. 437)

The term appears in a theoretical
explanation. It appears without an
expression using the integral sign.

First moment;

First moment

of an area; Q;
centroid

4.3 (p. 262)

6.1C (p. 424); 6.1C (p. 424); 6.4 (p. 440); 6.6 (p. 454;
Review (p. 467)

pp. 459-460);

8.1 (p. 559); Review (p. 591)

9.5A (p. 651); 9.5A (p. 651); 9.5A (p. 654); 9.5A (p. 654); 9.6B (p. 666)

Concept application: It is
involved in some calculations, but
no calculation of integrals is
required.

First moment;

First moment

of an area; Q;
centroid

4.2 (p. 247; p. 248)

6.1 (p. 422); 6.1 (p. 422); 6.3 (p. 438); 6.6 (pp. 456-457)

8.3 (pp. 577-578)

9.5A (p. 652); 9.5A (p. 653); 9.5A (p. 655); 9.5A (p. 656);
9.6B (p. 667); 9.6C (p. 669)

Sample problem: It is involved in
some calculations, but no
calculation of integrals is required

First moment;
Q; centroid

4.3 (p. 251); 4.5 (p. 265); 4.10 (p. 326)

6.2 (p. 429); 6.5 (pp. 443-446); 6.6 (p. 462)

8.3 (p. 583)

Figure 3: Synthesis of uses of first moments in Beer et al. (2012).

Here, due to space limitations, we describe our analysis of two MOs present in the
textbook at points where first moments come into play. It is worth noting the book
advises students that they should already have completed a course in statics, that the
properties of moments and centroids are explained in Appendix A, and that this
material can be used to reinforce the discussion of the determination of normal and
shearing stresses in beams in chapters 4, 5, and 6 (Preface, p. x).

First case: MOg;

The initial use of first moments, MOg;, concerns stresses and deformations in the
elastic range (section 4.2 of the book). Its aim is to calculate the maximum stress that
beams can resist, resulting in some recommendations about the size and shape of
beams. Using some formulae, the book arrives at jydA:O and concludes: “This

equation shows that the first moment of the cross section about its neutral axis must
be zero. Thus, for a member subjected to pure bending and as long as the stresses
remain in the elastic range, the neutral axis passes through the centroid of the
section” (p. 245, italics in the original). This is the first apparition of first moments in
the book; however, they are not explained and the authors refer readers to Appendix
A. In Appendix A, first moments and their link with the centroid are introduced in a
similar manner as in this paper, using implicitly theoretical elements from MOy,
(namely, the interpretation of an integral). However, the book makes the connection
with the centroid and deduces many integrals using geometric considerations (and
the properties of the centroid), and adds “Centroids of common geometric shapes are
given in a table inside the back cover” (p. A3). Therefore, this content is justified
vaguely through some basic integral content (present in MOy,), but mostly by using
geometric considerations. The tasks in MOg; calculate stresses and bending moments
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in known geometrical shapes. In

idee F U the case of a rectangle (Figure 4-

/ r=12mm left), the coordinates of the

— - v centroid are deduced using

o geometry (and not techniques

N.A 1 / / \ .+ | derived from MOy or MOy); the
¢ L2

7} [ \ same approach is used in the case
of a semicircular cross-section

1.251in.

L T}

2
=14

2ain.

=

Figure 4: Left: The centroid is placed calculating | (Figure 4-right).

the half measure of each side of the rectangle Thus, although the notions of first
(Beer et al., 2012, p. 247). Right: The centroid is | oment and centroid are necessary
placed using geometric formulae (p. 248). to solve tasks in MOg, the

techniques employed are not based
on elements derived from MOy, or MOy,. Students can solve the tasks present in
this MOg; without using any of the techniques learned in MOy, or MOy, or hardly
any of the technological elements present in them.

Second case: MOg,

First moments and centroids are also used in chapter 6. In section 6.1A, Shear on the
horizontal face of a beam element, MOg, seeks to determine the horizontal shear per
unit length (or shear flow) on a beam. Defining Ax as the length of a section of the
beam, V as the shear force, AH as the horizontal shearing force exerted on the lower
face of the element, Q as the first moment, and | as the centroidal moment of inertia,

and using techniques and technological elements covered in this and previous
chapters, the horizontal shear per unit length (qg) is deduced as: g = %=$. It is

worth noting that the techniques used to arrive at this expression involve integrals,
but they are referred to in terms of notions belonging to MOg,. The above expression

is used to solve tasks such as the

A beam is made of three planks, 20 by 100 mm in cross- one in Figure 5.

section, and nailed together. Knowing that the spacing
between nails is 25 mm and the vertical shear in the beam | The resolution of the task is
is V = 500N, determine the shearing force in each nail. | based on the determination, via

T ’,“_,:u,m _’ di_fferent (ixpressiqns, of Q and |
T s (since V = 500N is provided) to

‘ 1 ’_ by find the horizontal force exerted
106 o 0.020 m y=000m | 0N the lower face of the upper
NA plank. For the first moment, Q,
J 20 mm , the following technique is

T presented: “Recalling that the

20 mm —| || =

first element of an area with
respect to a given axis is equal to
the product of the area and of the

Figure 5: Task and diagrams used concerning
horizontal shear (Beer et al., 2012, p. 422).
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distance from its centroid to the axis, Q = Ay” (p. 422). The area of the cross-section
of the upper plank is calculated as 0.020m x 0.1m, and the coordinate of the centroid
of this horizontal plank with respect to the axis of symmetry of the cross-section is
0.05m + 0.01m (that is, half the measure of the central plank, plus half the measure
of the horizontal plank). Q is thus obtained as: Q = Ay = (0.020m x
0.100m)(0.060m) = 120 x 10°m?®. We see that, once more, the tasks to solve in this
MOg, involve cross-sections with geometrical shapes that make use of geometrical
considerations, thus avoiding techniques belonging to MOy, or MOys.

Although the technological elements of MOg;, refer to elements that imply the use of
integrals, tasks are presented in such a way that previously deduced formulae can be
used and magnitudes can be deduced using these formulae and geometrical
considerations. The book later provides a table with values (Figure 6). Therefore, it
is possible for students to simply memorise the formulae or use the tables to solve
the given tasks without actually using any technical or technological element derived
from MOy, or MOy.

Shape Area c Shape Area c
—>b—+

Rectangle ( h bh 2 Parabolic bh b

3 4

j T _L = sp;mdrf:l
-

b

Cubic
" ' . b 7
Triangle ol T ?l 3 spandrel
=5

Figure 6: Areas and centroids of common shapes (Beer et al., 2012, p. 654).

o |
w| o

FINAL CONSIDERATIONS

The data presented here, together with the data from Gonzalez-Martin & Hernandes
Gomes (2017a), indicate that two notions used in civil engineering (bending moment
and first moment) are defined as integrals. This may often be used to justify the fact
that “engineers need to learn integrals”. However, our analyses show that the types
of tasks and the techniques developed are not actually derived from praxeologies
explored in a calculus course. In the two cases presented in this paper, both MOg,
and MOg, have their own set of tasks and techniques, and both develop their own
technological discourse, which uses the notion of integral to define their own notions
and deduce properties. As Figure 3 shows, this seems to be the general situation
throughout the textbook.

As Castela (2016) states, when a fragment of knowledge (in this case, the notion of
integral) produced within a given institution moves to and is used by another
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institution, this process results in a transformation of knowledge. In the case
analysed here, it is clear that all the technological discourse proper to a calculus (or
even an analysis) course pertaining to the notion of integral is transformed when it is
used to define first moments (and centroid) in a professional course, where
explanations mostly rely on basic geometric considerations. In this case, it seems that
the transpositive effects cause the notion of integral to be used very differently in
both courses. The techniques presented in the Strength of Materials course make use
of given formulae and geometric considerations, rendering the techniques introduced
in the calculus course irrelevant for the use of first moments in MOg; and MOg,. This
may result in students not recognising the object “integral” when they move from
MOy; and MOy, to MOg; and MOg,. Students may encounter many difficulties in
learning MOy, and MOy, but this knowledge is not necessary to solve tasks in
engineering courses, so students may question the need to learn these MOs.

It is therefore important that mathematics lecturers in engineering programs become
aware of how the notions they teach are used in professional courses. Once they
develop a better understanding of the techniques and tasks used in professional
courses, mathematics instructors may be prompted to reflect on the mathematical
praxeologies developed in their own courses and make stronger connections with the
techniques used in professional courses. This could help students transition from
mathematics courses to professional courses, enabling them to relate mathematical
content to the content of their professional courses and better understand its
relevance (Flegg et al., 2011).

We plan to continue analysing the use of integrals in professional courses in
engineering. This will be the source of future papers.
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Mathematics in university courses was identified as a main obstacle for engineering
students in the beginning of their study. Since difficulties with mathematics could
lead to a dropout, our research aims to analyse students’ profiles referring to
individual characteristics that allow identifying possible risks for students’
achievement or success in the first year of study. As a first step to identify possibly
risky profiles, we started to find possible predictors of students’ performance. For
this, we give a short overview of the research state and our derived research
interest. We discuss theoretical constructs that are possibly crucial characteristics of
students with respect to encountering mathematics as an obstacle. Further, we
describe the method for measuring different variables of 182 engineering students.
Finally, we present results referring to predictors of performance in engineering
mathematics and discuss further steps of our research.

Keywords: Teaching and learning of specific topics in university mathematics,
Mathematics for engineers, motivational variables, students’ profiles, students’
achievement.

INTRODUCTION

Besides the technical disciplines, mathematics is a crucial part of higher engineering
education (SEFI, 2013). Especially in the first year, mathematics is usually taught
without considering practical applications. In lectures and tutorials mathematical
basics are provided for subsequent technical courses. However, engineering students
“encounter epistemological/ cognitive, sociological/ cultural and didactical
obstacles” (Gomez-Chacon et al., 2015, p. 2117) with mathematics struggling with
the transition from school mathematics to university mathematics (Gueudet, 2008).
Considering mathematical school skills, students show remarkable deficits at the
beginning of their study (e.g. Knospe, 2012; Thomas et al., 2012). Empirical studies
show the importance of cognitive variables, since school grades and domain-specific
previous knowledge are identified as important predictors of academic achievement
(e.g. Hailikari et al., 2008). Moreover, there is also some evidence that mathematics
plays a crucial role when dropouts from engineering studies are regarded. Heublein
(2014) stated the highest dropout rates for mathematics laden studies that were partly
caused by a low motivation and partly by excessive demands in the first part of the
studies. Also, an international review study mentioned mathematical competencies as
part of reasons for dropping out at universities (Sggaard Larsen, 2013).
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Apart from cognitive aspects, further individual characteristics are relevant in the
context of learning and study success. The importance of these different aspects, e.g.
socio-demographic, motivational, emotional and social aspects, are explained by
different theoretical models (e.g. utilization of learning opportunities model:
Schrader & Helmke, 2015; models of dropout: Heublein et al., 2010) and proved by
empirical findings. The meta-analysis by Hattie (2009) summarizes the results of
over 800 studies and provides an overview of factors influencing learning success in
school. Moreover, there is evidence for the impact of self-efficacy beliefs (e.g.
Fellenberg & Hannover, 2006), academic self-concept (e.g. Hattie, 2009) and interest
(e.g. Schiefele et al., 1993a) on performance.

RESEARCH QUESTION

In view of the research state, empirical findings show insufficient mathematical
skills, high dropout rates and difficulties with mathematics at the beginning of
engineering study. Research concerning higher engineering education mostly deals
with the improvement of mathematics teaching through developing and evaluating
interventions (e.g. through integrating mathematical and technical disciplines: Rooch
et al., 2013). According to the utilization of learning opportunities model, learning
success does not only depend on the teaching offer but also on its utilization by
students. Therefore, in this project engineering students should be explored in more
detail, especially with respect to mathematics and individual characteristics.
Moreover, the study of Fellenberg & Hannover (2006) gives hints that a domain-
specific investigation is also empirically meaningful. Concerning the time frame, our
project focuses on the first year of engineering study because the secondary-tertiary
transition and dropout surveys indicate serious problems at the beginning of study. In
particular, more students decide to abandon one’s studies within the first two
semesters (Heublein et al. 2010).

Empirical basis for the relevance of individual characteristics in learning processes
exists. However, most of the studies were conducted in the context of school. Since
the subject matter and learning environment changes with the transition from school
to university, these results cannot be transferred immediately. In contrast, studies of
higher education with a special view of mathematics are rather rare. In particular,
most studies concentrate on single aspects and not on an overview of different
impacting variables (e.g. Schiefele et al. 2003). Therefore, our project draws on
previous findings to explore a multitude of impacts of individual characteristics in
learning processes of higher education with the main aim of developing mathematics
related profiles of engineering students. As a student’s profile we understand the
characteristic of different individual variables, e.g. performance, motivational
variables like interest (Gomez-Chacon et al., 2015), or engagement (Rach & Heinze,
2013), and further the relationships among these variables. Students’ profiles should
allow identifying possible risks for study success in the first year of the study. The
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identification of students’ profiles is useful because it allows the development of
goal-oriented and adequate support services for students who encounter difficulties.

Since insufficient motivation and excessive demands for achievement are primary
reasons for dropping out, we focus on motivational and cognitive variables as a first
step to developing students’ profiles. Moreover, students leaving their course of
study are difficult to access, so we focus on available data like students’ performance
and individual characteristics with respect to the following research question:

Which domain-specific predictors of study success or failure can be
determined in the first year of engineering mathematics?

THEORETICAL CONSTRUCTS

As a main construct that impacts on students’ achievement, we refer to the construct
of learning motivation as an umbrella term for different motivational variables
(Spinath, 2011). Firstly, we choose all of the motivational variables that are
summarized by the term learning motivation in order to identify the crucial impacting
factors. Furthermore, all of the constructs are connected to the subject matter, so they
might play a crucial role in the transition from school to university mathematics, a
situation characterised by a changing subject matter and learning environment.

A first and main part of motivation is an individual’s goal orientation (Dweck, 1986).
This dispositional variable involves individual’s beliefs about appropriate goals as a
trait referring to specific and, thus, context-related tasks (Elliot et al., 1999). A
further dispositional and motivational variable is interest which is differentiated into
three components: feeling-related valences, value-related valences and an intrinsic
character. Interest could be understood as an individual’s development of an
appreciation for a specific subject like mathematics (Wild & Mdéller, 2009). This
definition involves the necessity to regard interest context-specific. One aspect of the
construct of interest, i.e. the feeling-related valences is also a part of the expectancy-
value-theory of Wigfield and Eccles (1992). They derive an individual’s motivation
for doing a task from the individual’s expectancy of the success on a specific task
and the incentive value of this task. Besides the intrinsic value, which is similar to
the feeling-related valences of interest, further variables, i.e. attainment value, utility
value and costs are part of achievement-related values. The expectancy of a success
referring to specific tasks could be understood as individuals’ self-efficacy beliefs
(Wigfield & Eccles, 1992) that are close to the construct of self-concept (Shavelson
etal., 1982).

Learning strategies is a further umbrella term that includes variables which also
could have an impact on students’ achievement (Wild, 2005). Learning strategies
include cognitive learning strategies like strategies for elaborating a specific issue,
meta-cognitive strategies like planning or monitoring the process of learning, or
strategies to use resources like a specific learning environment. Finally, although
students’ achievement or success is hardly to define (Heublein, 2014), it could be
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understood as the achievement in exams referring to a specific subject like
mathematics or to proceed in a field of study like engineering despite encountered
difficulties.

METHODOLOGY
Sample

Our first research step involved 182 engineering students at the University of Kassel
enrolled in a calculus course in the summer semester 2017. Among the participants
were 158 men and 24 women. Most of them started their second semester (67 %),
though a small group of beginners is integrated (14 %). In the beginning of the
semester, students of the calculus course were given a questionnaire concerning
sociodemographic factors and motivational orientation towards mathematics. To
achieve a high response rate, the students had two weeks to answer the questionnaire
and received additional points for their permission to the final exam that could be
achieved by solving weekly exercises. Students were also assured of the anonymity

of their responses. ) )
exam questionnalre
(exam)

linear algebra course I . calculus course I

winter semester 2016/17' semester break' summer semester 2017 semester break

Figure 1: Time of data collection
Instruments

The so called SELLMO instrument (Spinath et al., 2012) was used to measure
students’ goal orientation towards mathematics. Twenty out of thirty-one items were
chosen and especially referred to mathematics courses at university. Goal orientation
is divided in four sub-scales with each five items concerning approaching and
avoiding achievement goals, work avoidance and learning goals. One example for an
item referring to learning goals is: “My aim for mathematics courses at university is
to gain a deep understanding for the content.”

For interest, we used a scale with nine items of Schiefele et al. (1993b) and adapted it
to mathematics. One example for a negative formulated item of this scale is: “To be
honest, I less care for mathematics.” Referring to the expectancy-value-theory, we
measured values with a scale involving six items that we developed according to
Wigfield and Eccles (1992). One example for an item of this scale is: “Mathematical
skills will be crucial for my future professional career.” Further, we adapted each
three items from the PISA study (Kunter et al., 2002) to measure students’ self-
concept and self-efficacy with respect to mathematics.

To measure the students’ learning strategies, we focussed in the first step of our
research on students’ self-reports about the use of resources like lectures, tutorials
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and special exercises. Whereas in lectures different mathematics topics are taught,
students practice in tutorials by means of additional exercises. In the special
exercises they discuss their homework and resolve open questions. Finally, students’
success was measured by the self-reported grade in the final exam of the linear
algebra course (see Fig. 1). By contrast, further grades of final exams in the
abovementioned calculus course was directly given but is not analysed yet. Finally,
we collected sociodemographic variables, e.g. the type of matriculation standard,
according to a questionnaire used for dropout studies (Heublein et al., 2010).

RESULTS

Results in the first step of our research firstly refer to an evaluation of the
instruments concerning the quality of scales. We further proved the predicting power
of different variables on the students’ performance measured by the self-reported
grade in the final exam of the linear algebra course that students have taken the
previous semester.

Evaluation of the instruments

In the first analyses, Cronbach’s alpha estimates of reliability were determined for
the scales from each instrument (see Tab. 1). Measures are adequately reliable, with
values ranging from .552 to .844. Most of the values are appropriate, the lowest
value (.552) was found for a scale with only three items.

Construct Number of Items Cronbach’s Alpha
Mathematics Interest 9 844
Goal orientation:
Approach achievement goals 5 122
Avoidance achievement goals 5 827
Word avoidance 5 127
Learning goals 5 739
Expectancy-value-theory
Mathematics self-concept 3 704
Mathematics self-efficacy 3 552
Value of mathematics 6 690

Table 1: Sample constructs and Cronbach’s Alphas
Possible predictors of performance in engineering: correlations

In each of the following analyses, we defined students’ achievement as the self-
reported exam grade of the linear algebra course that students have taken the
previous semester. We firstly assessed the relationship between students’ individual
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characteristics referring to grades achieved in school. As seen in Table 2, the school
grades and exam grades of the linear algebra course are significantly and positively
correlated.

Math school grade Final school grade

exam grade 321** 393**

Table 2: Pearson’s correlation coefficients between the exam grade and students’
achievement in school (*p < 0.05; **p < 0.01)

We further proved the correlations between the exam grade and variables
constituting the expectancy-value-theory. Except for interest, the correlations
between the motivational variables and the students’ achievement are significant.
Particularly, there is a considerable relationship between the mathematics self-
concept and the students’ achievement.

self-concept self-efficacy values interest

exam grade D54** .363** .385** .166

Table 3: Pearson’s correlation coefficients between the exam grade and students’
individual characteristics (expectancy-value-theory)

By contrast, the correlations between the students’ achievement and the students’
individual characteristics referring to the construct of goal orientation are weak and
except of the working avoidance, not significant.

AAG1 AGG2 WA LG

exam grade .000 77 207* 109

Table 4: Pearson’s correlation coefficients between the exam grade and students’
individual characteristics referring to AAG1 (Approach achievement goals), AAG2
(Avoidance achievement goals), WA (Work Avoidance), LG (Learning goals)

Using correlation analysis, we finally assessed the relationships between students’
achievement and the students’ engagement referring to external resources given by
the attendance rate of lectures, tutorials and special exercises. However, the
attendance rates seem to be independent of the students’ achievement.

Lecture Tutorials Special exercise

exam grade 133 074 120

Table 5: Pearson’s correlation coefficients between the exam grade and students’
engagement
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Possible predictors of performance in engineering: group comparison

To identify other possible predictors of the performance in engineering mathematics,
we compared between distinct groups using t-tests. Firstly, we compared students
that were enrolled in an advanced math course and students that were enrolled in
usual math courses. Students in advanced math courses get more math lessons in a
week and, thus, examine mathematics in a greater extent than students of usual math
courses. As expected, students attending a math advanced course have significantly
better grades in the exam of the linear algebra course (see Tab. 6). Further, we
compared the group of students who were at a technical secondary school in which
the extent of mathematics is lesser than in usual secondary schools. As expected, on
average, students who had attended a technical secondary school obtained in the
exam of the linear algebra course a grade of 4.0, whereas the corresponding grade for
students who had not attended a technical secondary school was 3.5. Thus, students
from a technical secondary school significantly perform worse in the linear algebra
course than those who attended another type of school (see Tab. 6).

Technical secondary school Math advanced course
1 0 1 0
Examgrade M 4.0 3,5 3.3 3.9
SD 1,0 1,0 1,2 1,0
Sig. .016 .019

Table 6: Exam grade of the linear algebra course depending on different subgroups
(1 = attended; 0 = not attended)

DISCUSSION AND CONCLUSION

The development of engineering students’ profiles referring to cognitive and
motivational variables could potentially result in identifying students’ risks for an
undesirable low success or a dropout. For identifying possibly risky profiles, we
started to find possible predictors of the students’ achievement. Final school grades,
maths self-beliefs, values of maths, the type of matriculation standard and the choice
of advanced courses in school are meaningful predictors of performance in
engineering mathematics. Hence, the results show that several variables determine
the maths performance which should be considered seriously for the development of
support services. However, the results reveal new questions leading to further
possible research steps.

In conformity with the research state, the mathematical achievement as well as the
amount of mathematics in school seem to be a predictor of the success in a final
exam of the first semester. As a subsequent issue it is a crucial question if the impact
of the former school time on the students’ success in mathematics courses at
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university decreases or disappears. Moreover, it is interesting whether previous
knowledge measured by a skills test has a greater effect compared to the school
grades. Perhaps, domain-specific skills can be recognised as special predictors of
mathematics courses in engineering. In addition, the results show that the highest
correlation exists between the final school grade and students’ performance. This
implies further influencing variables developed in the students’ school time that
impact on the students’ achievement at university, especially learning activities and
strategies. The fact that the attendance rates seem to be independent of the students’
achievement strengthens this perspective.

Concerning the motivational variables, it is interesting that not all of them have an
impact on the students’ achievement. The students’ mathematics self-concept that is
also developed in the time of learning mathematics in school shows the highest
correlation to the students’ achievement. Therefore, support services should not only
focus on the deficits in mathematics skills but also on the assistance of students’ self-
beliefs. Mathematics interest shows no impact on the mathematics performance. This
result could approve findings like Eilerts (2009). Since engineering students do not
choose mathematics voluntarily, mathematics interest might have no predicting
power in this context. In this respect, it could be also interesting to differentiate in
further analyses specific groups of students, e.g. concerning gender, the school form
or other variables and to investigate if different groups show different relationships
between motivational variables and the students’ achievement.

Regarding the method, proven scales have been used and adapted to mathematics.
Only scales with a low number of items can be extended to improve the reliability.
All analyses base on simple correlations. Results can be improved and deepened by
using further methods like regression analyses or structural equation models, so that
an investigation of indirect effects is facilitated.

To conclude, in further steps of our research, the observation of motivational
variables of engineering beginners should be continued and extended to the
investigation of their development. Additionally, engineering students should be
surveyed in respect of learning activities and strategies that we involved in this first
study only by collecting data to the use of attendance rates (external resources). A
detailed investigation of students’ motives for non-attendance would give more
information about engineering students’ learning behaviour. Thus, building upon the
first results of our research, we expect to deepen the desirable insight into students’
profiles in the next steps of our research.
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Abstract: This paper concerns the teaching of mathematics for future engineers,
focusing on the theme of trigonometry. We claim that the use of trigonometry in
engineering courses requires different kinds of connections: connecting different
domains, different concepts, frames and registers. We use here the concept of
connectivity, developed in the frame of e-textbooks analysis, to analyse online
courses for future engineers in France. We evidence that these courses propose some
connections; but their connectivity is not developed enough to meet the requirements
of engineering courses.

Keywords: Connectivity, Teaching and learning of specific topics in university
mathematics, The role of digital and other resources in university mathematics
education, Teaching and learning of mathematics in other fields, Mathematics for
engineers.

INTRODUCTION

How can a teaching of mathematics answer the needs of engineering courses, i.e. can
provide the mathematics needed to understand the course and solve the problems
proposed? Which should be the features of such a teaching, and do existing courses
present such features? This is the general theme of the work presented here. Previous
works addressing this theme observe a gap between the mathematics taught in
“mathematics courses” and the use of them to solve problems in engineering courses
(e.g. Redish 2005; Biehler, Kortemeyer & Schaper 2015). Winslgw, Gueudet,
Hochmut and Nardi (2018) note that several works presented at CERME conferences
identify “a lack of connectedness of curricula integrating mathematics and other
disciplines”. Interviewing French engineers about their mathematical needs in the
workplace (Quéré 2017), and how the mathematics courses they followed as students
answered or not these needs, we noticed that several of them declared that the
mathematics courses “did not make enough connections”. These connections,
according to the engineers, can be of different kinds: links between mathematics and
the real world, between different mathematical contents, between different
representations etc. We consider that this is an important issue for understanding
mathematics applied to engineering and their teaching. Which kinds of connections
should propose a teaching of mathematics for engineering?

Moreover, in the frame of another starting study, we are interested by the possible
design of innovative curriculum resources for the teaching of mathematics for
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STEMSS (Science, Technology, Engineering, Medicine and Social Sciences)
courses. Before starting the design of such resources, we have investigated existing
resources, trying in particular to observe whether they tried to build the kind of
connections evoked by the engineers.

This investigation led us to choose a focus on trigonometry. Indeed, trigonometry
appeared as extensively used in different kinds of engineering courses, and offering
many possibilities of connections of all the kinds evoked above. In what follows, we
firstly introduce our theoretical tools and research questions; then we present related
works on the teaching of trigonometry. To exemplify the mathematical needs, we
analyse the use of trigonometry in an electricity course for first year students; then
we consider the trigonometry content in two online mathematics courses for
engineering students.

THEORETICAL PERSPECTIVE AND RESEARCH QUESTIONS

The overarching perspective guiding our work is an institutional perspective
(Chevallard, 2006). We consider that the mathematics taught are shaped by the
institution where they are taught. Engineering studies at university or in engineers’
schools constitute an institution, different from mathematics courses for maths
majors. Within engineering studies, engineering courses also constitute an institution
different from mathematics courses. Our aim here is to compare how these two
institutions shape the mathematics contents, more precisely the trigonometry
contents.

Our central focus is on “making connections”. Students’ understanding in terms of
mathematical reasoning and problem-solving has been linked by several authors to
“making connections” and “connectivity” (e.g. Hiebert & Carpenter 1992). Drawing
on these works, we have chosen to look for:

“connections in, between, and across individuals’ cognitive/learning tasks and
activities, and how e-textbooks may support those (micro level); as well as for
‘connected learning’ between and across groups of individuals, teachers or students
(macro level).” (Gueudet, Pepin, Sabra, Restrepo & Trouche to appear)

We have therefore proposed a concept of “connectivity” to analyse e-textbooks
(encompassing various kinds of digital curriculum), with the intention to evaluate
their potential for the building of connections for the students.

Thus, connectivity has two components: “macro-level connectivity”, which considers
the e-textbook as a whole; and “micro-level connectivity”, where the focus is on a
particular mathematical topic (trigonometry here). In this paper we only use “micro-
level connectivity”’; more precisely, we observe in curriculum resources available
online the presence of:

- Connections between different topic areas or frames;
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- Connections between different semiotic representations (e.g. text, figures,
static and dynamic); [...]

- Connections between different concepts [...]” (Gueudet et al. to appear).

Here we want to compare the connections concerning trigonometry when it is used in
engineering courses and the connections concerning trigonometry in mathematics
courses for engineers, more precisely the connectivity of online courses for
engineers. Our purpose is not to discuss whether trigonometry should be introduced
in mathematics courses or engineering courses, but to compare how it is
introduced/used in these institutions. Hence the research questions we study here can
be formulated as:

- Which connections concerning trigonometry appear in non-mathematical
engineering courses?

- Which connectivity, concerning trigonometry, can be observed in online
resources for mathematics courses for engineers, and how does this compare
with the connections in non-mathematical courses?

In terms of methods, we have searched for curriculum resources and online courses
on three major websites used in France: Unisciel', meaning “online science
university”, gathering many online courses; IUTenligne?, a website for technicians
institutes within universities; and FUN®?, meaning France Digital University, the
national platform offering MOOCs. We have selected all the resources
corresponding to mathematical courses for engineers or technicians on trigonometry,
and have looked at the same time for resources on non-mathematical subjects using
trigonometry. We have eventually chosen the theme of electrical engineering,
because we have identified in it specific mathematical needs in trigonometry. Before
analysing these resources, we now consider some works about trigonometry in
mathematics education, and how they enlighten the connections issue.

CONTEXT AND RELATED WORKS

In France, trigonometry is firstly introduced in grade 8 or grade 9 through the
definitions of cos, sin and tan as quotients of lengths in a right-angled triangle. The
angles are measured in degrees. In grade 10, the unit circle and the radian are
introduced, together with a new frame for cos and sin, which are now the coordinates
of a point on the unit circle. In grade 11, cos and sin are studied as functions. Hence
connections between frames and registers are extensively present in this teaching,
and these connections can raise difficulties for the students (Berté et al. 2004). For

! http://uel.unisciel fr
2 http://www.iutenligne.net/

® https://www.fun-mooc.fr/
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example, grade 9 students already use for solving geometry exercises the “cos™ key
on their calculator; nevertheless, this key refers to a reciprocal trigonometric
function, which is only presented at university, and moreover belongs to the
functional frame (Bueno-Ravel & Gueudet 2010).

The international research on the teaching and learning of trigonometry acknowledge
the existence of all these different registers and representations and investigate their
consequences. Kendal and Stacey (1997) compare two teachings in grade 10 in
Australia, using respectively ratios and the unit circle to introduce sin, cos and tan;
they conclude that the ratio method appears as a better choice. Also at the university
level, trigonometry remains a difficult subject for the students (Weber 2005). Mesa
and Goldstein (2017), studying the presentation of trigonometry in college textbooks,
have evidenced that these textbooks propose different conceptions of angles,
trigonometric and inverse trigonometric functions; depending on these conceptions,
some problems can be delicate to tackle for the students. The textbooks do not try to
link different conceptions, and do not highlight which one is more relevant for a
given problem.

Trigonometry clearly requires many connections between frames and registers. It is
moreover linked with many different mathematical subjects (geometry, functions, but
also complex numbers); and is extensively used in physics. Several researchers have
also studied trigonometry within physics courses. Chiu (2016) studied the impact of
a new curriculum in Taiwan, where contents of physics requiring trigonometry are
taught before the corresponding mathematics courses. She observes that, while
curriculum designers are positive on the possible consequences of a teaching of
trigonometry by the physics and then by the mathematics teachers, the students and
the teachers are mostly negative about this experience. A teaching of trigonometry in
mathematics courses seems necessary before using it in physics.

In his comparative study between France and Vietnam, Nguyen Thi (2013) shows
that in both countries, trigonometry is present in physics courses with mathematical
models for periodical phenomena, under two forms: uniform circular motion
(represented by a point moving on a circle, in a graphic or algebraic register) and
harmonic oscillation (represented by functions in a graphic, algebraic or vectorial
register). Nevertheless only a few exercises propose modelling activities (in physics
as well as in mathematics); and the two models are almost never connected.

TRIGONOMETRY IN ELECTRICAL ENGINEERING COURSES

In this section we draw on the content of several courses for future engineers or
technicians, available on French websites (e.g. Piou 2014). In electrical engineering,
one of the major subjects is the study of the “alternating sinusoidal regime”. In
circuits with such a regime, the different signals (current and voltage in particular)
are of the form: s(t) = Av2sin(at+ ).
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In a circuit where reactive loads are present (like capacitors or inductors) energy
storage in the loads results in a phase difference between the voltage (u) and the
current (i) waveforms. This difference is firstly introduced in the context of
functions, with formulas like: u(t)=U2sin(«t); i(t)=1v2sin(at-¢), and associated
with a graphical representation as two curves on the time axis (Figure 1, left part).

A connection is immediately established with a geometrical representation of these
signals, through “Fresnel vectors”. A signal defined by s(t) = Av2sin(«t+¢g) (where A
IS positive) can be represented by a vector of length A, and a direction forming an
angle ¢ with the horizontal direction. Hence u(t) can be represented as a horizontal
vector, and i(t) as a vector forming an angle (-¢) with it (figure 1, right part). Some
courses also propose an interpretation in terms of complex numbers; for the sake of
brevity, we do not present it here.

Ul

—

9

Figure 1. Signals in the alternating sinusoidal regime and phase difference. On the left:
functional frame; on the right, Fresnel vectors in the vectorial frame.

We argue that the students in this case have to master connections between these two
representations of signals: as two curves with a gap of ¢ on the horizontal axis; or as
two vectors forming an angle ¢. Some courses propose animated pictures or
exercises to work explicitly on this connection (see figure 2 for an example extracted
from a teacher’s website, http:/fisik.free.fr/.)
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Figure 2. Connection between a rotating vector and the corresponding curve, extract
of an animated picture. The blue points on the right appear when the vector rotates.

In terms of micro-level connectivity, electrical engineering courses naturally connect
trigonometry with electrical engineering; they also connect different concepts: in the
example we considered here, functions and vectors, and in other courses also
complex numbers. Since vectors are represented as arrows, and functions represented
by their graphs, these two kinds of representations are also connected in the text of
the course.

TRIGONOMETRY IN MATHEMATICS ONLINE COURSES FOR
ENGINEERS

A MOOC presenting the basics of mathematics for future engineers

The MOOC “Basics of mathematics”, available on the FUN platform (freely
available after inscription) presents its objective on its first page: “This MOOC aims
at revising the basic notions of mathematics, needed to start engineering studies”.
The MOOC lasts 12 weeks, corresponding to 12 chapters. Chapter 2 is entitled
“trigonometry”. It comprises 7 course videos (from 5 to 12 minutes), interactive
multiple-choice questions, and a final assessment. Most of the notions presented in
chapter 2 of the MOOC are taught in France at secondary school; nevertheless the
reciprocal functions (like sin™) are only presented during the first year of university.

The course proposes almost no connection with engineering activities. The first
video says that “Trigonometry appears in many domains, like drawing plans,
navigating or mechanics”; the last video mentions the task of “triangulation”,
without definition. Three exercises are associated with each video. Most of these
exercises are situated in the geometrical frame; some of them are in the frame of
trigonometric equations. There is only one exercise in the whole chapter with a
concrete context: computing the length of a cable joining the top of a pole to the
ground, over a mountain with slope of 15%. The final evaluation is composed of two
problems; the first one has a concrete context, measuring lengths, and the second one
concerns trigonometric equations.

The definitions of cos, sin, tan are introduced in the geometrical frame in the right
triangle (video 1). In video 2, a software (Maple reader) is used to establish a
connection between cos, sin and tan in the unit circle and their graphs as functions
(figure 3). The animated picture supports the discourse of the teacher explaining this
link. This picture associates in fact the unit circle with the graphs of the functions,
but also with the triangle. In fact the radius of the circle can be changed; it is not
only the unit circle, but any circle; and the words “Adjacent” and “Hypotenuse” on
the left of the screen link the circle and the other geometrical view as a triangle.
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Figure 3. A dynamic representation making connections in the Mooc, case of cos.

This dynamic image is clearly used to connect the geometrical frames (triangle and
unit circle) and the analytical frame; nevertheless, it might be very difficult to
understand for participants who do not remember their school courses.

As a summary, we retain that micro-level connectivity in this MOOC comprises
some connections between concepts and representations, including dynamic
representations; but almost no connections with other domains or engineering
contexts. Moreover the connections with dynamic representations can remain unclear
for students because of a lack of explanations.

“Mathematical tools for physics”, an online course

“Mathematical tools for physics”* is an online course addressed to first year students
in physics, freely accessible (without inscription). It belongs to a complete first year
course, which is always organised in three sections: “learning” (course) “practice”
(exercises) and “self-assessment”. It comprises 11 chapters; chapter 6 is entitled
“Circular trigonometry — Hyperbolic trigonometry”. This chapter comprises 8
subsections; here we are only interested in the 4 subsections concerning circular
trigonometry.

After recalling the definition of an angle, the first subsection defines sin, cos and tan
in the frame of the unit circle. Nevertheless, an animated picture proposes a link with
the frame of the right-angled triangle. A subsection about formulas associates a
functional frame: specific values of sin, cos and tan and register of the unit circle.
Then two sections are dedicated to the properties of the “direct circular functions”
and of the “reciprocal circular functions”, and only mention the functional frame.
This course makes no link with physics or any real-life context.

* http://uel.unisciel.fr/physique/outils_nancy/outils_nancy/co/outils_nancy.html
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There is only one problem, divided in three questions, in the “practice” section.
Interestingly, it is a problem of physics: “the Compton effect” (scattering of a photon
by an electron). To solve this problem, the students must master contents of physics:
the law of conservation of energy and quantity of movement (and the associated
formula). The initial model is in the frame of vectors; these vectors are projected on
the two axes, and the students have then to use trigonometric formula, and finally to
work in the frame of functions. The difference between the wavelengths before and
after the scattering is indeed of the form A(1—cos0), where ©6is the angle
characterizing the direction of the photon after the scattering; the students must
observe that this function is increasing over [0, «t]: a larger angle corresponds to a
larger change in the wavelength.

The “assessment” section comprises five parts: 2 on circular trigonometry, 2 on
hyperbolic trigonometry and one entitled “composition of vibratory motions”. There
iIs here again a connection between trigonometry and physics. Nevertheless its
mathematical part remains entirely in the functions’ frame.

Finally, concerning the micro-level connectivity of this online course, we retain that
it proposes some connections with physics in the exercise and assessment part (but
no such connection in the course part). The connections between concepts and
between registers are restricted to the case of a single problem.

CONCLUSION

Trigonometry is a domain of mathematics where many different concepts (angles,
vectors in geometry; functions) and semiotic registers (triangles, arrows, circle in
geometrical register; curves in a graphical register; equations etc.) can be connected.
It is recognised as a difficult domain for students. Nevertheless, within mathematics
some exercises are limited to a single register: the study of trigonometrical functions
for example does not always require thinking in terms of angles. Using trigonometry
in engineering courses, on the opposite, always requires such connections. The
students must be able to associate an expression like s(t) = Av2sin(at+¢) both with a
function and its graph; and a vector represented by an arrow. Engineering courses
have a high degree of micro-level connectivity, for trigonometry. Our analyses of
two online courses of trigonometry for engineers in France lead us to observe that
they have a reduced level of micro-level connectivity: limited to connections
between concepts and semiotic registers for the first one, while the second one on the
opposite offers more connections between trigonometry and physics, but reduced
connections between concepts and semiotic registers.

Our exploratory work leads to formulate recommendations for mathematics courses
for future engineers, concerning trigonometry (and possibly other topics). Our study
of engineering courses confirms that developing the ability of these students to make
connections is an important aim. Connections between frames, between registers, but
also connections with engineering are possible, as evidenced by Nguyen Thi (2013).
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Online resources could propose such connections, and moreover could draw on the
possibilities offered by dynamic representations and various kinds of software.
Contributing to the development of such resources is an important aim for
mathematics education research, to address the need for students to make a relevant
use of the mathematics they learn at university in and for their engineering courses.
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In this paper, we investigate how undergraduate engineering students interact with
an online learning environment provided to them in a Calculus course. The
constituent resources of this environment include tutorial videos, textbook and
MyMathLab — an online interactive system for mathematics. A qualitative case study
involving a small group of students has been conducted. We investigated which
resources these students used and the manner in which they incorporated these
resources in their online mathematical work.

Keywords: Students’ interactions with resources, the role of digital and other
resources in university mathematics education, mathematics for engineers.

INTRODUCTION

In recent years, digital resources are increasingly used for teaching and learning of
mathematics (Borba et al., 2016; Pepin, Choppin, Ruthven, & Sinclair, 2017). The
presence of wide range of digital resources in terms of their functionalities allows
various possibilities of creating digital environments for students to learn
mathematics. Each digital environment might afford unique interactive and learning
opportunities; therefore, empirical research closely looking at students’ engagement
and the opportunities for their learning in such environments is well needed. This
study deals with one digital learning environment provided to undergraduate
engineering students for practicing mathematics. The aim is to explore students’
interactions with the constituent resources of this environment to elucidate the
learning opportunities in this environment.

Adler (2000) introduced the term resource to embrace several agents such as
physical, human and cultural tools and aids intervening in a teacher’s activity. In this
paper, however, we distinguish between digital and classical resources and focus on
students” work with resources. The use of digital resources is relevant in the context
of engineering mathematics in the sense that engineers during their professional
activities rely on technology for solving mathematical tasks (van der Wal, Bakker, &
Drijvers, 2017). The framework for mathematics curricula in engineering education
(Alpers et al.,, 2013) recommends the use of technology aimed at fostering
engineering students’ mathematical competencies. In the next section, we present the
theoretical framework, and the subsequent section contains introduction to the
constituent resources of the online learning environment.
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THEORETICAL PERSPECTIVE

In order to study students’ interactions with the resources, we employ the
documentational approach to didactics (Gueudet, Pepin, & Trouche, 2012; Gueudet
& Trouche, 2009) which is grounded on Rabardel’s work (Rabardel, 2002) and
enlarges the instrumental approach (Trouche, 2004) in mathematics education. One
important distinction between the two approaches lies in the extension of the concept
of artefact, in the former approach, to resource which allows considering wider set
of materials intervening in the teachers’ and students’ activities. A resource can be
conceptualised “as both noun and verb, as both object and action that we draw on in
our various practices (Adler, 2000, p. 207)”. Thus, the approach has the potential to
take in consideration material, human and cultural resources such as language, time,
mathematics teachers, etc. Moreover, a resource is never isolated but belongs to the
wider set of resources (Gueudet & Trouche, 2009).

While one focus of this approach is on the teacher’s work with the resources, the
study of students’ use of resources can provide the overview of their actual use
(Gueudet & Pepin, 2016). Also, this approach has the potential to provide rich
analyses if used to evaluate students’ work in terms of interactions with different
resource systems (Trouche & Pepin, 2014) or with a particular resource (Aldon,
2010). We will employ this approach to analyse how students interact with available
resources.

In particular, we analyse students’ techniques when working digitally in mathematics
(Artigue, 2002). A technique is perceived as “a manner of solving a task (Artigue,
2002, p. 248)”. While students work on mathematical tasks in a digital environment,
they might adopt paper and pencil based techniques or instrumented techniques. The
obvious and easily observable objective of each technique is to reach the goal of the
activity i.e. to produce the results whereas the contribution of a technique to the
learning of involved mathematical concepts might not be easily recognisable. The
former corresponds to pragmatic value while the Ilatter corresponds to
epistemological value liked to each technique.

We seek to explore the kind of techniques implemented by the students in the digital
environment to make sense of how students interact with this environment while
working on mathematical tasks. Furthermore, realisation of the values attached to the
students’ instrumented techniques will also help to understand the role of digital
resources in their learning (Guin, Ruthven, & Trouche, 2005). There are several
resources involved in present situation, therefore, we confine to the general features
of corresponding techniques in the present paper. By this, we mean to consider
students’ general organisation of digital work with several resources related to all
contents in a Calculus course. We ask the following question: How do engineering
students incorporate resources during their work in an online learning environment?
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THE SETTING

This study took place in a Norwegian public university during the spring of 2017.
Undergraduate students enrolled in electronics engineering program participated in
this study. In their Calculus course, students were offered an online learning
environment such that they could work remotely by interacting with the provided
resources. These resources were made available to them electronically to work and
proceed through the course. There were no mandatory lectures, and they could access
the lecturer in the case they needed additional support. The final examination was
also in digital format where the students were allowed the access to tools and aids.

The resource system comprised MyMathLab environment, tutorial videos coupled
with the notes, and the textbook. The students’ homework and the formative
assessments were administered online through MyMathLab system. MyMathLab is
an interactive learning system for practicing mathematics online (figure 1). While
this system provides an online platform for homework and assessments, it also
facilitates students in solving the tasks by providing help and feedback. Students can
seek help through utilising “help me solve this” or “view an example” functions in
the system. The former lets the student solve a similar task by guiding on each step
whereas the latter shows a similar worked-example. The interactive nature of
MyMathLab system allows considering it as a resource which can potentially
influence students’ activity in this course.

Matematikk 1 ror elekironikkstudier-section 1

Homework: Hjiemmearbeid uke 12 Kap. 18

Block 1, 2 og 3
Score: 1 of 1 pt - [ S of 20 (& complete) w > HW Score: 40%, 5 of 20 pis
& 18.2.4 == Question Help | EF

B ' -
Use the shell method to find the volume generated by revolving the regior, Help ke Solve This 4]

about the x-axis.

#2 view an E@'ﬁple

(!

Ty
The volume generated by revolving the region bounded by x = 16y —yz an "'J"' Textoook
cubic units. B calculator
(Type an exact answer. using m as needed, or round to the nearest tenth.)

== Print

Question is complete.

i et T Es=y

Figure 1. Interface of MyMathLab environment.

The tutorial videos are created by the lecturer, and recorded by using a document
camera. Each video deals with a specific section in the book and is named
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accordingly. In these videos, the lecturer explained the topics in the book and
worked through the relevant examples occasionally. The notes pertaining to the
video tutorials were available online. The length of these videos varies depending on
nature of the concerned topics. The tutorial videos replaced lectures and it was
expected that students would watch the videos to learn mathematical topics. The
textbook served as the central resource in the sense that MyMathLab and tutorial
videos were based on contents in the book.

In this course, a compulsory task was the group project in which students were
required to prepare a question bank related to integration. That question bank was
needed to be programmed in the STACK environment, a computer aided assessment
platform. Maxima is the programming language used in the STACK, thus they were
required to learn Maxima to complete the project. The intention was to make
students familiar with programming language and its use in mathematics.

RESEARCH DESIGN AND METHODS

The case study research design (Yin, 2013) has been followed in this study. A group
of three students has been observed over the semester. The methods used to generate
data include group observations, semi-structured interviews, individual weekly
journals and field notes. Using multiple methods for data collection contributed to
triangulation of data.

In order to be able to observe participants’ activity, we requested them to work at
campus each week for which they agreed. During these sessions, they worked on
their routine work including homework and assessments. Video recordings of their
group work accompanied with the screen recordings to follow the activity on their
computer screens have been collected. Screen recordings of their individual work
external to these group sessions have also been collected. Furthermore, weekly
journals containing self-reports about their use of resources were included to get the
detailed overview. The journal was provided to participants in tabular format which
they filled and submitted electronically each week. In the journal, they were asked to
specify the resources they used and state how the use of a particular resource helped
them in their work each week. The semi-structured interviews were held occasionally
to understand the emerging patterns in their use of resources. During the group work
sessions, participants communicated in their native language whereas the interviews
were held in English. Both the group sessions and the interviews were transcribed.

We analyse participants’ weekly journals, a semi-structured interview in the middle
of the semester, screen recordings, and the field notes for reporting on students’ use
of resources in their work. This interview is being counted on because the
participants were inquired about the general manner in which they used the
resources. The observations, screen recordings and the field notes are being counted
on while identifying participants’ techniques during their work.
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ANALYSIS

Participants’ weekly self-reports about use of resources

Table 1 presents the overview of participants’ use of several resources as they
reported in their journals. The manner in which they used them in their work and
their evaluations of resources have been extracted from their journal inscriptions.

Resource used

How they incorporated resources
in their work

Comments about resources (if any)

Tutorial videos

Watched to get information to

complete homework

Easy to understand through videos

MatRIC videos

Skimmed through the video at
amplified speed

Own note Used the already solved similar
problems in the notes, to recall the
problems (methods for solution)

Textbook Read through the book, found
formulas to work on homework, got
questions from book (during project)

Maxima Programmed tasks in Maxima for the Programming in Maxima is hard but
project, used while doing homework, when it is done, all the problems are
solved tasks using Maxima easy to solve

WolframAlpha Used as a shortcut to get answers, Easier to use than Maxima, Faster
compared answers obtained from than using calculator, useful when the
Maxima, got help with solving answer is in the form of expression
difficult tasks instead of numbers

MyMathLab Worked on homework, learnt Powerful tool, easier to get help and
specific topic, solved some questions information online
with higher difficulty

Internet

Lecturer’s notes

Tailored” for the tasks at hand, the
most relevant piece of information

Youtube vidoes

Watched Maxima tutorials

Mathway and Solved questions Severely increase the probability to
other online get the correct answer, and therefore
calulators the overall score.

STACKS Made some questions in STACKS

Table 1: Overview of participants’ use of resources.
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The three participants, Tor, Per and Jan, used MyMathLab almost every week
because homework and assessments were required to be done in this system. As
regards the textbook, Tor did not report the textbook in the journals rather he used
the lecturer’s notes. While in Per and Jan’s weekly reports, they pointed out few
ways in which they used the textbook on different occasions. The textbook served as
a source of getting questions, checking answers to those questions, getting help with
formulas, and going through examples in the book. During their project work, they
consulted the book to take questions and subsequently checked the answers for those
questions.

The tutorial videos were reported to be used by Jan and Per during their work. Jan
occasionally watched the videos and when specifying about the kind of help, he used
the word understand linked with this resource such as “to try to understand how to
calculate...” and “to understand the calculation behind the math”. Per has also
mentioned the use of videos and commented, “I easily understand it when someone
explains me the way of solving a problem”. Tor did not mention any tutorial video
provided by the lecturer, however he watched few videos on other platforms,
MatRIC TV (an online resource containing videos aiming to support students in their
transition from high school to university) and YouTube, once for getting introduction
to partial integration and at another occasion to learn Maxima — the programming
language.

It can be seen that participants used some other resources in their work such as
online calculators, WolframAlpha, Maxima and internet (cf. Table 1). Tor named
several online calculators including Mathway (https://www.mathway.com) and
WolframAlpha (https://www.wolframalpha.com) to solve the tasks and to compare
the answers they got in Maxima while working on the project. He mentioned that he
used online calculators for saving time, however, he wrote, “I did not learn anything
doing this, but it severely increases the probability to get the correct answer, and
therefore the overall score”. Wolfram Alpha has also been used by Per and Jan in
order to verify whether the answers they got were correct. While working on the
project, they picked some questions from the book and programmed in Maxima. To
check the answers to those questions, they used WolframAlpha.

After completing the group project that involved learning Maxima, this programming
language became an important resource for them to solve tasks in homework and
assessments. Both Per and Jan began making programs for solving each task to
liberate themselves from calculations. Per inscribed in a weekly journal, “(I) used
Maxima to make a program to solve the problems in an easy way. This is hard to
make, but when it is done, all the problems are easy to solve”. Tor did not seem to
use Maxima a lot, he spent some time on learning how to use Maxima for solving
tasks in one week, and then spending some more time in the next week, he rather
chose to focus on MyMathLab. He inscribed that, “it’s (MyMathLab) a more
powerful tool and it’s easier to attain help and information online”.
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In response to a question about using videos in a semi-structured interview, Per
explained his way of working on homework using the provided resources.

Per: These topics | think are quite hard to learn all by yourself. When | get a new
topic, 1 first try to solve it myself, if I can’t do that I try to look at the
examples in MyMathLab... and if I don’t completely understand the
examples | take a look at Olav’s (lecturer) video...mainly the examples’
videos because then | get to see the practical kind of way to do..to solve

guestions.

Int: How would you rank the provided resources? Which one do you first consult
with?

Per: First, I will try to do it myself because then I think I... remember and learn it

the best because then I have to think and ....and if I can’t do it that
way...then | will try to look at example just to get a few hints. If that does
not work then I watch the videos because | can’t look at the notes (provided
by the lecturer)...I have to get explanation of what he is doing step by step.

Tor’s response was somewhat similar as he replied:

Int: Did you use any video while working on last week’s homework?

Tor: No, I think MyMathLab seemed sufficient so far.

Int: Ok. So which resource did you use for getting introduction to the new topic?

Tor: | tried first MyMathLab but it went fine so I just carried on. ...I check the
notes and watch the videos if | get stuck..

Int: So, you turn to the videos when you get stuck.

Tor: When it is a new topic, then | just skim through his notes, but since we have

integration from a couple of weeks now, | am pretty confident and go
straight with it.

While Jan responded to the same question as follows.

Jan: I did not watch that many videos. | mostly use MyMathLab and just see the
examples...and if | can’t get it from there then I go to...to the book because
it is faster... and eventually go to the videos if I do not get constructive help
from there.

The participants preferred MyMathLab during their work for being the source of
quick and most relevant help in comparison to the other available resources. This
approach of working on the tasks saved them time and effort to search for the
required piece of information from other resources such as the videos and the
textbook. However, the use of MyMathLab can be considered more pragmatic as
both Per and Jan mentioned that the kind of help they get from MyMathLab is in the
form of examples which contributes more towards producing the results.

151 sciencesconf.org:indrum2018:174742



Another approach was to watch the videos when the help from MyMathLab was not
sufficient as evident through participants’ responses in the interview. The use of
videos has not been preferred much but participants reported that they consulted the
videos when they needed to understand something. As discussed earlier, the help and
feedback in MyMathLab concern the task only as it offers the formula and solution-
steps for the task. They might have needed to consult the videos to learn the concepts
involved in those tasks in case when just knowing the solution steps in a question did
not work. In the journal data, Jan and Per wrote that they used the videos to
understand thus it indicates the epistemic value linked to usage of videos.

Observing participants’ activity helped in finding that the use of different resources
affected their manner of working on tasks i.e. techniques. We seek to categorise the
participants’ techniques pertaining to different resources they used, and by
considering their motives behind use of each resource helped in recognising the
pragmatic and epistemic value of their techniques. It is found that they increasingly
used the digital tools to solve the tasks in MyMathLab environment with the
progression in the course. This led to the use of more instrumented techniques
instead of paper and pencil techniques promoted in the lecturer’s videos and through
MyMathLab. For instance, Tor mentioned in his weekly journals and it is observed
in the screen recordings of his individual work that he used several calculators to
work on homework as well as assessments. The participants themselves perceived
this technique of using online calculators to solve the task as pragmatic.

Two of the participants used Maxima in their work as evident from journals and
could be seen through the screen recordings of their work. They wanted to be
pragmatic in order to make their future work easier. Making programs for each task
for the first time can not be considered as merely pragmatic as Per mentioned that he
found it hard. The difficulty in making programs may be linked to their knowledge of
programming in order to code mathematical tasks. However, the extent to which it
contributes epistemically in learning mathematics is not covered in present paper.

DISCUSSION AND CONCLUSION

In this study, we observed how a small group of three students interacted with the
resources when provided with an online learning environment in their Calculus
course. The environment allowed self-regulated learning and students could work
remotely on their homework and assessments. To make sense of the opportunities for
students’ learning with resources in this environment, we explored their manner of
incorporating the resources in general organisation of their digital work.
Furthermore, we discussed the epistemic and pragmatic potential of participants’
techniques.

In terms of resource usage and the corresponding techniques, participants opted for
the resources and the techniques which were pragmatic in terms of producing results
for the assigned tasks. Pragmatic techniques involved the use of online calculators,
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using help in the MyMathLab to produce the results for tasks. Watching videos for
learning mathematical concepts seemed to be time consuming and hence not
preferred much. Participants appropriated the programming language to work on the
tasks with the motive to be more pragmatic and produce results easily in their work.
An important factor which is likely to cause the preference for more pragmatic
instrumented techniques was the online final examination where they could use the
resources. As for students, it is quite important to prepare according to the
examination to be able to score better.

This case study provides an example of a self-regulated learning environment created
for students to work independently. Our findings suggest some general prospects
which are worth paying attention when assigning online homework to students.
Combination of an online homework with online examination is likely to cause
students to use unexpected use of resources and techniques, for instance, online
calculators and solution tools in the present case. This observation also relates to the
nature of tasks posed in an online homework environment. Variety in the nature of
tasks, such as open-ended tasks, may lead students to interact with resources
epistemically.

REFERENCES

Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal
of Mathematics Teacher Education, 3(3), 205-224.

Aldon, G. (2010). Handheld calculators between instrument and document. ZDM,
42(7), 733-745.

Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a
reflection about instrumentation and the dialectics between technical and
conceptual work. International Journal of Computers for mathematical
learning, 7(3), 245-274.

Borba, M. C., Askar, P., Engelbrecht, J., Gadanidis, G., Llinares, S., & Aguilar, M. S.
(2016). Blended learning, e-learning and mobile learning in mathematics
education. ZDM, 48(5), 589-610.

Gueudet, G., & Pepin, B. (2016). Students' work in mathematics and resources
mediation at university. In E. Nardi, C. Winslgw, & T. Hausberger (Eds.),
Proceedings of the First Conference of the International Network for Didactic
Research in University Mathematics (INDRUM 2016, 31 March-2 April 2016)
(pp. 444-453). Montpellier, France: University of Montpellier and INDRUM.

Gueudet, G., Pepin, B., & Trouche, L. (Eds.). (2012). From text to ‘lived' resources:
Mathematics curriculum material and teacher development. New York:
Springer

Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for
mathematics teachers? Educational Studies in Mathematics, 71(3), 199-218.

153 sciencesconf.org:indrum2018:174742



Guin, D., Ruthven, K., & Trouche, L. (Eds.). (2005). The didactical challenge of
symbolic calculators: Turning a computational device into a mathematical
instrument. New York: Springer

Pepin, B., Choppin, J., Ruthven, K., & Sinclair, N. (2017). Digital curriculum
resources in mathematics education: foundations for change. ZDM, 49(5), 645-
661.

Rabardel, P. (2002). People and Technology: A cognitive approach to contemporary
instruments (translation of Les Hommes et les Technologies). Retrieved from
https://halshs.archives-
ouvertes.fr/file/index/docid/1020705/filename/people_and_technology.pdf

Trouche, L. (2004). Managing the complexity of human/machine interactions in
computerized learning environments: Guiding students’ command process
through instrumental orchestrations. International Journal of Computers for
mathematical learning, 9(3), 281-307.

Trouche, L., & Pepin, B. (2014). From instrumental to documentational approach:
towards a holistic perspective of teachers' resource systems in higher
education. Research in Mathematics Education, 16(2), 156-160.

154 sciencesconf.org:indrum2018:174742



Central dialectics for mathematical modelling in the experience of a
study and research path at university level

Nacho Monreal Galan®, Noemi Ruiz-Munzén', Berta Barquero®

'Pompeu Fabra University. Escola Superior de Ciéncies Socials i de 'Empresa —
Tecnocampus, Matar6, Barcelona, Spain, nruiz@tecnocampus.cat,
jimonreal @tecnocampus.cat; “University of Barcelona. Faculty of Education,
Barcelona, Spain, bbarquero@ub.edu;

This paper presents the a posteriori analysis of a study and research path (SRP) on
comparing reality and forecasts of the number of users of certain social networks,
which appears as a teaching and learning proposal for mathematical modelling. We
analyse the main elements of the SRP that have been experienced with a first-year
course at university in management sciences degrees in two consecutive courses,
2015/16 and 2016/17. We focus our analysis on two essential dialectics for
mathematical modelling to be developed: the questions-answers and the media-
milieu dialectics. In particular, we take empirical results from the two successive
implementation of the SRP to outline through which mechanism these two dialectics
could be prompted.

Keywords: Mathematical modelling, study and research paths, dialectics, questions-
answers, media-milieu.

INTRODUCTION: THE SRP AS TEACHING PROPOSAL FOR
MATHEMATICAL MODELLING

The starting point of the research is the problem of inquiring into the conditions that
can help, and constraints that hinder, that mathematical modelling can be integrated
and developed in the teaching and learning of mathematics into current educational
systems, in particular, at university level. Researchers and practitioners agree that
teaching should not be focused only on the formal transmission of knowledge, but
also should provide students of the tools for enquiring into the study of real
phenomena and integrate mathematics as an essential modelling tool. This change
requires moving from a more traditional pedagogical paradigm of transmission of
knowledge, which mostly focuses on introducing students to already built
mathematical knowledge, to a paradigm of inquiry where the solving of problematic
questions leads learning processes and motivates the study of new knowledge.

In the particular case of the research on modelling and their applications and on
inquiry-based approaches some big steps have been made showing how, under
certain suitable conditions in different educational levels and curricular frames,
modelling activities may be successfully put into practice (Artigue & Blomhgj,
2013). However, although school institutions and researchers agreed that modelling
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should play an important role for a change towards a new pedagogical paradigm, the
real situation in school and university is not satisfactory (Stillman et al. 2013) and
the dissemination and long-term survival of these teaching proposals based on
modelling follows as a big challenge for mathematics education (Galbraith 2007,
Burkhardt 2006).

In the case of applications and modelling a shared excitement unites many who have
enthused about early experiences in the field, for example when students unleash latent
power that for whatever reason had remained fettered in their previous mathematical life.
However this very exhilaration can work against further progress, both individually, and
particularly at a system level, by creating a sense of adequate achievement that obscures
the reality that there is so much more to do.

In our research, developed in the framework of the anthropological theory of the
didactic, we focus on the use of the study and research paths (SRP) as
epistemological and didactic model (Chevallard, 2015; Winslow et al., 2013; Serrano
et al., 2013) to face the problem of moving towards a functional teaching of
mathematics and, particularly, where mathematics are conceived as a modelling tool
for the study of problematic questions. According to Barquero and Bosch (2015), the
starting point of an SRP should be a lively question of real interest for the
community of study (students and teacher/s). The study of Q,, called the generating
question, evolves and opens many other derived questions Qi, Qy,..., Q.. The
continuous looking for answers to Qg (and to its derivative questions) is the main
purpose of the study and an end in itself. As a result, the study of Q, and its derived
questions Q; leads to successive temporary answers A; that can be helpful in
elaborating a final response RY to Q. These first characteristics can be associated to
the first level of analysis of the SRP that we here consider, it consists in the
dialectics establishing between the questions posed and the likely answers appearing
(questions-answers dialectic) which also provide the basic structure of an SRP to be
implemented and to be enriched after each implementation. This first layer refers to
the evolution of questions to be faced and the necessary knowledge to be used.
Another central dimension for an SRP is the media-milieu dialectics, which
constitutes the second level of analysis. As described in the aforementioned
investigations, the implementation of an SRP can only be carried out if the students
have some pre-established responses accessible through the different means of
communication and diffusion (that is, the media), to elaborate the consecutive
provisional answers A;. These media are any source of information, such as:
textbooks, treatises, research articles, class notes, or the teacher acting as main
media. However, the answers provided are constructions that have been elaborated to
provide answers to questions that are different to the ones that may be put forward
throughout the mathematical modelling process. Thus they have to be re-constructed
according to the new needs. Other types of milieus will therefore be necessary to test
the validity and appropriateness of these answers. This second level of analysis put
attention to the evolution of the students’ milieu.
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With this aim, we present an analysis of a particular SRP about the evolution of users
of certain social networks that we will analyse in term of these two central dialectics
and, more concretely, focusing on two critical questions:

(1) How to enhance dialectics between posing questions and looking for answer as
engine of the modelling process? How to transfer to students the responsibilities of
posing questions and looking for answers? (2) What milieu is necessary for students
to facilitate a rich development of modelling? How a richer media-milieu dialectics
can be developed?

DIDACTIC ANALYSIS OF A MODELLING PROCESS: THE CASE OF AN
SRP ABOUT THE EVOLUTION OF THE NUMBER OF FACEBOOK USERS

We focus on analysing the case of an SRP on Comparing forecasts against reality in
the case of Facebook users’ evolution. The first time it was experienced was during
the winter term of the academic year 2015-16 with first-year students of Business
Administration Degree and of Innovation Management (BAIM), all from the ‘Escola
Superior de Ciéncies Socials i de I’Empresa-Tecnocampus’, Pompeu Fabra
University (see Barquero, Monreal, Ruiz-Munzén & Serrano, 2017). During the
academic year 2016-17 it has been implemented again in the same university degree.
The SRP has run in a modelling workshop that was optional activity for students
during these last two academic years. In this paper we analyse and compare both
implementations by using two central dialectics: the questions-answers and the
media-milieu dialectics.

The initial situation starts from real news about a research performed by Princeton in
2014, in which it was predicted that Facebook would lose the 80% of its users before
2017. Hence, the generating question Qo presented to students is about: Can these
forecasts be true? How can we model and fit real data about Facebook users’
evolution to provide our forecast the short- and long-term evolution of the social
network? How can we validate the conclusions of Princeton? The experimentation
was structured in three interconnected phases linked to the generating question Qq,
building up the a priori design of the SRP, then reflected in the design of the c-book
unit. A first phase that focuses on the open research of real data about Facebook
users, a second one focused on finding mathematical models (mainly based on
elementary functions) that may provide a good fitting to real data, and a third one
about the use of these models to forecast the behaviour of the social network in short,
medium- and long-term in terms of number of users and about how to decide about
best and most reliable model.

Previously, during the first term (4 ECTS of the subject) students had been getting
familiar with the main properties of some groups of functions (polynomial, rational,
irrational, exponential and logarithmic functions) as well as with basic topics on
differential calculus and its applications to the study of the monotony and
optimization of one real variable functions. Actually, before starting the first session
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we asked the students to answer a test on some of the mathematical tools that mainly
make the workshop up, as indentifying some types of elementary functions or the
concept of fitting model in certain scatter plots.

In the first experimentation 27 students, working in ‘consultant teams’ of 3-4 people,
got the order from MS2 Consulting (‘Mathematical Solutions Squared’) previously
described as Q, and they were asked to deliver a final report by the end of their work
as an oral presentation as response to the MS2 request. The implementation
combined face-to-face sessions in the teaching device called ‘Math modelling
workshop’ (in a total of six 90-minutes weekly sessions) for the miss-in-common of
the junior consultant teams’ partial reports, with work out of the classroom. For the
second experimentation 12 students (18 students started the workshop, but they left it
in the second session due to external matters) worked also in teams of 3-5 people.
This time we opened a Moodle virtual classroom to provide the students the teaching
aid of the workshop, as well as some communication and collaborative tools (forum,
a different wiki for each phase, etc.) to write their progress and pose their new
questions. The generating question Qo was presented in a small dossier, next to the
initial subquestions of each of the SRP phases (Q;, Q. and Q). The workshop run
over seven face-to-face 90-minutes sessions before the final session, in which
students should present their conclusions in an oral presentation in front of an
external committee with representatives from MS2 Consulting.

Next we sketch in the case of the two implementations how the different dialectics
were prompted by both: (a) the design of the unit (by its initial design but also by the
different changes introduced according to students’ requirements: new questions and
answers not envisioned, new media required, etc.) and (b) the didactic gestures and
devices to manage its implementation.

Integrating the dialectics of questions-answers as engine of the SRP

The a priori design of the SRP was basically the same in both implementations,
structured in three interconnected phases linked to Q,, which guided the design of
the workshop throughout its implementation. A first phase focuses on the open
search of data about Facebook users; a second one focused on mathematical models
(mainly based on elementary functions) that might provide a good fit to Facebook
users data; and a third part focused on the use of these models to provide short-,
medium- and long-term forecasts about the number of users of Facebook and on how
to decide on the best and most reliable model. Figure 1 (and the explanation below)
shows the link between different questions (Q;) that were planned as likely to appear
in the real implementation of the SRP and some expected answers (Ai) from the
working teams. The only difference of the second design with respect to the first one
was motivated for the context in which Qg was presented originally: the predictions
made by Princeton were supposed to happen in 2017, and this year was present tense
for the students of the second experimentation. Hence, we decided to make the same
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questions, but giving freedom to students of focusing in any other social network
students were interested in.

(@ L. PHASE 3
| .Ql.l | Q| '» Qs ) Qis 7:' ! \ \ B
- o | Q3.1

PHASE 1 i PHASE 2 ; —

Figure 1: Tree of questions and answers of the different phases of the SRP

Q:: Which data sets about the users of the social network are better to consider in
our research? - A;: Each group look for the data to be used and shared; the whole
community agree on the terminology (year, period, units, etc.) and on the
dependent and independent variables to take into account.

Q11: Which time intervals may be considered? Q;,: How can data be well-organized? Qi3 How to
organise and visualise data? Q4: What can we say about the growth tendency of the data analysed?

Q.: Which mathematical models provide the best fitting of data about the network
users? > A,. Each consultant group is asked to propose and justify three
mathematical models fitting real data.

Q2.1: Which models (based on elementary functions: linear, parabolic, exponential, etc.) may fit the
data? Q,.,: How can the coefficients of the model be determined?

Qs: How can we decide about the ‘best’ fitting model? Can we use this model to
predict the future evolution of users? - As;: The teams need to create tools to
justify why a mathematical model/s is/are the ‘best’ with respect to: (a) fitting data
and (b) forecasting the evolution of users.

Qs.1: How can we compare the error committed between reality and forecasts provided by models?
Qs.: Can be the same model used for the short- and long-term forecasts?

Let us now comment the main features of the a posteriori analysis of the
experimentations, referring here to the questions-answers dialectics level.

Regarding the first phase, we should remark the ease with which the students found
real data about the evolution of the social net. The students mainly found the
information by means of a graphical representation. This fact strongly determined
their analysis, since they mainly focused in the graphical analysis growth tendency of
the data, but not in their numerical versant, making Q4 being treated before the
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other ones (it was considered that students would have data in table format before
having graphs). With respect to the first experimentation, the fact that many groups
found the same data triggered an intense debate and interchange of ideas among
them, which took us to consider a brainstorming session about the previous
hypothesis in the classroom, and as a consequence, the duration of the first phase
was extended from 3 to 4 sessions. Due to the wealth of answers collected during the
brainstorming we asked the students to deliver a first report in a poster format,
synthesizing their findings, conclusions and new questions made by them. In the
second experimentation the fact that students could choose a social network implied
a disruption with the usual topos of the students in the process of study, since they
were responsible on the delimitation of the field of study. They noticed about the
difficulty of finding reliable data of some of their choices (Snapchat, Instagram,
Twitter...), so finally only Facebook and Instagram were object of study, and not
only the number of users with respect to the time, but also other variables that could
have a relation. Another question that raised here was the role of the intervals of time
of the data obtained, and how to work when data are not regularly spaced in time.
These questions enriched the a priori design of the SRP. The presentation of the first
phase was done on the third session, and there had not been interchange of ideas with
other groups during the first phase. Furthermore, we asked students to present their
plan of work: the questions that they wanted to deal with, when and how. This
showed that each group had planned the next steps in many different ways and with
many different variables. Nevertheless, the lack of time and our interest in the study
of one real variable function made us proposed the students to use only the variables
“Time” and “Users”.

Let us focus now on the second phase. In both experimentations the analysis of the
different proposals made arise a non-expected aspect: the use of piecewise functions.
Then the expected answer to Q, about the consideration of models based elementary
functions (linear, quadratic, exponential, etc.) was extended. In the case of the first
experimentation, since many groups worked finally with very similar data on the
worldwide evolution of FB users, we took two new decisions: (a) give each team a
second set of different data, corresponding to different geographical areas, in order to
contrast their hypothesis and extend their study; and (b) ask for more than one fitting
model for each data set. This was not necessary in the second experimentation, since
each group had different data sets. Besides, in both workshops new questions and
answers appeared at this stage with respect to the change of tendency of the fitting
models, in accordance to a particular action or to decisions of the corresponding
social network (IPO, new rival social nets, purchases of the company, new
developments, etc.), which determined the moments of change of tendency.
Furthermore, in the second experimentation we let the students choose a software for
representing their data and the functions. This made question Qi, emerge again,
since they needed to adapt their data to the different software used. Just one group
decided to use Geogebra, so they were provided the applets we used in the previous
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experimentations (Barquero et al. 2017). Instead, another one decided to make
interpolation in order to find functions fitting their data, so they used Symbolab and
added some questions about how to solve non-linear systems of equations. The third
group worked with Excel for representing a scatter plot, and used linear and non-
linear regression. This motivated a big change in the SRP, since question Qs:
emerged naturally in the exposition of their findings at the beginning of the third
phase (since they have used the R-squared of their model given by the software).
This gave birth to an interesting discussion on different ways of measuring the error,
and the professors had to present this question as a central matter.

Concerning the third and last phase, in both experimentations we only had two face-
to-face sessions of the workshop, but were not enough for a rich development of Q.
Although this time constraint, in the first implementation of the SRP there were some
applets designed and made available for students to help on the simulation of models
and its contrast to real data. It helped students to delve into Qs, but not many new
questions appeared from this work. With respect to question Qs, only one group
dared with long term forecasts to give a date for the moment in which the users of the
chosen social net would start decreasing. Both implementations finished with a final
presentation of their modelling work and conclusions to an external committee.

Before finishing, we should remark that in both implementations the common
discussions, presentations and brainstorming session became the main device for
students to formulate and organize new questions, debate answers and contrast them.

The progressive enrichment of the milieu: the media-milieu dialectics

Since we have the first layer of analysis of the SRP in terms of the arborescence of
the questions-answers, it is important to ask when, where and how questions can
arise and answers can be developed. It is at this new level when there may appear the
different elements taking part of the milieu, composed of varied elements: questions,
temporary answers, pre-existing answers in or out school, means to validate answers,
experimental data, etc., accessible through different kind of media (textbook,
lectures, website resources, etc.). The relation among these elements can be analysed
through the media-milieu dialectics. The constant dialectics between the search for
data (for instance, real data about users of social networks, or about the company
changes) and pre-existing answers (ways to organise data, common models to fit
population evaluation, elementary functions, tools to control error, etc.) that exist in
different media available for students (web resources, contents of Mathematics
course, answers from lecturers from other courses...) and the creation of the
appropriate means (milieu) to integrate (or refuse) them has been central in our SRP.
Let us stress the importance of some of them.

In the first phase of the SRP, it was important to some groups the topics worked in
another course called ‘Introduction to digital communities’ (running in parallel to the
workshop) who helped on providing a general sense and functionality to Q, and to
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show how the students could look for real data and some techniques to organise
them. All these elements took part of the media accessible to students, at the time it
enriches students’ milieu mainly composed at this stage of the data sets that each
team chose to work with (shared and debated early with the whole class in the first
implementation, and before the second phase in the second implementation; even
strongly in this case, since the variety of data found was higher and let them make
comparisons between different social networks). All these elements helped them to
prepare a first report with the first temporary answer A; (a poster format given in the
first implementation, and a face-to-face presentation in the second). Here we should
remark the importance of making their plans explicit (especially in face-to-face
sessions) to construct a common frame to be the source of new questions, as well as
and to integrate in their milieu new concepts about modelling, and ideas of other
groups that could help them. It is in the second phase in which we find more
differences. In the first experimentation, the a priori design contained some
Geogebra applets proposed to help students to explore different models based on
elementary functions (Q,). These applets provided the main media for students to
visualize data jointly with model simulation, and also took part of their milieu as
main tools for contrasting, comparing and deciding on the ‘best’ models to choose.
Nevertheless, there were other tools not planned in the a priori design (as piecewise
functions, or Gaussian functions, most of them part of their milieu, since they had
been introduced in previous courses) but provided by designing new applets. In the
second experimentation only one group used these applets, so their path followed
was more similar to the first ones; but two groups decided to use other software
mentioned above (that they could know from Statistics or other subjects), which
made the main difference with the first implementation: meanwhile the first applet
seemed to drive students to apply only a trial-error method, tools like interpolation or
regression made students arise an earlier answer. Here again the common forum
stated as a face-to-face session motivated an enrichment of the student’s milieu.
Regarding the third phase, there were several important questions that were not
addressed properly, such as Qz; about the way to measure the differences between
data and forecasts, but here there is a main difference between both implementations.
In the first one the students assumed and uncritically used the milieu made available
through the design of an applet, a sort of black box to get immediate answers.
Instead, in the second one students had to construct their own tool for measuring the
error, and one group made it with Excel. Just one group could answer Qs but the
answer was totally produced by them, so they could communicate it to the rest of the
class, extending the appropriate milieu to other groups.

FINAL REFLECTIONS

First of all, we should mention that students are not in general motivated to validate
their results after a work of research, since a lecturer will finally do it. In this
workshop students were responsible to validate or justify every decision they made
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by the end of each phase. And this is the main reason why other questions arise and
contribute to enrich the a priori design of the SRP.

In this paper we focus on the case of an SRP on comparing forecasts against reality
in the case of the evolution of the number of users of certain social networks to show
the use of two dialectics: the one of the questions-answers and of the media-milieu,
corresponding to two of the three complementary level of didactic analysis of
teaching and learning processes (Chevallard, 2008). Besides their analytic use, they
suppose a productive framework to enrich teaching and learning practices, in
particular, on modelling.

In what concerns to the questions-answers dialectics, the generating question Qo
about the controversy of the article by Princeton was adopted by the students with a
great interest from the very beginning and, up to the end of the process, was kept
alive. From the two presented implementations we can underline very important
conditions that were created. First, the flexibility of the lecturers and designers team
that were opened to readjust the schedule according to students’ team work.
Furthermore, they were very attentive to integrate in their presentations all new
questions and means that the students asked for. Second, students were very active
on the sessions to share their proposals, making derived questions emerge naturally,
some of them planned in the a priori design, some others that extended the initial
proposal. Regarding the media-milieu dialectics, in the case of this SRP, we took
several decisions along the implementation of transforming the media offered to
students to help them in the modelling process and also to observe the impact new
media had on students’ milieu. Nevertheless, giving students the chance of using
their own ICT tools, as was decided for the second experimentation, enriched the
media-milieu dialectics, since it helped to arise other different answers that had not
happened during the first experimentation. We may insist again on the role played by
very important contributions, such as collaboration with other subjects, focusing
some workshop sessions on discussing external answers that students brought, the
creation of applets to foster students’ experimental work, among other interesting
aspects.
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INTRODUCTION

Mathematics is as important in most branches of engineering, as engineering is to the
prosperity and development of contemporary society. Thus, it is of great importance
to investigate exactly what mathematics is needed by (future) engineers, and how it
could be effectively taught to them; such research is only emerging (see e.g. Winslgw
et al., to appear, sec. 2.5). In the common case where mathematics is taught in
separate “service” courses which cater to several different study programmes, these
guestions may be considered in entire separation: a syllabus for the mathematics
course is decided based on needs in the different study programmes of engineering
which include the course, and subsequently the syllabus is delivered by mathematics
faculty. This amounts to a complete separation of external and internal didactic
transposition, in the sense of Chevallard (1992), where the selection of mathematical
contents to be taught may be based on needs and priorities from the engineering
disciplines, while the actual teaching is carried out according to generic standards and
methods for teaching mathematics. The aims of the overall study programme (in
engineering) are only considered in the external transposition of the mathematical
knowledge (see Fig. 1). We can call this model a parallel model for teaching
mathematics to engineers, as the internal didactic transposition runs in parallel to the
rest of the programme and does not interact with it (while it is certainly intended that
the students’ learning serves in other courses, later on).

Scholarl Mathematics Mathematics
y . —7~ | knowledge to be > | knowledge actually
Mathematics taught (syllabus) taught
Int. Did.
Coordinated Transpo.
External Didactic
Transpositions Int. Did.
Transpo.
Scholarl Engineering Engineering
. y —__5 | knowledge to be |— 4 | knowledge actually
Engineering taught (syllabus) taught

Figure 1: The parallel model for didactic transposition in engineering education

165 sciencesconf.org:indrum2018:172127



In the literature on university mathematics education, it is widely agreed that the
parallel model has drawbacks:

- students may experience the mathematics teaching as unmotivated and
difficult, which is reflected in relatively high failure and attrition rates for some
engineering programs (e.g. Baillie & Fitzgerald, 2010).

- the knowledge they acquire in the mathematics course may not transfer readily
to engineering contexts, in the sense that students are able to invest the
knowledge acquired in mathematics courses when they need to do so in other
courses of the programme (e.g. Britton et. al., 2005).

Motivated by these well-known problems, the model in Fig. 1 has been modified, in
many universities, by various attempts to relate the internal didactic transposition of
mathematics more closely to the rest of the engineering programs (e.g. Kumar &
Jalkio, 1999).

One of the most common ideas to further such an interaction is that to include, in the
mathematics course, more or less simple examples and student assignments where
engineering problems are solved based on mathematical methods and theoretical
notions (see, for instance, Harterich et al., 2012). A main challenge here is that
university mathematics teachers usually have no in-depth knowledge of any
engineering discipline, let alone of all the specialties which the course they teach
caters to. Of course they may then ask engineering specialists for help to identify
authentic problems from Engineering which can be solved using the mathematics to
be taught in their course (we abbreviate this kind of problems as APE). In that way,
“Scholarly Engineering” may exercise a more direct influence on the internal didactic
transposition of mathematical knowledge (cf. Fig. 1). In this paper, we investigate
some general questions related to the implementation of this (quite common) idea at
the level of the internal didactic transposition:

RQL1. How could the identification and transposition of APEs be organised, given
the academic and institutional separation of university mathematics teachers from
their colleagues in engineering?

RQ2. What didactic variables (cf. eg. Gravesen, Grgnbak and Winslgw, 2017) are
relevant to the construction of assignments based on APES?

It is clear that answers to these questions will depend on institutional conditions and
that even when such conditions are given, one will at most obtain very partial
answers in the sense of reasonably validated examples of organisations (RQ1) and
didactic variables (RQ2). As always in education, transfer of “answers” from one
context to another will require some adaptation and interpretation, but this limitation
may in fact be less important for the above questions, given the relatively high
similarity of mathematics courses, the engineering programs they serve and the
institution which deliver them. For these reasons, and given the importance of the
matter already argued, it appears worthwhile to present such locally and partially
validated answers. Concretely we will present and analyse the process, principles and
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products of APE design done at the Technical University of Denmark since 2000.
Founded by H. C. @rsted in 1829, this is one of the most prestigious Schools of
Engineering in Europe, and by far the largest in Denmark.

A TASK DESIGN PROCESS

Mathematics 1 (hereafter Matl) is the basic mathematics course for 17 different
B.Sc.Eng.-programmes at the university, catering to about 1100 students per year.
The course occupies 1/3 of the students’ time during the first year, and covers
complex numbers, basics of Linear Algebra, Ordinary Differential Equations
including linear systems, and multivariate and vector Calculus up to Gauss’ theorem.
Besides ensuring a technical foundation for later work, the university also considers a
common course on mathematics as important to the formation of an engineer identity.

Most of the course is quite traditional, however with intense use of the computer
algebra system Maple. Exercises with easy applications to engineering occur.
However, during the last four weeks of the course, the students work on a “project”.
This is an assignment containing about 20-30 more or less challenging tasks, related
to a mathematical model related to an APE. The model is usually given in the
assignment, and while some new mathematics may be introduced, the starting point is
Matl. Each project assignment is presented in a text of varying extent (ranging from
4 to 29 pages, averaging 11); it is those texts which we aim to analyse in this paper.
The students do the projects in groups, hand in a report of about 20-50 pages, and
defend their work during an oral exam, which accounts for 25% of their grade.

The groups can choose their assignment from a list of 4-5 projects, in part depending
on the study programme, with titles like those shown shown in Fig. 4. As the titles
suggest, the project problems come from many different areas of Engineering. Every
year, new projects are added and some are dropped; and the details of retained
projects are updated based on teachers’ experiences. The elaboration of new projects
is a particularly delicate undertaking. When the first projects were done from 2000-
2006, a systematic effort was deployed to engage researchers from the university —
both applied mathematicians and researchers from Engineering at large - to propose
project topics; they were then, mostly, drafted or adjusted by the course responsible.
Some are still used in revised form.

It is the task of the course responsible to organise the production and revision of
projects. The initiative can come from teachers at the course or other mathematicians,
who identify a more or less classical APE which can form material for a project; then,
the motivation is often that some specific parts of Matl can be worked on in new
ways. But the initiative also frequently come from colleagues from other
departments. In some cases, their motivation is personal fascination with mathematics
in a more or less current APE, and possibly ongoing collaboration with mathematics
colleagues in this relation (reflecting an interaction between Scholarly Mathematics
and Engineering, which could be added to Fig. 1). In other cases, they propose an
attractive current APE for a Matl project, in order to attract students to their specialty
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later on — these colleagues then, sometimes participate for free as supervisors on the
students’ project work.

Summing up what the process involved in Matl could contribute to RQ1, at least two
venues can be identified in relation to Fig. 1:

- Scholarly (applied) Mathematics and other basic sciences such as chemistry
and physics, where the main source of motivation is mathematical contents
related to Matl; but work done here can still involve or lead to APE. Project
proposals from this source are typically mathematically “rich” but are not often
related to current research.

- Scholarly Engineering, often with current APE’s; the elaboration of a project
typically necessitates considerable adaption to fit Matl, and is often tailored to
the interest of students from a small range of study programmes.

Finally, the genesis of a project may involve a mixture of both sources, when the
APE is identified by scholars with a deep involvement in both areas.

DIDACTIC VARIABLES AND PRINCIPLES

To present and analyse the project assignments which have appeared over the last 15
years, we have defined 10 didactic variables (DV) which are relevant to classify
them according to the aims which have, explicitly or implicitly, been pursued (Fig.
2). Each variable has, in principle, a non-numerical range, but can be determined with
relatively high objectivity for each assignment, based on the text. The detailed
presentation of any project in terms of the variables will, naturally, be difficult to
compare with others when given in this form. So when considering all projects it
appears useful to assign indicatory numerical values to the DVs on a scale from 0 to
2: for instance, to assess the breadth of Matl contents which a given project requires
the students to work with, 0 indicates that only one topic (such as systems of linear
equations) is involved, 1 that a few topics from both Calculus and Linear Algebra are
involved, and 2 that the project combines many topics. Naturally, this “grading” is
not absolute but relative to other projects (cf. also Fig.2). In the next section, we
outline a concrete assignment and explain, at the same time, how the numerical
values of the other DV’s are set. The variables were initially formulated in by the
authors (based on the first authors’ many years of involvement in the design) and
subsequently validated and adapted during the actual analysis of assignments. The
variables thus constitute a concrete answer to RQ2, which is of course a partial
answer based on experiences from context we described. In the rest of this paper, we
provide more explanation on how the variables can be used to analyse concrete
projects and, potentially, to direct and systematize the design of student assignments.

For each DV, Fig. 2 also includes a brief description of the more or less explicit aims
which have been pursued in the construction of projects over the past 17 years. The
brevity required in the Table format does not allow for much nuance. We note that
what is ideal use of Maple is not subject to complete consensus among the teachers of
the course, or in relation to the rest of the institution. On the one hand, some course
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teachers consider that students should use Maple whenever it is useful; while others,
including colleagues from other departments, often insist on the value of students’
mastery of basic manual computation (as reflected in the aims for DV3 given in Fig.
2). The variables DV4-10 all describe aspects of the relationship between the internal
transposition represented by the assignment, and Scholarly Engineering (cf. Fig. 1).
Their values are thus of specific importance to go beyond the parallel transposition.

Didactic variable (DV): Aim of designers:

DV1 What breadth of content areas from As many as possible, preferably
Matl are needed to solve the involving new combinations. Depth

assignment? What depth of use? beyond “standard tasks” required.
DV2 What new mathematical contents Contents in continuation of Matl, not
are introduced? excessive for students to cope with
DV3 How must/can Maple be used? Maple should mostly be used to:
- DV3a How essential is the Maple use? avoid tedious
- DV3b What types of Maple functions (numerical, computations,
symbolic, graphical...) are relevant? and for tasks
- DV3c Are the relevant use known or new to students? which the
- DVad Is there black box use of Maple ? students could not
- DV3e What parts of the Maple use are prescribed? handle otherwise

DV4. What is the "theme” and source of Origin in APE, if possible source in
the problem the project attacks paper or ongoing research in engineering

DV5. Breadth of engineering problem — Ideally more than one branch of
are more disciplines involved? engineering involved

DV6. How is the mathematical model Ok if model is given in the assignment,
established and worked with? but the students should work with its
details and structure

DV7. How realistic is the model? As much as possible for the students

DV8. How are data used? Data from the source, used as there

DV9. Should the students look up This is not a main aim, except students
information outside assignment? should use Mat1 course material

DV10. How complete answers does the Clear and definite answers/points, to
model give to the main problem? give students a satisfying experience

Figure 2. Didactic variables for the analysis of project assignments.
PRODUCTS

A total of 37 projects have been proposed during the past 10 years. Not all projects
are used every year, and all are revised before use, in the light of past experience,
new needs in the course, and in a few cases, updates to the APE and its solution from
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Scholarly Engineering. We first give a relatively detailed presentation and analysis
(based on the DVs) of one project; at the same time, we describe how each of the 10
DVs is assigned a value as described above, for a rough analysis of the projects. Then
we present an overview and rough analysis of the whole inventory of projects.

In-depth presentation of one project

We now take a closer look at one of the projects, entitled: Heat flow in a house —
simulation and dimensioning. The assignment is relatively long, 18 pages, including
about 5 pages of data. The first paragraph outlines the underlying APE:

The building sector accounts for about 40% of the total energy consumption in Denmark.
It is a common assumption that there is a large unrealized potential for reducing the
consumption (...) in a financially sound way. This requires knowledge of the physical
processes which affect the energy consumption of buildings, the financial aspects of the
construction and maintenance of buildings, as well as the mathematical methods used to
compute these.

It turns out that the energy flow in the building is modelled as an analogy of currents
in electric circuits (cf. Fig. 3). The project is based on a genuine APE, and
bibliography of the assignment includes a reference to Nielsen (2005) which is the
essential source (DV4 = 2), along with a “pricelist” from the construction industry,
and the last part of the assignment draws on a simple model of investments and
interest. Relative to other projects, this assignment involves a relatively broad area of
Engineering fields, and DV5 is set to 2. The introduction acknowledges that the
model proposed in assignment is “a bit simplified”, but in fact it still gives similar
results; we assign DV7 to 2, in spite of some problems (see end of this section).

o C N
O
1 i ‘
Zone 1 ' v ¢

Zone 2

Zone 3

Figure 3. A figure from the project assignment “Heat flow in house”.

The central model, illustrated in Fig. 3, concerns a house with three rooms, called
“climate zones”. Here Q, are the internal and external heat sources (heaters and
sunlight), while C, are the heat capacities of the rooms and K, are the heat
transmission coefficient of the walls of the house, reflecting that these walls involve a
variety of layers. Before introducing the final model house, the students’ work with
the simpler case of a one-room house, and an external temperature T, which is a

170 sciencesconf.org:indrum2018:172127



given sine function. Based on further assumptions, this leads to the model for the
internal temperature Tj;, as a function of time ¢:

(*) o

: = K(Te - Ti) + P(Tset - Ti)

where T, is the desired internal temperature (constant), and P is the performance of
the internal heat source. While (*) is just a first order ODE, it still gives rise to
interesting Engineering tasks: the investigation of stationary solutions, the
performance needed to ensure an average temperature of 19.8°C, and the thickness
required to respect given limits on the oscillation of T;. The full model consists of a
system of three differential equations which are similar to (*) but with an added
complexity due to the heat contribution from sunlight which, moreover, is
investigated with two different models. The students must also take into account a
model of the walls involving layers of materials to be computed using authentic data.
Finally, to take into account the cost of construction, the students are given a simple
mathematical model for the total economy involving investment, interest, and
operation costs; the mathematics is very simple but still gives rise to interesting
questions regarding how to optimize, for instance, insulation thickness. Throughout,
the students use real data (DV8=2) but these are all given, so DV9=0. Throughout the
models are given to the students, and while students are given full and extensive
explanations, they are not really asked to do more than apply them; thus DV6 = 1.

The project draws on a broad range of Matl-topics: harmonic oscillations and
complex exponential function, single and coupled differential equations, solved using
advanced matrix algebra, involving both eigenvalue problems and quadratic forms.
Thus DV1=2, while DV2=0 as almost no new mathematics is introduced (the
exception being the argument required to justify the stationary solution to the system
of differential equations, which involves an extended eigenvalue problem).

While most of the tasks can in principle be solved manually, the visualizations of
temperature variations corresponding to different parameter values decisively require
a tool like Maple. The assignment moreover invites to numeric experimentations,
possibly based on graphical representations, and standard use for tedious operations
like inversion of matrices, make the overall potential of Maple-use relatively average
for projects; we thus assign DV3=1, even if the realized use by some students in
some cases goes beyond a mere use of techniques known from the rest of the course.

In real practice, the project also suffers from some flaws. Some of the questions lead
to less interesting results (like tedious computations leading to a requirement of a
four-doubling of the wall thickness in order to reduce an already negligible
oscillation of 0.12°C for T;). More serious is the breakdown of the model when taking
into account the contribution of sunshine at low temperatures such as 8°C, where the
stationary answer cannot be found. It can be argued that such problems often arise
with simplified models, but it still leaves a negative impression on many students,
which might be avoided by future revisions. Altogether, we consider DV10=L1.
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Inventory of project assignments

Fig. 4 lists the inventory of projects used in the last 10 years, analysed using the DVs.

DV (cf. Fig. 2)

Project name (shortened in a few cases)

3/4]5

[HEN
o

Oscillations in Axle-bearing Systems

Micro/Nano Cantilever Based Mass Sensor

Enzymatic Hydrolysis of Cellulose

Modelling 2D Halbach permanent Magnets

Factorization of Integers

Heat flow in house — simulation, dimensioning

Quantum Mechanics in a Nutshell

Red Blood Cells — Optimization in Nature

Utilization of the Waste Product Whey

Forced Pendulum

Stability in Chilled Tank Reactor

Optimization of Work Cycles

GPS and Geometry

Oscillations in Grid Constructions

Groundwater Flow in the Forest Vestskoven

Internet Hit lists

Short Circuit in Electric Networks

Simulation of Stretch Reflex

Parking Orbits of Satellites

Solar Energy Absorption in Curved Glass houses

Flow in Chemical Reactors

Finite elements in One Dimension

Geodesic Curves

The Brains Glycose Metabolism

Resistors and Markov Chains

Dosage of Anaesthesia

Anthrax — Attack, Escape and Rescue
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Decomposition of PCE 1/11/1/2/1|1/1/21|0
Modelling Concrete Moulding 1121212(2|1(22]2]|1
Soap Membranes 112|2/1/1|1(2/0]0]|1
Distribution of Electrons in Semiconductors 1{2(2(1(1/1|2|0|0]1
Methane Concentration Profiles in Soil 112)1/1/141/1/1/0]| 2
Train Running in the Alps 211/2(1(2(2]1|0]1|1
Proteins’ 3 Dimensional Structure 0/2|2|2]1]1|1/2|1]1
Reaction Kinetics 11212/1/1|1(2/1/0]| 2
Error Correcting Codes 0(2(2(1/1/1|1|0|0| 2
Phononic bandgaps 210122(212|1/0(0]| 2

Figure 4: Inventory of current projects with values of the didactic variables

A number of interesting tendencies can be identified in the above table, including
apparent dependencies of some variables, potentials which appear relatively
unexplored (like DV9), etc.; some of these are still not fully analysed. We stress that
a simple sum of the values of didactic variables, for a specific project, cannot be
construed as a measure of the “didactic quality” of the assignment. One reason is that
the variables are not of equal importance (in particular, DV1, 4 and 10 are essential).
But more importantly, one cannot always construe the number two as being
objectively “the best possible value” of the DV; the aims listed in Figure 2 are open
to debate and the viewpoint of teachers and designers may differ. A good example is
DV4, where we have given “2” for projects with a clear APE, “1” for projects with an
authentic problem from basic science (e.g. Chemistry) and “0” for projects which are
not based on an APE but on a (prima facie) purely mathematical problem, such as the
project “Geodesic curves”. One can argue that a project of the “0” type can also be of
high quality as a project for engineers, in view of the importance in several branches
of the mathematical problem (in the example, DV2=2 and indeed, geodesic curves
have multiple applications in many branches of engineering, see e.g. Patrikalaksis
and Maekawa, 2010, 265-291). A similar uncertainty must also be pointed out for
other variables such as DV3, where the further graduation suggested in Fig.2 could be
useful to provide a more nuanced picture than in the analysis in Fig. 4, where “2”
merely means that Maple is indispensable for large parts of the project.

SUMMARY AND OUTLOOK

We have presented the principles, process and products of a relatively longstanding
effort to integrate elements of scholarly Engineering (APE’s) in the internal didactic
transposition of basic mathematics in a course catering to a wide range of
Engineering programmes, going well beyond isolated “applications” of a Calculus or
Linear Algebra. We have emphasised the multiple dimensions which such an effort
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needs to consider, in order to maintain the link with the mathematical knowledge to
be taught within the module in question, and to establish non-trivial links with
Scholarly Engineering (cf. Figure 1). Certainly, the concrete inventory of variables
can be developed and adapted further, and we believe it can eventually become a
valuable explicit basis for the discussion of aims (right column in Fig. 3) of projects
in our and other similar contexts. More importantly, considering such explicit
variables could be an important tool for systematizing the design process, both as a
check list for constructing new projects and (in combination with the analyses behind
Figure 4) to identify potentials for enriching existing projects. We expect that the
variables will also become useful guidelines for investigating the effects of the
project work in this course as a means to facilitate the transition to later courses
where mathematics is so fully integrated into the Engineering knowledge to be taught
that the latter is in practice as inseparable from mathematics as music is from sound.
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Mathematical modelling and activation —
a study on a large class, a project-based task and students’ flow

Thomas Gjesteland, Pauline Vos, and Margrethe Wold
University of Agder, Norway, pauline.vos@uia.no

We studied how engineering students in a large class (n=346) can be activated by a
project-based task, in which they have to model mathematically the motion of an
object. The students had to throw an object, use (1) their smart phones for filming,
and (2) tracker software for capturing the motion. Through a poster, they had to
report their video analysis. We framed activation through the concept of flow, which
is a state of being fully absorbed by an activity. We administered a web-based
questionnaire (response rate 69%). The results show that such a project-based task is
feasible with >300 students and activated them: three out of five experienced flow.
Also, we validated the theory that for experiencing flow, a task must be perceived as
challenging and that one’s skills should match that challenge.

Keywords: flow, large class, mathematical modelling, mathematics for engineers,
novel approaches to teaching, project-based tasks.

INTRODUCTION

Harris et al. (2015) studied engineering students’ values regarding mathematics
finding that not many first-year engineering students have a positive stance towards
mathematics. The students see mathematics as a hurdle in their studies, and they are
disappointed by the mathematical demands in the first year of their studies. Some
even indicate that they wouldn’t have chosen the engineering direction if they had
known about the mathematics demands before. Nevertheless, mathematics needs to
be part of engineering studies, because alumni from engineering studies, such as
engineers, managers, researchers, etc., need mathematical modelling competencies to
describe, analyse, and predict phenomena to solve problems at the workplace (Alpers
et al., 2013). This means, that in particular mathematical modelling needs to be
included in engineering studies. It can be integral part of the mathematics curriculum,
but the learning of mathematical modelling can also take place in other disciplines,
such as physics, where mathematical models are used to describe and analyse
physical phenomena. The study described in this paper centres on a mathematical
modelling task situated within kinematics (the physics of movement).

In university first-year studies, engineering students often attend large-scale lectures
and have tutorial sessions to practice examination-like exercises. However, research
has demonstrated the advantages of activating, inquiry-based tasks over these
traditional instruction methods (De Jong, Linn, & Zacharia, 2013; Freeman, et al.
2014). This means that we need research in engineering education into what
mathematical modelling tasks can be activating, how these can be organised, how
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students experience these tasks, what task characteristics create challenges, etc.
Moreover, studies with large groups are scarce; the review by Freeman et al. (2014)
shows that most studies on students’ activation are carried out with small or medium
size classes (up to 110 students). With more than 300 first-year students, we can add
to the research on how engineering students in large classes can be activated.

Sullivan et al. (2011) describe challenging tasks as requiring students to: plan their
approach, especially sequencing more than one step; process multiple pieces of
information, with an expectation that they make connections between those pieces,
and see concepts in new ways; choose their own strategies, goals, and level of
accessing the task; spend time on the task and record their reasoning; explain their
strategies and justify their thinking to the teacher and other students. We used a task
format that fits this description: a project-based task, which is a task that cannot be
completed within limited time, which has a clear, but not straight-forward goal, there
are various approaches to tackle it, and results must be presented through a product,
such as a written report or an oral presentation (Blomhgj & Kjeldsen, 2006).

THE TRACKER PROJECT TASK

Dominguez et al. (2015) did research with a group of 20 engineering students and
asked them: a child is throwing a candy to another; make a mathematical model of
this movement. This modelling task is an open-ended task with characteristics of ‘a
challenging’ task (Sullivan et al., 2011): students need to sequence more than one
step; process multiple pieces of information and connect the throwing and the model;
choose their own strategies, goals, and level of accessing the task; spend time on the
task. We adapted the task in the following way: (1) students could choose whatever
movement of whatever object: throwing a ball, jumping their skate board, etc.; (2)
students were asked to use their smart phones for filming, as nearly all students
nowadays have smart phones with high quality cameras; (3) students were asked to
download tracker software ( http://physlets.org/tracker/ ), which captures motion in
videos based on contrasts and yields a table of time and position coordinates
(measurements). We made a tutorial video on the use of Tracker. The measurements
were to be mathematically modelled (i.e. create a formula that approximates the
movement). The required, final product was a poster, in which students presented
their reasoning — another characteristic of a ‘challenging task’ (Sullivan et al., 2011).
The poster had to contain the video analysis, including a discussion of the accuracy of
their mathematical model in comparison to the measurements. The task had to be
done in groups of two or three. Collaboration was convenient, because one student
alone cannot throw and film simultaneously. In our communication with the students
we indicated the task as the Tracker Project.

It was our first time to implement a project-based mathematical modelling task with
such a large group. Unlike earlier studies (e.g. Dominguez et al., 2015) we did neither
have a group of 20 students, nor uniform equipment, nor sufficient staff. We couldn’t
learn from earlier experiences, as — to our knowledge — there are no reports of similar
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studies carried out with more than 300 students. The few studies on the activation of
students in large classes centre on using clickers in lectures (Freeman et al., 2014).
Thus, we didn’t immediately want to focus on students’ learning, but instead, first
study the feasibility of such a task with such a large group, with the variation of
cameras, and with students who have little experience with open-ended tasks. We felt
that we — as lecturers — should first take the opportunity to learn how it worked in
practice, whether students liked the task and how they engaged with it.

In this paper, we report on our research into the extent to which students’ were
activated by the modelling task. By activation, we mean — for the time being — that
the task grasped them and that they liked working on it. Thus, our study is on
students’ attitudes, which is an aspect of their affect. Based on Harris et al. (2015), we
expected the engineering students to have preconceived beliefs about mathematics,
and we wanted to avoid that our research would be contaminated by their biases.
Therefore, we undertook our research by limiting the use of the word mathematics in
our communication with students. Abundant use of the term mathematics could
trigger memories and bias of traditional mathematics education, which could interfere
with their evaluation of the Tracker Project Task.

THEORETICAL FRAME

Recent research in the field of mathematics education and affect conceptualize the
latter in terms of complex, dynamic systems and participatory environments (Pepin &
Roesken-Winter, 2015). However, while distinguishing between aspects of affect
(values, emotions, beliefs, attitudes, etc.), these researchers don’t differentiate
between aspects of mathematics education. Yet, mathematics education contains
many aspects, such as instruction formats, teacher attitudes, tasks, etc. These become
invisible when researchers address mathematics holistically and ask students to mark
their (dis-)agreement to statements such as: ‘mathematics is my favourite subject’.
(Dis-)agreement to such a statement gives little room for nuances and contexts. A
student partly agreeing with this item might rather have said: “mathematics with this
particular teacher is my favourite subject, but last year it was the opposite” or
“mathematics could be favourite, if it had relevance for my future”.

We wanted to study students’ affect through an activity that differed from standard
activities within traditional mathematics education. Thus, we sought an activity-based
conceptualisation of affect. An activity-based perspective in mathematics education
aligns with a socio-cultural perspective. One of its promoters, Lerman (2000),
describes mathematics as a socio-cultural practice embedded within a community.
Within a school institution, mathematics is a practice embedded in a community of a
teacher and a group of students, its rules, language, etc. The activities consist, among
others, of explanations by the teacher, and work on tasks by students. This practice
differs markedly from mathematics as a practice within a research community,
whereby the actors organize mathematical patterns, solve creatively a non-routine
problem by using mathematics, and actors may reach different answers. Describing
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mathematics socio-culturally as a practice embedded within a community entails
focusing on the activities undertaken by the actors, which are mediated by language,
tools, etc. Using an activity-based conceptualisation of mathematics enabled us to
relate affect to distinct activities and not to mathematics holistically, whereby we
could distinguish mathematical activities as having different contexts. In our study
the activity was guided by the Tracker Project Task and students had to use
mathematics within a kinematics context.

We sought an activity-based conceptualisation of students’ affect with respect to
them being activated. Activation is an aspect of attitude, just like boredom or anxiety
(Pepin & Roesken-Winter, 2015). For this conceptualisation, we turned to a concept,
which describes “a state in which people are so involved in an activity that nothing
else seems to matter; the experience is so enjoyable that people will continue to do it
even at great cost, for the sheer sake of doing it” (Csikszentmihalyi, 1990, p.4).
Nakamura and Csikszentmihalyi (2009) describe how they observed rock climbers,
gamers, painters and researchers during their challenge, and how these people got
absorbed in their activities, felt happiness, forgot about time and basic needs (eating,
resting), and were intrinsically motivated (motivated by the activity itself, not by an
external incentive). They coined this state: flow.

Flow is an activity-based concept: without activity, there cannot be an experience of
flow. Flow is an experience of an individual, yet, the activity is culturally embedded
(e.g. gamers play a game created by others, painters expose their work). In fact, social
activities can intensify flow through group cohesion (group flow). We will use
students’ self-reported experience of flow as an operationalisation of their activation
through the Tracker Project task. Flow has also been studied in mathematics
education (a.0. Armstrong, 2008; Drakes, 2012; Liljedahl, 2016), observing that
many students in traditional mathematics classes is to not experience flow at all.

Figure 1 (left) illustrates how flow depends on the perceived challenge of a task and
perceived skills of a person engaging in the task (Nakamura & Csikszentmihalyi,
2009). If the activity is too challenging for the skills, then the task may cause anxiety.
If the activity is too easy for the skills, then the task may cause boredom. When
challenge and skills match, a person engaging in a task may experience flow. In later
work, Csikszentmihalyi and colleagues adapted the diagram, adding more affective
states, and stating that flow can be only experienced when a participant perceives the
task as more than averagely challenging, and that he/she thinks to have the skills that
match this challenge, see Figure 1 (right). The older diagram still appears in recent
studies (e.g. Liljedahl, 2016). Therefore, we opted to use our study to empirically
validate the old versus the new theory and see whether flow occurs only when the
actor perceives a more than average challenge. Our research was guided by two
questions. The first was empirical: To what extent did the Tracker Project Task make
students experience flow? The second was about the choice of flow diagram: Can
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one of the Csikszentmihalyi diagrams of flow be confirmed by plotting skills,
challenge, and flow into one diagram?

A
HIGH

Anxiety

Control

Challenge
Challenge

Boredom

Boredom

LOW

LOW HIGH

Skill Skill
Figure 1: Flow and other affective states related to task challenge and a person’s skills
(adapted from Nakamura & Csikszentmihalyi, 2009)

METHODS

In the Spring of 2017 we offered the Tracker Project task to all first-year students in
engineering at our university (Mechatronics, Electrical Eng., Data Eng., Renewable
Energy, ICT). There were 346 students for whom the task was mandatory.

The research design for studying students’ activation in terms of flow was a survey.
We collected data through a digital questionnaire. Participation in the survey was
voluntary, but encouraged with prizes of NOK 500 (approx $50) for three randomly
drawn participants. After removing seven participants (four had constantly chosen a 3
as answer, three were 2"9-year students for whom the task wasn’t mandatory), we had
n=239 students. This response rate of 69% is very high (Bryman, 2015).

Based on instruments from earlier research (Armstrong, 2008; Egbert, 2004), we
developed 15 items in alignment with the task. Each item consisted of a statement,
asking students for their (dis-)agreement on a 5-point Likert scale, from 1 (strongly
disagree) to 5 (strongly agree), see the Appendix. Five items were designed to
measure students’ perception of flow. For this, they could indicate, for example,
whether they forgot about the time, and whether they even would do the task if it
wasn’t obligatory. By having several items related to flow, a participant’s score is
indicator of the extent to which he/she had experienced flow. Five other items were
designed to measure students’ self-perceived skills (e.g. ‘the Tracker technology was
easy to use’ or (inverted) ‘It was complicated to find the right formula of the model’).
And a further five items were designed to measure students’ perception of the task’s
challenge (e.g. ‘during this task I started thinking about other movements (what if..?)’
and (inverted) ‘this task was more for secondary schools’).

We make a difference between flow as a concept (written in italics), and the scale of
Flow (with a capital letter). The concept of flow is a psychological state of a person,
and therefore it cannot be measured. However, we assume that it can be approximated
by a score on the scale of Flow. A student’s score on this scale results from his/her
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answers to the five questions in our questionnaire. The score on the Flow scale is
calculated by adding the scores on the five questions. As the score on one question
ranges from 1-5, the score on the Flow scale ranges from 5-25. Likewise for
respectively, challenge and the Challenge scale, and skills and the Skills scale. To
increase reliability, within each scale one or two questions were inversely posed, and
the scoring was inverted, too. As measure of reliability (internal consistency), we
calculated Cronbach’s Alpha: the Skill scale yielded 0.55, the Challenge scale yielded
0.73, and the Flow scale yielded 0.63. A scale is considered unreliable if Cronbach’s
Alpha is less than 0.5 (Bryman, 2015). Thus, the three scales can be considered as
being reliable.

RESULTS

We observed students everywhere on campus, flying paper helicopters, riding
skateboards, or throwing apples, cats or balls. We received more than 100 posters in
our Virtual Learning System. As explained before, in this study we didn’t want to
focus on students’ performance (the precision of their measurements, their
understanding of modelling, the depth of their analysis, etc.). Instead, we focused on
the feasibility of an activating tasks for massive students groups, which would show
in their activation in terms of flow as measured through the questionnaire. Second, we
aimed at seeing whether the measurement reproduced one of the two flow diagrams.
The Appendix shows mean scores on all items.

The mean score on four items in the Flow scale is higher than 3.5, being well on the
positive side. This indicates that a majority of the students experienced a state of flow
to quite an extent, in particular with respect to losing track of time, and not being
easily distracted. Only item 14 was answered below the middle range. This item
focuses on doing the task even if at some costs (Csikszentmihalyi, 1990), which
translates in our study to: one out of four would even do the task voluntarily.

100 4

| m 5kills
Scale mean (std dev) o | ® Challenge
70 A Flow
Flow (5 items) 17.031) g o0
: £ a0
Challenge (5 items) 15.5 33) < 0]
Skills (5 items) 18.8 27) o ]

5-7 810 11-13 14-16 17-19 20-22 23-35

Score

Figure 2: Scores to Skills, Challenge, and Flow scales (n=239)

When adding the students’ scores on the five questions, we obtain their score on the
scale Flow. See Figure 2 (right) for a bar graph. This graph shows the frequencies of
scores (number of students with certain scores). The green bars of the Flow scale
show a skewed distribution. On this Flow scale, 31 students (13%) scored 13 points
or lower, 67 students (28%) scored in the middle range of 14-16 points, and 141
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students (59%) scored 17 points or higher. When we take 17 points as a threshold,
then three out of five students experienced flow to quite an extent. The table in Figure
2 presents mean scores on the scales for Skills, Challenge and Flow (minimal score =
5, middle score range = 14-16, maximal score = 25). The scores on Skills are highest:
generally, students perceived themselves as highly skilled; the low standard deviation
indicates a high agreement among students. The scores on Challenge are around the
middle range; these scores are most “normal” (making a Gauss curve).

To validate the Csikszentmihalyi diagrams (Figure 1), we created a scatter diagram.
Each student was represented by a dot defined by his/her Skills score on the x-axis
and his/her Challenge score on the y-axis, see Figure 2. The resulting diagram shows
a scattered distribution, which means that there is no correlation at all between the
scales Challenge and Skills (r = 0.097). In this diagram, we added the third scale, the
one for Flow, by colouring the dots depending on the student’s Flow scores. These
scores range from red to orange (13 or lower), via yellow (middle range, 14-16) to
green (17 or higher). Roughly, one can discern overlapping red, yellow and green
areas. The red area is more visible at the bottom showing the students who
experienced little flow (13% of the students). These students indicated that the task
posed little challenge, independently of their perceived skills. The yellow area runs
from bottom right to the centre showing the students who experienced medium flow
(28% of the students). These students either indicated low challenge and high skills,
or medium challenge and medium skills. The green area is the largest with the
majority of students (59%). It is in the top-right, fading towards the centre, showing
the students who experienced flow to quite an extent. These students indicated that
they perceived the task as challenging, and they perceived themselves skilled.

25 1

20 -
* 5-7
& 3-10

& 11-13

Challenge

<@ 14-16
& 17-19
@& 20-22

10 4
& 23-25

5 10 15 20 25
Skills

Figure 3: Flow score indicated by color, as depending on Skills and Challenge

This colour distribution of Flow does not confirm the earlier Csikszentmihalyi
diagram (Fig 1, left), as the green dots do not centre on the diagonal. Instead, the
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green dots are more to be found in the area where the later Csikszentmihalyi diagram
(Fig 1, right) situates flow: the task must be perceived as quite challenging, and this
challenge must match one’s skills. A majority of the students in our study indicate
that they perceived the Tracker Project Task as such.

In light of the different regions in the later Csikszentmihalyi diagram, we also see
many students who may fit into the affective states of ‘control’, ‘arousal’ and
‘relaxation’. Only few students may fit the more negative affective states of ‘apathy’,
‘boredom’, ‘anxiety’ and ‘worry’.

CONCLUSION, DISCUSSION, RECOMMENDATIONS

We studied whether a project-based task was feasible with a class of more than 300
students, that is: whether the task activated individual students. The first research
question asked: to what extent does the Tracker Project Task make students
experience flow? The results from the survey showed that a majority of the students
(59%) experienced flow to quite an extent, forgot about time and wanted more of
such activities. This result was confirmed by anecdotal evidence of their boasting
stories in the tutorials of them throwing objects, and the high response rate to the
survey. This means that the Tracker Project Task activated a majority of the students
and that they had positive attitudes towards it. Thus, an activating mathematics task
can be feasible with a large class of engineering students, even if they are known to
have a negative stance towards mathematics (Harris et al., 2015).

The Tracker Project Task was designed to be challenging with characteristics such as:
expecting students to process multiple pieces of information, that they make
connections between those pieces, choose their own strategies, and explain their
strategies to others (Blomhgj & Kjeldsen, 2006; Sullivan et al., 2001). We observed
other characteristics in the Tracker Project Task that activated the students. First, the
task had a clear goal, which was understandable to all students. We observed this
through the few questions that we got from the students on how to carry out the task.
Thus, the task was easily accessible, also known as having a low floor. Second, the
better students were able to challenge themselves further, allowing for a high ceiling.
Third, the use of readily-available technology (cameras in smart phones, tracker
software) may have captivated the engineering students, who are known to be
technology minded. Fourth, the task was a mathematical modelling task embedded in
engineering practices, whereby mathematics served non-mathematical purposes; this
showed students the relevance of mathematics to their studies, and contrasted with
bare mathematics tasks that alienate and demotivate students.

Our second research question pertained to the theory of flow and how it can be
conceptualized in a diagram (Nakamura & Csikszentmihalyi, 2009). Our data reject
the earlier theory that flow depends on the alignment of skills and challenge. Instead,
our data support the later theory that flow occurs when the participants perceive the
task more than average challenging, and that their skills should match this challenge.
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Furthermore, we take from our study that the concept of flow proved useful for
activity-based research on affect in mathematics education.
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APPENDIX
Mean scores on all items (1=lowest, 3=middle, 5=highest).

Flow questions mean (std dev)
(Inv) This Tracker task took too much of my time 3.67 (0.:89)
Time was flying when we worked in this task. 3.40 (0.92)
(Inv) I was easily distracted when we worked on this task. 3.55 (0.91)
I would do this task even if it wasn’t obligatory. 2.60 (1.13)

| would like to have more of such practical tasks. 3.70 (1.02)
Skills questions mean (std dev)
The Tracker technology was easy to use. 3.89 (0:89)
(Inv) It was complicated to find the right formula of the model. 3.38 (092
The aims of the task were clear to me. 3.96 (091
During this task | had full control over what we did. 3.77 1.13)
Filming the movement of an object was easy. 3.76 (1.02)
Challenge questions mean (std dev)
This “Modelling med Tracker” task made me curious. 3.61 (0.75)
Making a poster made me feel like a “real scientist”. 2.52 (1.03)
(Inv) This task is more suitable for secondary schools. 2.58 (0.95)
This task helped me to better understand the theory. 3.39 (0.88)
During this task | started thinking about modelling other | 3.31 .12
movements (what if..?).
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Using schematic representation of resource systems to examine how
first year engineering students use resources in their studies of
mathematics
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Very little research has been done on how students use resources when studying
mathematics. My project aims to examine this both quantitatively and qualitatively.
The qualitative data collection includes hierarchical focus interviews, with
schematic representation of resource systems as a supplement. The intent is to
reduce the degree of co-producing answers and imposing terminology on the
students.

Keywords: Students’ practices at university level, the role of digital and other
resources in mathematics education, mathematics for engineers, documentational
approach, hierarchical focus interviews, schematic representation of resource
systems.

INTRODUCTION

The focus of my PhD-project is engineering students’ use of resources for learning
mathematics. Data collection takes place at three Norwegian universities. | focus on
which resources they use, to what extent and in what situations, as well as their
rationale for how they use resources.

THEORETICAL FRAMEWORK

| use the documentational approach (Gueudet & Trouche, 2009) to examine those
questions. Relevant to the approach is the term ‘document’ which is the joint entity
of a set of resources and schemes for utilizing them in certain situations to achieve
certain goals. Also relevant is the term ‘resource system’ for the set of all resources
an individual is using, structurally organized. For instance, what resources to use in
what situation can be part of the structure. The framework is designed to examine
teachers’ practices and professional development, but can be adapted to examine
students’ use of resources as well. One of the focuses of the framework is how
students’ documents develop (called ‘documentational genesis’). | look at students’
practices during their first year of university, when | expected a lot of development
to occur.

METHODOLOGY

| use both qualitative and quantitative means for data collection. | do so because I
want to study resource with some depth, while also getting an indication of the
variety of uses. Here, | will focus on qualitative data collection. I used hierarchical
focus interviews (Tomlinson, 1989). These contain strategies to reduce the degree to
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which the interviewer co-produces the answers. Prior to the first interview (of three),
| asked each student to draw a ‘mind map’ about their use of resources in
mathematics. | used their mind maps to create schematic representations of their
resource systems (SRRS), inspired by Pepin, Xu, Trouche and Wang (2016). From a
pilot interview in spring 2017, | theorized that the construction of a mind map helped
students structure their thoughts about using resources prior to the interview.

RESULTS

Qualitative data collection spanned the fall semester of 2017, with nine students from
three different universities. All students created a mind map during the first
interview. In the other 18 interviews, they made changes to their mind maps a total of
eight times. The students seemed comfortable talking about their use of resources
after constructing a mind map. Their descriptions of their mind maps also yielded
interesting insight into how they perceived their use of resources.

The students structured their mind map in several ways. They all contained
resources, but five students also had categories in their mind maps, three had
situations, five had what purpose they used certain resources for and one had features
they appreciated about certain resources. The resources that the most students put in
their mind maps were the textbook (nine), fellow students (seven), lectures (six),
exercises (six), lecturer (five), pencil and paper (five), Wolfram Alpha (four),
calculator (three) and google (three).

CONCLUSION

It is difficult to discern whether differences in students’ mind map structure only
represent stylistic choices, or meaningful differences in how they perceive their use
of resources. While a student’s mind map can say much about their documents,
analysing the mind map in a vacuum is insufficient. However, when mind map
construction is combined with an interview, the two forms of data may shed some
light on one another. The interviews may also benefit from the construction of the
mind map, as it gives students some time to consider their use of resources prior to
the interview.
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The research presented in this poster addresses the poor performance of many
economics students in their first mathematics course at university level. Two different
universities are involved in the research, trying to answer the question of “how to
structure teaching in mathematics to economics students at university level to
strengthen their mathematical competences?”

Keywords: Teaching and learning of mathematics in other fields, curricular and
institutional issues concerning the teaching of mathematics at university level.

How to structure teaching to improve economics students’ mathematical
competences? Research papers within economics are often heavily mathematical.
Mathematics is an indispensable tool in studying economics and in the economist’s
working day. The Norwegian Association of Higher Education Institutions (2011)
therefore stipulates that mathematics should be a useful tool for students in the
learning of other subject areas within economics.

Research has proved that mathematical knowledge in algebra and arithmetic is a good
indicator for performance in introductory economics courses (e.g. Ballard & Johnson,
2004). However, many universities are struggling to find satisfactory formats for
teaching mathematics as a service discipline, particularly in their economics
undergraduate degree courses.

At the University of Agder there is a first year, first semester course in mathematics
for economics students. The proportion of students failing this course, has for several
years been about 40%. This is an alarming issue and | have experienced similar
problems at Abo Akademi University in Finland, the university where | studied for
my master’s degree. Currently these two universities have taken opposite directions
regarding the teaching of mathematics to economics students.

Both universities face the issue of students’ diverse mathematical backgrounds. At
the Abo Akademi University the course in mathematics for economics students has
been moved to the first semester, to more naturally be a continuation of school
mathematics. At the University of Agder, a diagnostic test, compulsory for all
economics students, is being implemented. The test is followed by a preparatory
mathematics module; although not compulsory it is recommended that students with
weak mathematical background take it, prior to the main course in mathematics. The
preparatory module will consist of online, self-study material with a clear structure,
implemented in the Canvas digital learning environment with 3-4 workshops.

The overall goal of the research is to improve the teaching of mathematics for
economics students and to optimize their learning. This poster is about the first stage
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in the research process and considers productive opportunities for research on the
diagnostic test and the online preparatory mathematics module. Students studying and
participating in activities online produce a huge amount of data which gives the
opportunity to use Learning Analytics (LA) as a research method to better understand
the mathematical needs of economics students and their use of mathematical
resources. Pefia-Ayala (2017, p. 6) writes: “LA in the context of higher education is
an appropriate tool for reflecting the learning behaviour of students and provide
suitable assistance from teachers or tutors.” | thus want to find out what factors in the
preparatory mathematics module contribute or do not contribute to the students’
progress in learning mathematics. Because of the preparatory module being optional
there is also the possibility to find out amongst students recommended to make use of
the preparatory mathematics module, did those who took part in the module perform
better in the main mathematics course examination than those who did not take part?

At this stage, there are no concrete results to report. Data will be collected and
analysed in autumn 2018. The theoretical framework to be used is under
consideration. The theoretical framework will underpin the formulation of research
questions. Clow (2013) argues for Learning Analytics being atheoretical. There are
limited studies linking learning theory to learning analytics, but for example
Macfadyen and Dawson (2010) acknowledge the importance of effective student
centred learning and mention, as an example of the social aspect for learning, the
possibility of learner-to-learner communication within digital learning environments,
and thus they look into the socio-constructivist paradigm.

At the time of the conference | hope to be more knowledgeable about what
theoretical framework could guide the proposed research. It will be a valuable
opportunity to discuss the theoretical framework with more experienced scholars in
the field during the conference.

As Pena-Ayala (2017, p. 68) writes: “LA aims at developing models, methods, and
tools that can be widely used, whose deliverables are reliable and valid at a scale
beyond a course or cohort to provide benefits for learners and educators without
distracting or misleading them” | hope the proposed research will provide new
knowledge about teaching of mathematics to economics students.
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We report first results from a teaching intervention in an ordinary differential
equations (ODESs) course for engineering students. Our aim is to challenge traditional
approaches to teaching of Existence and Uniqueness Theorems (EUTSs) through the
design of problems that students cannot solve by applying well-rehearsed techniques
or familiar methods. We analyse how the use of non-standard problems contributes to
the development of students’ conceptual understanding of EUTs and ODEs.

Keywords: existence and uniqueness theorems, design research, non-standard
problems, commognitive theory, mathematical discourse.

INTRODUCTION AND BACKGROUND TO THE STUDY

Although ODEs are an important topic in the engineering curriculum, students
experience difficulties with mastering ODEs and with the very concept of a differential
equation (Arslan, 2010). In our study, the lecturer, a mathematician, devised a set of
non-standard problems (see below, Problem 1 of 6) to challenge students’ conceptual
understanding of the EUTs. These problems formed an assessed piece of coursework.

1. (a) Verify that
) 2 C
T x=

is the general solution of a differential equation
2,0 ;
Y + 2ay = 2.

(b) Show that both initial conditions y (1) =1 and y(—1) = —3 result
in an identical particular solution. Does this fact violate the Existence

and Uniqueness Theorem (EUT)? Explain your answer.

Figure 1. One of the problems in the study

We analysed how solutions changed and developed as students worked on the
problems. Students' discussions in small groups were audio-recorded, transcribed, and
then analysed using constructs from commognitive theory (Sfard, 2008). We are
currently in the initial phase of the data analysis aimed at answering the following
question: How do non-standard problems contribute to the development of students’
mathematical discourse and further their conceptual understanding of fundamental
notions and results in an ODE course?

RESULTS

For Problem 1a (Pla), students could use one of two solution methods: M1
(substitution) and M2 (integration). Working on the problems, several students
changed their approach. In the final script, only one student produced a correct and
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complete solution (M2) while 14 (of 19) students used M1 verifying that a given
function is a solution (which is sufficient for the particular solution), but failed to
explain why this solution is the general one (hence incomplete M1). We conducted
similar analyses for Problem 1b (P1b).

We present one extract (for P1b) as an example of our analyses of students' group
discussions using commognitive constructs - narrative, routine, ritual, substantiation.

S12. The first idea was just to try to solve for C and I got the same constant, so that’s
OK. And I checked for asymptotes and | got one on x=0, so | noted that the equation
Is split to get two curves, at least, according to calculator we got it split about zero.

S11. So it’s undefined at zero.

S12. Undefined at zero, so we get two different curves and both solutions work. We do
not have a continuous curve which happens to intersect at these two points [...]

S14. It’s not continuous for x = 0?

S12. No. So if we take an interval from -3 to 1, it’s discontinuous in this interval, so it’s
not a curve that happens to just hit these two points, it is two individual curves that
have the same solution. So it’s correct in just a tiny area.

S11. That was my argument as well. As the theorem states, there is a continuous
interval but here it is split into two which contain two different to’s.

S13. The theorem says, that there is a unique solution for every interval where the
function is continuous. Since there are two intervals and there are two solutions, it
does not conflict with the theorem. [...]

Note that S12 is using two different visual realizations of solutions, first the algebraic
representation and then the graph plotted by calculator. He shows that the realizations
are not equivalent, they do not produce the same result. We see how the student
demonstrates the ability to solve the problem by developing the realization tree and
employing the mathematical object of “continuous solution” (discursive object). S11
IS not so sure at the beginning, he is guided by S12 (considered “more experienced”
interlocutor) and adopts the narrative offered by S12. S13 concludes by reformulating
the expression “does not violate the theorem” as “does not conflict with the theorem”.

We see how students worked to substantiate the narrative. This routine can be
characterized as the exploration. Students gradually improved their abilities in
developing and endorsing the EUTs narratives while working on all six tasks during
the group discussions.
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INTRODUCTION

Development in Biology over the last three decades have greatly increased the
need for using mathematics in this field. This has influenced biology students
which need to develop mathematical knowledge to be able to work with
contemporary biology models, including frameworks that are applicable in
analyzing the overwhelming flow of biological data (i.e. Labov, Reid &
Yamamoto, 2010). Although a quantitative approach is often used in university
biology courses, yet they remain largely qualitative and descriptive (Nelson, et. al.,
2009). In Norwegian context, where this study will be conducted, there is an
increased awareness towards mathematics from the Departments of Biology.
However, there is a lack of information on students’ understanding and usage of
mathematics within this context. This poster addresses this issue with a particular
focus on the use of mathematical models (MM) as dynamic tools that allows us to
observe various aspects of students’ understanding.

UNDERSTANDING OF MATHEMATICAL MODELS

Mathematical understanding has been the scope of many researchers. Sfard (1994)
distinguish between operational and structural way of understanding. While the
operational understanding includes highly manipulative skills and use them as
principal means in their quest after meaning, the structuralist is more capable of
direct-grasp understanding. She defines as reification the transition from an
operational to a structural way of thinking, and states that this transition is a basic
phenomenon in the formation of a mathematical object.

According to Niss (2012), a mathematical model can be defined as mapping
(translation), f, from a mathematical domain, D, to a mathematical realm, M. In this
context, D and M, represent not only sets of objects but also collections of
relationships, phenomena or questions, while f operates on objects and the
relationships, phenomena or questions. It is important to point out the distinction
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between mathematical model and mathematical modeling. While mathematical
model is a tool for facilitating quantification, analyses, predictions and gaining
insight for a real-world situation, mathematical modeling is the process of the
creation of such tool (GAIMME, 2016). In this study, | focus only on the use of
mathematical models as a tool that allows one to observe different shades of
students’ mathematical understanding, and not on the process of mathematical
modeling. Observing biology students while engaging in biology problems that use
mathematical models as their representation, |1 aim to describe their way of
thinking and reasoning — as operational or structural thinking.

METHODOLOGY

This study is a descriptive case-study in a naturalistic paradigm. For the pilot phase
of this study, have been selected three different biology courses from a Norwegian
university (two courses of bachelor level and one in master level). These courses
have been selected considering their use of mathematical models. In these courses,
mathematics is implicitly presented using mathematical models (i.e., population
dynamic models). All students taking these courses have taken previously at least
one mathematical course (mostly, Calculus course or Statistic course).

For collection of the data, | plan to video-record sessions in these courses when
students are engaged in group-work. | will use semi-structured interviews with
some of the students after some sessions, and personal written notes.
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This paper is part of a thesis about discrete mathematics and its teaching in higher
education. The literature on the didactics of discrete mathematics questions this
branch at different levels: its integration in teaching, the particularity of its affective
dimension, and its epistemological specificities especially in the fields of proof and
modeling. We seek to epistemologically define this field and to characterize its
corresponding mathematical activity by studying the processes of knowledge
construction, the types of problems, the specificity of concepts and proofs, and also
the existing links between discrete mathematics and other disciplines. This
epistemological study has a didactic purpose of defining and analyzing the teaching
of discrete mathematics in higher education.

Keywords: teaching and learning of number theory and discrete mathematics,
teaching and learning of logic and proof, higher education, functional definition,
epistemology.

INTRODUCTION AND CONTEXT

Research on discrete mathematics has rapidly developed in its methodologies, in the
way it is viewed by mathematicians, and in its range of applications. Discrete
mathematics has been described by 7SG-17 Teaching and Learning of Discrete
Mathematics at the ICME-13 (2016) as a comparatively young branch of
mathematics with no agreed-on definition but having old roots and emblematic
problems. Moreover, it is a robust field with applications to a variety of real world
situations, and of on growing importance to contemporary society (Hart & Sandefur,
in press). Over the past several decades, discrete mathematics has proved to be an
important part of the recommended program for students of computer science
(Maurer, 1997; DeBellis & Rosenstein, 2004; Grenier & Payan, 1998; Borwein,
2009; Epp, 2016; Rosenstein, 2016). Epp (2016) points out the strong necessity for
engaging students in abstract thinking for the course of discrete mathematics and its
applications in computer science. Discrete mathematics also seems to be a very
important tool for research in biology and chemistry. On the other hand, discrete
mathematics has been influenced by a variety of mathematical results, methods, and
representations (group theory, number theory, geometry, algebraic combinatorics,
graph theory, and cryptography). Their integration and combination in a profound
theory is essential for research in discrete mathematics (Heinze, Anderson, & Reiss,
2004). A recent publication that looks into the future of mathematics, The
Mathematical Sciences in 2025 (Committee on the Mathematical Sciences in 2025,
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2013) identifies two new drivers of mathematics: computation and big data. For both,
it describes how discrete mathematics plays an important role like discrete
mathematics algorithms for mathematical processing, dynamical systems in ecology,
networks in industry and the humanities, and discrete optimization (p.77).

The growing importance of discrete mathematics leads us to define this field for an
educational purpose. We seek to develop a “functional definition” [1] of discrete
mathematics, in order to use it to analyze and design didactical situations.
Specifically, we are concerned with the university level. We first present the state of
art in the teaching and the learning of discrete mathematics mainly at secondary level
pointing out some of its epistemological aspects. We then state our research questions
and describe the methodology aimed at developing a “functional definition” of
discrete mathematics. Our research is inscribed in a “contemporary epistemology” [2]
that draws on interviews with mathematicians. Our working hypothesis is that such
interviews can update and enrich our functional definition. Finally, we discuss some
preliminary results of the interviews with mathematicians and close with some
concluding remarks.

TEACHING AND LEARNING OF DISCRETE MATHEMATICS-
SUMMARY OF A STATE OF ART

This young field of mathematics with numerous interconnections has no agreed-on
definition shared by mathematicians (Maurer, 1997; Hart & Martin, 2016) and has
blossomed in several directions. There exist different attempts to define discrete
mathematics, by mathematicians (like in the United States) and by mathematics
educators (like in France). These attempts depend on the epistemological posture of
the authors and on the intended function of the definition (e.g. to enable
mathematicians to define a field, mathematics educators to characterize a domain,
and teachers to present a topic of mathematics...etc.). For example, in an attempt to
define discrete mathematics, a mathematician proposed two standard approaches
toward this definition (Maurer, 1997): by specifying properties or by lists of topics.
The defining lists are too many (courses aiming for computer science majors,
algorithm-oriented course, finite mathematics course for social science and business
majors, high school course) (Maurer, 1997). Mathematics educators have also
proposed a definition of discrete mathematics such as the following:

“The main idea is that discrete mathematics is the study of mathematical structures that
are “discrete” in contrast with “continuous” ones. Discrete structures are configurations
that can be characterized with a finite or countable set of relations” (Ouvrier-Buffet,
2014, p. 181).

Moreover, discrete mathematics acquires particular objects and methods (Grenier &
Payan, 1998). However, these attempts to define discrete mathematics are not all-
inclusive as they overlook many characteristics of the concepts and proofs involved
in this field. In our opinion, what is also important for the didactics of mathematics is
to uncover the specificities of this field of mathematics in comparison to others.
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Recent research in discrete mathematics, computer science, and mathematics
education has led to a serious discussion of the principles of proof, the teaching and
learning of proof, the validity of computer-based proofs or of visual proofs etc. The
distinction between the terms reasoning, proving, augmenting, demonstrating, and the
complex relationship between argumentation and demonstration (argumentation
considered as an epistemological obstacle for the learning of proof), calls for a debate
and an in-depth analysis (Balacheff, 1987; 1999; Reid & Knipping, 2010). In their
book, Proofs in Mathematics Education, Reid and Knipping included several
examples in their discussions, and there might be a reason that a large number of
these examples come from discrete mathematics (Reid & Knipping, 2010). In the
special issue of ZDM (2004) and in the ICME 13 monograph (2016), discrete
mathematics continues to be promoted as the essential mathematics in a 21* century
school curriculum. Its power lies in the opportunity it provides for supporting
reasoning, problem solving, modeling, and systematic thinking in the school
curriculum. Besides, recursion and recursive thinking seem to be powerful modeling
and problem solving strategies throughout mathematics in general and in the teaching
and learning of discrete mathematics in particular. The latter has been highlighted in
the studies of part III of ICME 13 monograph entitled recursion and recursive
thinking. They describe the integration of recursive thinking with iterative as well as
algebraic thinking, and they present the benefits of this integration as means to
deepen the students understanding of each of the geometry of transformations and
covariation of variables.

Some epistemological aspects of discrete mathematics pointed out in didactics

Researchers in didactics of discrete mathematics have proposed several
characteristics, of epistemological nature, of discrete mathematics. These
characteristics are the result of their research aiming at investigating the place and
role of discrete mathematics in education, analyzing the teaching and learning
situations, integrating new content into the curricula, studying the place and role of
proof in the curricula, and examining the mathematical expression (symbolic and
visual) and the use of language. Accordingly, several aspects have revealed such as:
problems in discrete mathematics encourage the development of heuristic and
affective processes (Goldin, 2016), there exists a specific relationship between
discrete mathematics and proof-existence of different situations that provide different
views on proof (Grenier & Payan, 1998), there exist different models in discrete
mathematics which necessitates the work on modeling (Grenier & Payan, 1998),
discrete objects and situations are easily accessible (Grenier & Payan, 1998; Maurer,
1997; DeBellis & Rosenstein, 2004), there exist different definitions of different
natures for discrete objects (Grenier & Payan, 1998; Maurer, 1997; Ouvrier-Buffet,
2011; 2006; Balacheff, 1987), and the fact that examples from discrete mathematics
enhance the semantic development of mathematical concepts and proving skills
(Alcock, 2009). Discrete mathematics provide the opportunity to develop students
reasoning ability, communication skills, problem solving ability, and modeling skills,
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as well as mathematical habits of the mind that are specifically cultivated by studying
discrete mathematics such as algorithmic problem solving, combinatorial reasoning,
and recursive thinking. In short, as Hart & Martin (2016) say, discrete mathematics is
empirically powerful as a tool to enhance modeling and solving fundamental
contemporary problems, and it is pedagogically powerful in that it can be used in the
curriculum to simultaneously address content, process, and affect goals of
mathematics education.

RESEARCH AIM AND RESEARCH QUESTIONS

The importance of discrete mathematics in both research and in education has been
highly marked and extensively studied in the literature. However, the inclusion of
discrete mathematics in school curricula faces challenges worldwide. There are
countries like Hungary and Germany in which discrete mathematics has been taught
since a long time and as early as primary years of school. In France, the recent
introduction of graph theory for grade 12 classes of specialty “ES” (economy and
social) represents an official entry of discrete mathematics into the classrooms, yet
this integration is still far from that of other European countries. In the United States,
since 2000 discrete mathematics had been integrated into the curricula such as
“combinatorics, iteration, and recursion, and vertex-edge graphs...” as mathematical
topics at school level (K-12) (NCTM, 2000, p. 31). Yet, the new Common Core State
Standards for mathematics that were developed in 2009 and adopted soon afterwards
by most of the states in the United States excluded discrete mathematics (Rosenstein,
2016). Rosenstein explains in his paper that the reasons for this exclusion are: (1) the
shift in focus from college-readiness to calculus-readiness, (2) the desire to expand
the STEM pipeline by ensuring that students take more calculus at secondary level,
and (3) the concerns for international assessments. He calls out the international
mathematical education community to have an active role in introducing discrete
mathematics into the curricula of their countries’ schools by developing their own
curriculum material to promote a broader curriculum. However, although discrete
mathematics is taught in a shy manner in some countries, this does not mark the
existence of didactics of discrete mathematics, as a well-structured branch of
mathematics in the same way there exists the didactics of algebra, calculus or
geometry. Discrete mathematics exists at the frontiers with other fields like computer
science. Hence, the teaching of discrete mathematics constitutes a challenge (a
complex choice of topics with a high demand for instruction). We believe that proof
processes of discrete mathematics are abundant, diverse, and particular, and we aim
at exploring this aspect and its connection with other mathematical domains.

The literature led to the following research questions: how can we define
“functionally” discrete mathematics (that is how can we describe its epistemological
aspects, the links between discrete mathematics and other domains, and what are the
most recurrent types of problems that arise), and how can we describe the teaching of
discrete mathematics at university level. Their treatment, based on the “contemporary
epistemology”, will contribute to the delimitation of the field of discrete mathematics,
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hence an objective of our study. In particular, this treatment will update and enrich
the conceptions [3] of mathematics educators about discrete mathematics and lead to
the development of teaching and learning situations.

Towards a Functional Framework

Therefore, our research aims at further investigating the above questions and
exploring the reality of the teaching and learning of discrete mathematics. Our
objective is to develop a “functional framework”™ for discrete mathematics in order to
conduct didactical studies of discrete mathematics. In this way, a “functional
definition” of discrete mathematics will have two main functions: (1) to delimit the
mathematical domain of discrete mathematics (epistemological level) and (2) to open
new horizons for the integration of this field in teaching (didactic level).

The epistemological aspects of this framework are a very important asset and often
not taken into consideration explicitly by university teachers. Indeed, Artigue (2016)
claims the existence of a disconnection between the mathematician’s experience as
researchers and their experience as teachers. This might be caused by the absence of
the epistemological dimension in their work as educators. The importance of
developing these epistemological aspects is linked to the following characteristics as
stated by Radford (2016), quoting Artigue (2016): (1) epistemology allows the
reflection on the manner in which objects of knowledge appear in the school practice,
(2) epistemology offers means through which we understand the formation of
knowledge (historical production and social production), and (3) epistemology allows
the reflection on the notion of epistemological obstacle. Accordingly, this first
function of our “functional framework” concerns the delimitation of the field of
discrete mathematics, by its contents, its types of problems, and to highlight the
specificity of the work on proof in relation to other mathematical domains. The place
and role of modeling in discrete mathematics will also be investigated. As discrete
mathematics interacts with other mathematical fields, we will also need to
characterize the links between discrete mathematics and arithmetic, number theory,
algebra among others. Moreover, since the epistemological definition of discrete
mathematics is linked to that of computer science (via the problems of counting and
combinatorics among others), we will be specifying the links and interactions
between these two scientific domains, explicitly relying on the ‘“contemporary
epistemology”, 1.e. the current problems and interactions between discrete
mathematics and computer science. Finally, we will integrate into our definition a
strong didactical perspective by studying the place and the role of discrete
mathematics in the articulation between secondary and university education
(particularly between university education and teacher training). We are also
interested in investigating the process of evaluation conducted at the university level
of the concepts and procedures proper to discrete mathematics. Ultimately, our
purpose is to be able to make coherent epistemological propositions for the teaching
of discrete mathematics at a given level.
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RESEARCH METHODOLOGY

Our research methodology to address our first research question, which is “how to
characterize discrete mathematics at the epistemological level?” is based on a
contemporary epistemology relying on the experiences of researchers in the field of
discrete mathematics who are also instructors of discrete mathematics at the
university level. Our approach is inspired by several previous work relying on
interviews with mathematicians and mathematics educators such as Nardi (2008). We
will also base our work on the notion of praxeology of Chevallard, particularly
sequences of praxeologies, for the elaboration of our framework in order to describe,
analyze and structure specific contents at the heart of the teaching and learning
process. The work of Hausberger (2017) on structuralist praxeology in Abstract
Algebra could be an inspiring example. He uses a historical and epistemological
study of structuralist thinking and practices combined with a study of few textbooks
to develop his notion (Hausberger, 2017). In our study, we will be considering the
choice of particular emblematical textbooks of discrete mathematics at university
level along with the interviews to study the teaching practices.

Our study is an exploratory one in which we will conduct interviews with the
researchers aiming at reinterpreting the literature findings, investigating the
coherence between the literature and teacher practices, and identifying other
epistemological aspects. We have conducted interviews with instructors of discrete
mathematics at each of the Lebanese University and the Mathematical Society in
France. In accordance with the literature findings, we have developed a questionnaire
that included open-ended questions concerning the definition of discrete
mathematics, types of problems, particularly proofs, in discrete mathematics, and the
utility of discrete mathematics at university level (teaching and learning). We have
noted important aspects of discrete mathematics, which will enrich our “functional
definition”, and they will be presented as soon as we complete the rest of the
interviews. At the methodological level, Table 1 represents our first approach to
analysis. However, to better frame the conceptions of the researchers, we will be
developing in parallel other analyses methods. This will be done using two
complementary approaches: the first based on the praxeologies of Chevallard and the
second relying on a theoretical model regarding “conceptions” (Balacheft, 2013).

Axis Criteria for analysis
Conception on the definition of discrete | Identify different points of view for
mathematics researchers (since the definition is not
(in teaching and in research) agreed-on)
Topics from discrete mathematics Identify and categorize topics

Conception on proofs in discrete | Identify types of problems, types of
mathematics (in teaching and in research) | reasoning, characteristics of concepts,
place and role of modeling
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Links between discrete mathematics and | Categorize links; are they being
other disciplines (in teaching and research) | worked in class?

Learning of discrete mathematics Identify objectives, learning outcomes,
learning difficulties, student behavior

Table 1-Criteria for analyzing the interviews with the researchers in discrete
mathematics

To test our questionnaire, we have conducted two pilot interviews with two graph
theorists, one in Lebanon and the other in France. The interviews were recorded and
transcribed. We have selected some instances from the pilot study, and they will be
presented in this paper in the following section.

PRELIMINARY RESULTS
Researchers’ conceptions about the definition of discrete mathematics

In order to analyze the conception of the interviewees about the definition of discrete
mathematics, we tried to elicit some epistemological aspects of discrete mathematics.
The pilot interviews showed that for the two interviewees Michel (researcher and
instructor of graph theory in Lebanon) and Bertrand (researcher and instructor on
graph theory in France) discrete mathematics is difficult to define, and sometimes it
is easier to define what is not discrete. Both interviewees used the term “separable” to
describe discrete objects:

Bertrand: [...] so basically one could say that discrete mathematics concerns objects
that can be separated [...] (our translation)

Michel: [...] the elements can be manipulated separately [...] (our translation)

Interesting examples illustrating this important aspect of the definition discrete
mathematics (“separable”) will be presented for discussion during the conference.
However, the interviewees had different opinions regarding the teaching strategies
and the origin of student difficulties. Michel focuses on the teaching of concepts
whereas Bertrand puts more emphasis on the methods and strategies (through games
and experimentations).

Michel: [...] in the courses, I try to convey the basic ideas like in graph theory:
definition of graphs, adjacency matrices, standard objects such as [...] (our
translation)

Bertrand: [...] in fact, it is to train for reasoning skills ... and by the extrapolation to

critical thinking [...] that is by working on the problems I have proposed
like [...] (our translation)

It is this discrepancy between teachers' perceptions of discrete mathematics and their
corresponding teaching practices at university level that we intend to further explore
in our study.
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Researchers’ conceptions on proofs in discrete mathematics

In order to characterize proofs in discrete mathematics in general, we made an
attempt at identifying the types of proofs used in discrete mathematics. We find that
the proofs by contradiction, by induction, and by recurrence are the most used. The
exhaustive proofs are also used frequently, and according to the interviewees, this is
due to the fact that oftentimes problems require very complex strategies, which
compels the students to perform case-by-case analysis. Apparently, this exploratory
phase of problems is a remarkable requisite of topics in discrete mathematics more
than in other branches of mathematics.

Moreover, heuristic processes show in the students’ development of methods, to find
approximate solutions instead of exact solutions to problems. According to Bertrand,
it is widely used in the experimentations for proof and in the mathematical
investigation processes. For Bertrand, in discrete mathematics, heuristics consist of
taking particular cases (like combinatorial optimization problems), extirpating to
arrive at a clear solution (questions of tiling and stacking), and modeling illustrations
especially in difficult problems.

We have also noticed that the “proof” activity in mathematics has a different status
than the “demonstration” activity. It is affirmed by the interviewees that there is a
difficulty for students in writing proofs:

Michel: [...] they feel at ease, they understand everything that is explained but they
feel unable to reproduce [...] (our translation)

Bertrand: [...] we think it’s clear and that we are convinced; however when asked to
write, to formalize, we do stupid things ...] (our translation)

Therefore, we notice that the place of proof in discrete mathematics is not well
defined and needs more investigation especially when it comes to its characteristics
and the distinctions between the terms proof, demonstration writing, argumentation,
etc.

CONCLUDING REMARKS

Currently, we limit our work to researchers of discrete mathematics particularly
graph theory. For the rest of our work, we plan to complete the analyses of interviews
with the researchers to further develop the state of the art (to further explore proof,
modeling and their particularities in relation to discrete mathematics). At the
conference, we will present some more refined results of these interviews along with
to the questionnaire used. This mapping along with the review of literature will allow
us to better develop the criteria that would ultimately lead to a functional definition of
discrete mathematics. We are also interested in exploring the teaching practices of
researchers in order to make informed suggestion on the training of instructors at the
university. An extension to this work might possibly be in interviewing researchers in
contiguous disciplines like computer science, algebra, or number theory.
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[1] We aim at constructing a representation of discrete mathematics that presents the concepts,
types of problems, proof processes and strategies, reasoning skills and other particularities of the
field of discrete mathematics.

[2] The adjective “contemporary” indicates that our research focuses on the researchers’ practices in
statu nascendi. We have conducted interviews with mathematicians to this end.

[3] In this paper, we use the word “conception” in the common sense, not yet in any specific
theoretical sense.
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ABSTRACT:

This paper focuses on the epistemic and cognitive characterization of regressive
reasoning in resolving strategic games. It explores the use of the Finer Logic of
Inquiry Model as a tool for the analysis of the regressive reasoning. It reports the
results of a study carried out on 32 undergraduate students who are studying a
Mathematics Degree in a university of Spain.
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1. INTRODUCTION

The method of analysis has proved to be extremely stimulating in various fields, and
has played a crucial role in the emergence of the modern world-view. The combination
of the two branches of analysis and synthesis has been applied to several fields of
artificial intelligence, theoretical computer science, and in programming methodology
(Peckhaus, 2000; Grosholz, Breger, 2000). For many engineering students and
mathematics undergraduate students, learning the method of analysis in tertiary
education mathematics is a critical issue. They have the challenge of incorporating it
in different disciplines related to the design and production of products and services,
such as, Project Management, Systems Engineering and Design Science. They have no
theoretical and methodical basis (Koskela and Kagioglou, 2006). A conscious
integration of regressive reasoning in mathematics university learning raises the need
for articulation between epistemological and cognitive aspects. Regressive reasoning
is not completely logically determined, but has elements of contingency, creativity and
intuition. The purpose of this text is to highlight the potential of Finer Logic of Inquiry
Model (Arzarello 2014) as a tool for the didactical analysis of the regressive
reasoning. This model has been used at secondary level education, not being used at
tertiary level so far.

Here we will report the results of a study carried out on 32 undergraduate students
studying a Mathematics Degree at a Spanish University, using strategy games in order
to promote the regressive reasoning. The choice of strategy games is justified by
antecedents to this study in which they have been shown to be a key tool for teaching
problem solving and regressive reasoning (Gomez-Chacoén, 1992).

The present research is primarily exploratory for two reasons: 1) Regressive reasoning
has been scantly analysed in mathematics and educational psychology; 2) the use of
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the Finer Logic of Inquiry Model methodology to analyse data from mathematical
thought at tertiary education is a new development. The theoretical background and
empirical studies related to regressive reasoning needs to be developed.

2. REGRESSIVE REASONING

In mathematics, progressive reasoning alone is not exhaustive to fulfil the tasks of
solving problems. Great mathematicians like Pappus, Descartes, Leibniz, in their
discussions about analysis and synthesis, emphasize this fact (Peckhaus, 2000).
Regressive reasoning is known by different denominations: regressive analysis,
backward solution, method of analysis, etc. This process includes different ways of
proceeding in problem solving: backward strategy, strategy of assuming the problem
solved, Reductio ad Absurdum, beginning at the end of the problem, etc.

Pappus was the mathematician who has contributed substantially to the clarification
and exemplification of the method. In the seventh book of his Collection he deals with
the topic of Heuristics (methods to solve the problems).Where he exemplifies the
method of analysis as the method of synthesis, therefore making the development of
this reasoning clearer. Pappus defines the method of analysis as follows: “In analysis,
we start from what is required, we take it for granted; and we draw correspondence
(akoAovBov) from it and correspondence from the correspondence, till we reach a
point that we can use as a starting point in synthesis. That is to say, in analysis we
assume what is sought as already found (what we have to prove as true).” (elaboration
by Polya, 1965 and by Hintikka and Remes, 1974). Subsequently he points out: “This
procedure we call analysis, or solution backward, or regressive reasoning.” (Hintikka
and Remes, 1974) And on the Method of Synthesis: “In synthesis, on the other hand,
we suppose that which was reached last in analysis to be already done, and arranging
in their natural order as consequents the former antecedents and linking them one with
another, we in the end arrive at the construction of the thing sought. This procedure we
call synthesis, or constructive solution, or progressive reasoning.”’(Hintikka and
Remes, 1974)

In summary, the following was considered backward reasoning: the practice that
involves the making of a number of arguments from the bottom of the problem and
proceeds through logical correspondences which allow to obtain something known or
to be reached through other paths. The analytical method consists of a procedure that
starts with the formulation of the problem and ends with the determination of the
conditions for its solution.

3. FINER LOGIC OF INQUIRY MODEL (FLIM)

Trying to overcome the static approach of habitual logical mathematical reasoning,
Hintikka (1996, 1999) developed what he calls Logic of Inquiry. The idea, already
elaborated by ancient Greek philosophers, is building knowledge through a
questioning process, implicit or explicit. The knowledge is the result of research
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generated by a specific question. The philosopher introduces it as the “logic of
question and answer”’.

In his approach he considers Game Theory and game semantics to support formal
epistemic logic. Hintikka overcomes the limitations and excessive abstractions of
Tarski's Definitions of Truth (Sher, 1999), which leave the process used to reach the
truth unexplained. He introduces a top-down definition of truth (Hintikka, 1995)
unlike the classical and tarskian bottom-up view, highlighting the regressive way of
proceeding in problem solving from an epistemological point of view. Hintikka (1995)
retakes the idea of Wittgenstein's language games and some aspects of Game Theory,
elaborating on a theory where the centre is “a path towards the formulation of a truth
that, instead of proceeding recursively from atomic to complex formulas, reverses the
approach and proceeds from the more complex ones to their simplest constituents”. In
this research, the study of games will try to explain this interlacing between game
theory and strategic rules that allows the student to win.

The FLIM elaborated on by Arzarello (2014) sought to propose a concretion of
Hintikka's proposal to be used in the Didactics of Mathematics. More specifically, he
explained the elements needed to analyse the interactions between strategic and
deductive components of students’ resolution protocols. This model allows for the
structuring of the resolution in two components: Inquiry Component (IC) and
Deductive Component (DC).

In the Inquiry Component the subject alternates a series of questions, answers and
explorations, according to Hintikka's Logic of Inquiry. Its purpose is to meet the aim of
the problem, solving conjectures that gradually rise from results of two explorations:

e FExploration: in order to analyse and understand the situation in which the
subject is involved

e (ontrol: in order to verify the ideas or conjectures that came out during the
development of the activity.

In the above Component, the cognitive dimension of reasoning is necessary. From a
cognitive point of view, the progressive-regressive reasoning movement has been
highlighted by studies such as those of Saada-Robert (1989). The psychological model
for solving mathematical problems focuses on the distinction between two phases of
the resolution: investigate why things are like this (backwards, until reach a plausible
hypothesis -abduction- or a known fact) and verify this investigation (forward,
codified by the classical logic). Based on Saada-Robert's model, Arzarello (2014) and
Soldano (2017) characterized this cognitive dimension through the sequence of
actions in three different modalities: ascending, neutral and descending.

Ascending modality (A) refers to the path towards the formation of ideas and
conjectures after a phase of exploration. Descending modality (D) characterizes the
transition from a conjecture to an investigation. The purpose of descending modality is
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to find an equivalence between the object of thought (the conjecture, the idea) and the
object of work (the problem and its resolution). Neutral modality (N) marks the change
between the ascendant and the descendent; it is the moment in which a conjecture is
formulated. Observable actions in the subjects are: formulations (of questions, of
resolutions plan, of conjectures), affirmations, explorations and controls.

In the Deductive Component the subject is not directly involved in the investigation
and verification of conjectures and uses a language with a logical nature to formally
formulate the truth. Three specific modalities are added: detached modality, logical
control and deductive modality (Arzarello, 2014; Soldano, 2017). Detached modality
is the moment in which a conjecture, which has not arisen immediately after an
exploration, is formulated. Logical control is the time when an exploration-control is
done without using instruments. It is characterised by the use of formal language.
Deductive modality characterises control phases where instruments are involved.
Deductive Steps and Logical Chains are added to the Inquiry Component actions.

Inquiry and Deductive components are not often well differentiated during problem
resolution where the subject passes from one component to another, even more than
once. We can say that the typical components structure is nested in this way: (IC ~ (DC
~ (IC ...))) with “~” that expresses the passage from one component to the other.

Observable actions
Modalities
General Specific
Question
Affirmation Ascendant
Verbal .
) Conjecture Neutral
Handwritten .
Exploration Descendant
Gestures
Control Detached
Others (gaze, ...) _ )
) Plan formulation Logical Control
Silent : .
Deductive step Deductive
Logical chain

Table 1

Table 1 summarizes some observable actions and their modalities according to the
definitions given and that will be considered in the analysis.

4. AIM AND METHODOLOGY

Aim

The aim of this paper is to show an evaluation tool for examining how regressive
reasoning develops in university students. In particular, how the FLIM can be a valid
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tool to analyse the interplay between cognitive and epistemic in the regressive
reasoning.

Participants and instrument

Data were collected in 2014 from 32 (19 women and 13 men, aged between 21 and 23)
Caucasian undergraduates working toward a BSc. in mathematics. All of the
participants were in their last year of academic studies. They were following advanced
courses in several areas of geometry, algebra, probability and analysis. With regard to
solving problems, the students had been introduced to the problem solving heuristics.
They had not received any special training about backtracking heuristics.

The work dynamic started with individuals being given paper and pencil with which
they need to resolve two games, each lasting one and a half hours. Figure 1 shows the
problem which we will analyse in the results section. Strategy games allow for the
natural development of regressive reasoning. These games are disconnected from the
mathematical content which forces the student to use their mathematical knowledge
acquired in their university degree.

The Triangular Solitaire (Gomez-Chacon, 1992) is a game for a single person that
requires a board with 15 boxes as the figure shows.

These are the rules:
1. Place the pegs in all boxes, except in the one marked in black.

2. The player can move as many pegs as they like as long as they are
able to jump over an adjacent peg and onto an empty space (along the
line). At the same time, he "eats" the peg that was jumped over and that
peg gets taken out of the game. All pegs move in the same way. Pegs
can move around the table in any direction.

Objective: The player wins when there is only one peg on the table.

Figure 1

Students were given the game and asked to describe their approaches to solving the
problem on protocols including: thought processes in the resolution, explanations of
the difficulties they might face, and strategies they would use in order to solve with
paper and pencil. A qualitative analysis was chosen to examine the resolution
protocols of the students through the “Finer Logic of Inquiry Model” (Arzarello 2014).
A general analysis of 32 students took place before a case study was carried out. In this
paper we describe an individual student case in order to show a deep understanding of
the tendencies of the behaviour related to the sequences of actions and movement
between modalities of reasoning. The protocols analysis, at a macroscopic level of this
case, provides the identification of reasoning difficulties and way of using backward
reasoning that determined success or failure in the resolution. It’s worth noting that
Student M (see section 5) is a key informant of the group because he belongs to 60% of
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students that use the backward strategy and incorporates graphical representations to
achieve the transition between modalities.

5. REGRESSIVE REASONING USE (CASE STUDY)

Regressive reasoning use varies among the group of students. Let us examine a case
study. A student (Student-M) has combined regressive reasoning with different
strategies and auxiliary constructions: drawings, graphical representations. Student-M
indicates difficulties in creating the solution because of the actions which are needed
for discovering the solution and because of the recognition of representational
equivalences. The visualisation and representations which are used help during the
resolution process; Student-M performs continuous control over its own resolution
process. She is able to slightly modify the strategy or even change it completely to
reach the solution. For analysis purposes, Student-M’s protocol has been divided into
the following phases: familiarisation, exploring and carrying out the strategy, results
verification. According to the Finer Logic of Inquiry Model, this student’s protocol is
mainly characterised by the inquiry component. This begins with the first part of the
protocol, corresponding to the familiarization phase. The entire protocol has been
translated highlighting the parts where student M uses backward reasoning (in Ifalics).

Student M protocol
1 To accomplish the exercise, 'm going to number the G 2
holes on the board in order to leave a trace of the (%s(ﬁ%g
movements I'm doing. At the beginning, all the holes are DODOE

filled except number 5. Figure 3

2 T observe that you can only start with two movements 14-9-5 or 12-8-5.

3 Since this is an equilateral triangle, I think it does not matter what the starting
movement is because they should lead to "symmetrical" solutions.

4 TI’ll start to do it roughly.
5 The steps I’ll take are: 14-9-5; 7-8-9; 12-13-14; 2-4-7; 11-7-4; 10-9-8; 3-6-10.
6 At this point, I note that the only way to eliminate 1 would be to move 8-5-3.

7  Here I notice that [with these Q' e, G
movements| the game cannot be \((( o) CE'EE(
solved because the 4 cannot be s
eliminated and the remaining pegs
cannot eliminate each other.

© @ (|
e ~ <(( Lqie-zci "%QEG( @ ((n(
7 (514 i 4 EG [k
W u(( B CLEHe (LO® e

(“ & o
2 ( x pucck: e
(k( o W kL(( U&‘t e
foco Wcao WooaC

Figure 4

8 I realise that I can try to go backwards, that is, starting with just one peg in one
position and undo the jumps trying to fill the table with the exception of a hole.
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9  Looking at the board, I think that maybe the fact that the last piece stays on the board
(the peg from which I start to move backwards), in a position that you can come up
with many jumps, facilitates the strategy. These places are positions 4, 6 and 13
because you can get to them with 4 jumps.

10 To fill up the game table I will have to do 13 moves, because there are 15 holes, an
initial peg and an empty final hole.

11 Let's start only with peg 13.

(r f- @ i 0
5 3) iy 15 OQ “—|§~i @@ s ] G bae (AX3) zoaw (1Y3) s i iz
a& ee ( c @ @YEX G (f‘<«' ga (%s.(u
\ ( ﬁ 1) C([\{(\ (_(g Q’ 'a G @ Q ) u\(lu
o e C@O@ e e GRSk decee Sceee SUOL

Figure 5

12 Here I already notice that I do not reach the solution because I will never fill the top
corner due to the absence of a peg in the 3rd row; 1 should do 11-7-4 leaving corner
11 without a peg [so that the top corner will be filled].

13 Let's start with the reason for the various steps:

13-14-15: I want to start filling the corners as soon as possible because these holes
are the hardest to fill up (the peg is in hole 15 and I will not move it anymore).

14-13-12: Random movement.

12-8-5: I want to leave hole 12 free to get to the next step at corner 11.

8-9-10: I want to leave hole 8 free to retrieve peg 12 (to fill 13 and 14) in the next step,
so I can complete it later [the row].

12-13-14: I want to complete the row below.

5-8-12: I want to complete the row below.

14 1 think trying to fill the centre was not a good strategy...

15 ... sonow I'm going to try to fill the outside of the triangle, that is, [I'll try to] undo the
jumps to the corners and sides. (Playing normally would involve jumping to the centre
avoiding corners and sides if possible.).

16 I also get stuck [on the fact] that by eating pegs or
undoing the jumps, the movements that are made are
triangular. So I will try to fill the smaller triangles
contained in the big triangle. Figure 6

17  First, I will fill the lower right triangle.

18 Now I'm going to fill the upper triangle; to do so (Since i do not want to remove the
peg I placed in position 1), I have to get some pegs in the 4th row that, undoing the
Jjump fills the 2nd and 3rd row. I undo the jump with the 9.

19  Now you have to fill the lower left triangle.

: [ERTRE ® 0] 3-9- { R, % @
36 7 ez @@ B onl Q@ 1 ((( @ -1 o (&(L
0O ¢ ‘ ] DAG
2600) q i0 & G N e) ‘-l::- DOOT
" 00@70 ‘3, BE 0’ OE '@Qﬁ W@' ‘3 @i (}(“'(&5 T () C C 0 }@_@.@L
D) I | T ® T
06) a-g-7 G 53 06) a2 414 2 sy D6 Wi 2X5) (‘G
QoG] o0 e, X Y %’) 0 C G GO svh @GOG
QO0C D J g O] 50 Kb ° e T ok
DCETEE) YR XS 008006 WEEE 2 O DOSOC @ (r@(h(
Figure 7
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20 Now I just have to write the jumps in the correct order

[j
X
(;* € (
@ e( w( OGONT (&ﬁ KI

L
(( (m(u a(t((g((

@ D @
Q@ (3@ (%- @
7 © QG
9) (L(((((&( (V#\’n‘((( (u ( ("Y((- (Wi((u( (@
@ JO]
ot Qe
Q (Q& (cg o g
000Q0 E%(""*((f((&(t((‘
Figure 8

(e @EEE

@ ('"‘

&
& og(‘f

00

The following table shows actions and cognitive modalities associated with each
protocol line and figure; a check (v") indicates the lines where the regressive reasoning
is used. The last column of the table shows different strategies involved.

Familiarization phase

Protocol parts Action Modality R.R Strategy
Lines 1-4 y Fig. 3 | Exploration Descendant
Line 5 Affirmation Neutral
L. 6-7 and Fig. 4 Exploration Ascendant v
Explore and carry out the strategy
Line 8 Plan Neutral Backward
Line 9 Exploration Ascendant e Begin from the end
Line 10 Affirmation Descendant
Line 11 y Fig. 5 Exploration Descendant
Line 12 Affirmation Ascendant v
Line 13 Exploration | Ascend/Descen |
Line 14 Affirmation Ascendant
L. 15-16 and Fig. 6 Plan Neutral Auxiliary construction
Lines 17 y Fig. 7 Exploration Descendant
Line 18 Exploration Ascendant v
Line 19y Fig. 7 Exploration Ascendant v

Results verification

Line 20 y Fig. 8

Control

Detached

Table 2
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This cognitive analysis shows that the first two resolution phases are characterised by
a continuous alternation of explorations and plan formulations together with an
alternation of descending and ascending modalities. The second resolution phase
involves the continuous use of the going backward strategy. Subdivision of the board
into rows and then into triangles is fundamental to reach the solution. Student-M
modifies the strategy slightly by adding new elements in the resolution (board
subdivision into rows and triangles) typical of problem solving using regressive
reasoning. Crucial points of backward reasoning are reached in the ascending
modality (see " in Table 2) where ideations occur. A routine that can be established
regarding the use of modalities is A~N~D~(A~N~D~(A~...)). The neutral modality
marks the transition between A and D and it is characterised by the incorporation of
auxiliary constructions as generating tools of new knowledge (epistemic transaction).

In the third phase of the resolution, by writing and graphically representing the steps
taken to reach the solution, Student-M (in detached modality) checks the result
obtained by going backwards.

6. CONCLUSION

Analysis with the FLIM model allows to model student’s cognitive movement in a
logical concatenated way. The strategic aspects are more dominant in the ascending
and descending modality, while the epistemic ones are prevailing in the neutral
modality. Our study confirms results obtained by Soldano (2017) (with upper
secondary school students in geometry): the ascending modality characterises the
backward way of thinking, while descending is the cognitive modality that
characterises the progressive way of reasoning. However, most likely, abductive
reasoning has been used in the formulation of conjectures in ascending modality, but
we cannot be sure of it by only analysing the protocol, we need to complete this
information by interview. This is an open question for further research.

At a phenomenological level, this method allows us to analyse the development of
strategic aspects within the cognitive modality movement to reach the solution. But it
mainly focuses on cognitive modalities while it doesn’t distinguish between the
strategic principles that are used. Through this tool it’s possible to emphasise that
regressive reasoning involves auxiliary intuition elements that are necessary to
achieve the solution; these aspects are developed by looking at the consequence and
looking for the premises. A larger sample size with two different tasks, find the
winning strategy and mathematically solving the game, would allow us to advance in
the development of the tools for evaluating regressive reasoning.
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A Study of Students’ Reasoning About “There exists no ...”
Stacy Brown
California State Polytechnic University Pomona, brown@cpp.edu

In this paper, we report findings from two studies of students’ engagement in
metatheoretical tasks drawn from a model of the reasoning requirements of a proof
by contradiction. The studies aimed to explore students’ engagement in the tasks, the
extent to which they were successful, and the similarities and/or differences between
students’ and mathematicians’ approaches. Findings indicate students tend towards
syntactic, logical theory approaches while mathematicians gravitate towards
semantic, mathematical theory approaches. Drawing on interview data, it is shown
that students may use symbols to avoid employing fragile content knowledge, yet
encounter further difficulties by viewing quantifiers as appended symbols.

Keywords: metatheoretical reasoning, proof by contradiction.

METATHEORETICAL DIFFICULTIES: AN OVERVIEW

Mariotti, Bartolini Bussi, Boero, Ferri & Garuti (1997) argue, “what characterises a
mathematical theorem is the system of statement, proof and theory” (p. 183). By this
they mean a statement and its proof are situated within a theory from which one
draws not only axioms, definitions, and theorems (i.e., a mathematical theory) but
also rules of inference (i.e., a logical theory). The fact that proofs are contingent on
both a mathematical and a logical theory is best illustrated by the fact that there are
statements that are valid in some mathematical theories (e.g., Euclidean geometry)
that are not valid in others (e.g., Hyperbolic geometry). Thus, their validity depends
on the mathematical theory referenced. Moreover, if one does not employ standard
logic, further shifts in the status of theorems may occur; a point illustrated by
Brouwer’s rejection of his Fixed-Point Theorem, after adopting intuitionistic logic.

Building on this model of mathematical theorems and the theory of Cognitive Unity,
Antonini and Mariotti (2008) demonstrated that students’ difficulties with indirect
proofs may occur within the mathematical theory or the logical theory. To
demonstrate the latter, a compelling example is given where a university student,
Fabio, describes difficulties accepting a proof by contraposition because of the
movement back and forth between the statement-to-prove and the contrapositive.

Fabio: Yes, there are two gaps, an initial gap and a final gap. Neither does the initial gap
is comfortable: why do I have to start from something that is not? [...] However, the final
gap is the worst, [...] it is a logical gap, an act of faith that I must do, a sacrifice (Antonini
and Mariotti, 2008, p. 407, sic).

Indeed, Fabio speaks both of his acceptance of the proof of the contrapositive and his
difficulties accepting the contrapositive proof as a proof of the statement-to-prove.
Antonini and Mariotti refer to these difficulties as metatheoretical, for they are at the
level of the logical theory that is applied to the mathematical theory. Their work is of
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interest, for it raises many questions: To what extent are novices successful when
engaging in metatheoretical tasks? What approaches do they employ? Do their
approaches differ from mathematicians’? The purpose of this paper is to take a
preliminary step towards answering these questions. Specifically, we report on two
studies of participants’ responses to metatheoretical tasks drawn from a model of the
reasoning requirements of a proof by contradiction, which is described below.

PROOF BY CONTRADICTION AND ITS REASONING REQUIREMENTS

In this section, our aim is to model the reasoning requirements of a proof by
contradiction of a universally quantified conditional statement. To aid our discussion,

we consider a specific example: Theorem 5. For all positive integers n, if n mod(3) =
2 then n is not a perfect square. To prove the theorem by contradiction, one must
correctly negate the universally quantified conditional statement and take the
resulting statement as one’s primary assumption. Such actions require one accept (at
least at an intuitive level) that for a conditional statement to be true universally, it
must not be the case that there is some element in the universe of discourse for which
the premise is true (has a truth-value of frue) and the conclusion is false (has a truth-
value of false). In the case of our example, we assume “There exists a positive integer

n, such that n mod(3) =2 and n is a perfect square.” As shown by Wu Yu, Lee, &
Lin (2003), this task is far from trivia for students 17-20 years of age. Moreover, as
Antonini and Mariotti (2008) note, the validity of the work is determined by theorems
that reside within the logical theory (i.e., the metatheory).

Having assumed the negation of the statement-to-prove, one must now explore the
consequences of this assumption and identify a contradiction. Three aspects of this
work are important. First, to carry out this work one must move back to the
mathematical theory, for it is here that the contradiction will reside. Second, one’s
goal is open-ended, for one does not know in advance where one will find the
contradiction. In fact, there may be many. Third, one must know one’s commitments
with regard to the mathematical theory. Otherwise, one will not have the means to
recognize a contradiction. This point was made by Sierpinska (2007) who argued,
“sensitivity to contradictions in mathematics requires theoretical thinking ...
(thinking) concerned with internal coherence of conceptual systems” (p. 1-54). Once
the contradiction is identified, one’s work is not done. One must make sense of it.

In our example, we claimed that an integer existed but having produced a
contradiction we now know that such a number cannot exist. Hence, one must

conclude, there exists no integer n, such that n mod(3) =2 and n is a perfect square.
And it is at this point that one is faced with the very requirement that Antonini and

215 sciencesconf.org:indrum2018:174100



Mariotti’s (2008) Fabio rejected; namely, seeing the proof of this statement as a proof
of the statement-to-prove. In other words, having shown S*: There exists no integer
n, such that n mod(3) = 2 and n is a perfect square, one must recognize (from a
logical standpoint) that one has proven S: For all positive integers n, if n mod(3) =2
then n is not a perfect square; that is, we must recognize S* implies S since S* is a
non-identical but logically equivalent form of S. As Antonini and Mariotti (2008)
note, this work relies on theorems in the logical theory rather than the mathematical
theory; that is, it is metatheoretical. Thus, a proof by contradiction imposes two
unique metatheoretical requirements. First, at the beginning, when one must produce
the negation of a statement. Second, at the conclusion, when one must recognize that
S* implies S. And, it is the latter requirement that is the focus of the reported studies.

AN OVERVIEW OF THE STUDIES

The reported studies examined students’ engagement and extent of success in the
metatheoretical reasoning requirements that arise at the conclusion of a proof by
contradiction. All studies were conducted at a minority-serving university, where the
majority of students qualify for need-based financial assistance and are first-
generation university students. Study 1 explored the extent to which novices (i.e.,
students without prior logical training or who have limited training) are successful
evaluating claims of the form S*implies S. Study 2 explored students’ and
mathematicians’ approaches to and success with metatheoretical tasks. The aim of the
combined studies was to explore the reasoning practices that may inhibit or support
students’ metatheoretical work and consequently, play a role in the extent to which
students reach or fail to achieve cognitive unity in relation to indirect proofs.

Study 1 Methods and Findings

To explore novices’ success with metatheoretical reasoning tasks prior to instruction,
46 university students were surveyed. The surveys were administered on the first day
of a “Basic Set Theory and Logic” course that served as the universities’ first logic
course and their “Introduction to Proof” course. Prior to the course, students would
have been enrolled in computation-focused courses on calculus and differential
equations. Included on the survey were two tasks that asked students to compare a
pair of statements and determine, “Can you prove Statement A by proving Statement
B?” (Figure 1.) Task 1 involved a universally quantified statement and an incorrect
alternative. Task 2 involved the same Statement A and a correct alternative.

Task 1.

Statement A. For every integer n, if n is a perfect square, then n has an even number of factors.

Statement B. There exists no integer n such that n has an even number of factors and 7 is not a perfect square.
UJ Yes, you can prove Statement A by proving Statement B.

[J No, you cannot prove Statement A by proving Statement B.

Task 2.

Statement A. For every integer n, if n is a perfect square, then n has an even number of factors.

Statement B. There exists no integer n such that n is a perfect square and n has an odd number of factors.

[J Yes, you can prove Statement A by proving Statement B.
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| [J No, you cannot prove Statement A by proving Statement B. ‘

Figure 1. Study 1’s Task 1 and Task 2

Survey results indicated that of the 46 students surveyed, 50% were successful at
Task 1, 47.8% were successful at Task 2, and 24% were successful at both tasks.

Study 1 Discussion

The findings of Study 1 demonstrate that most of the students did not enter the Basic
Set Theory and Logic course reasoning in ways aligned with the metatheoretical
requirements of indirect proofs, as the rates were at or below guessing and less than a
quarter successfully answered both questions. While the findings are not startling,
they provide a warrant for further research. Indeed, prior to Study 1 there were no
studies of novices’ responses to such tasks prior to instruction. Thus, the findings
warrant the following questions: Do novices’ difficulties persist after instruction? Do
students’ and mathematicians’ approaches differ?

Study 2 Methods

Study 2 aimed to explore university students’ and mathematicians’ extent of success
and approaches to the metatheoretical task in Figure 2. Participants were 21 students
drawn from the same student population as Study 1 and 6 mathematicians. However,
the Study 2 students had completed the Basic Set Theory and Logic course. As the
course focused on set theory and logic in the service of proof writing, the instruction
on set theory and logic was limited to basic properties, terms, and definitions, as well
as symbolizing practices, and then on specific proof techniques and/or strategies. All
participants took part in video-recorded interviews during which the task was
presented on a large piece of paper. The participants were given as much time as
requested and then asked to explain their answer to the stated question.

Question: Can you prove Theorem 5 by proving Statement A?
Theorem 5. For all positive integers n, if n mod(3) = 2 then n is not a perfect square.
Statement A. There exists no positive integer n such that n mod(3) = 2 and n is a perfect square.

Figure 2. Study 2, Interview Task

To identify approaches the analysis focused on which theory (mathematical or
logical) the participant worked in and how they engaged in that theory. Responses
were considered mathematical theory approaches (MTA) if the participant was
observed: (1) explicitly exploring mathematical statements, definitions and/or terms;
and/or (2) constructing a proof of either statement. Responses were considered
logical theory approaches (LTA) if the participant was observed: (1) posing explicit
questions of equivalence; (2) constructing truth-tables and/or working with symbolic
logic; and/or (3) citing logical theorems or practices. In addition to the approach,
participants’ responses were analysed for the form of engagement. Specifically,
coding noted participants’ use of syntactic and/or semantic reasoning, with semantic
referring to reasoning that employs meanings and multiple representational systems
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and syntactic referring to rule-based reasoning within a representational system."

Study 2 Findings

In Table 2, we report the percentage of correct responses. The reader will notice that
among the 21 students five types of responses were observed: yes, yes-no-yes, no-yes-
no, no, and don’t know. Yes refers to students who, after a period of exploration,
decided without hesitation that one can prove Theorem 5 by proving Statement A.
Yes-no-yes refers to students who repeatedly switched answers, expressed hesitation
and doubt, but ultimately choose “yes.” No-yes-no were similar to yes-no-yes but
were students who repeatedly switched answers and ultimately choose no. No refers
to students who reached, with evident certainty, the decision you cannot prove
Theorem 5 by proving Statement A. Uncertain refers to students who, after
deliberation, responded to the prompt by remarking they “didn’t know.”

Prompt: Can you prove Theorem 5 by proving Statement A?

Student Responses N %

Yes 6 28.6%
Yes-no-yes 5 23.8%
No-yes-no 4 19.0 %
No 5 23.8%
Uncertain (Don’t Know) 1 4.8%
Mathematician Responses

Yes | 6 | 100%

Table 2: Student and Faculty Response by Category

As seen in Table 2, less than one-third of the students (28.6%) who had completed
the Basic Set Theory and Logic course stated with certainty, yes one could prove
Theorem 5 by proving Statement A. And, nearly as many (23.8%) reached this
conclusion with significant hesitation (Yes-no-yes). Furthermore, 42.8% argued
either with certainty (No) or with hesitation (No-yes-no) that you cannot prove
Theorem 5 by proving Statement A. These findings indicate instruction had little
impact on the students’ success with the metatheoretical requirements of a proof by
contradiction. In contrast, (without surprise) all of the mathematicians replied yes.

Since findings that indicate the prevalence of difficulties are of little use without
information on the nature of students’ engagement, we turn to the analysis of
participants’ approaches. This analysis focused on the question of which theories the
participant engaged with and their form of engagement (see Table 3).

Student Response By Type and Form
(n=21) Mathematical Theory Approach (MTA) Logical Theory Approach (LTA) | NE*
Response Type Semantic Syntactic Semantic Syntactic
Yes 1 3 1
Yes-no-yes 3 3
No-yes-no 4
No 1 1 3
Don’t know 1

Table 3: Student and Faculty Response by Type and Form “NE is no evidence)

218

sciencesconf.org:indrum2018:174100




Looking at Table 3, the reader will notice that the majority of the students (18 of 21;
85.7%) engaged in a logical theory approach (LTA). For many this work occurred
symbolically, with 15 of the 18 (LTA) students replacing the open sentences with the
symbols (e.g., P, Q, ~P or ~Q or P(n), Q(n), etc.) and the phrases for all and there
exists no with V and 38, respectively.” Indeed, except for one LTA-semantic (Don’t
know) and two LTA-syntactic (No-yes-no), the students worked symbolically. When
asked about the use of symbols many students noted their discomfort with the
content, “mod is really rough in my memory right now”, and that “it’s easier to work
with symbols.” Thus, the symbolic approaches enabled the students to avoid content
for which they lacked confidence in their mathematical understandings.

For 3 of the LTA students their symbolic approach led to a quick and definitive yes,
as shown Figure 3. The reader will notice the student initially focuses on the
relationship between the quantifiers and then on how translating from A to V
requires one to act on the open sentences by negating a sentence of the form (PA ~Q).

" Theorem 5: For all positive integers #, if # mod(3)=2,thenn is not a perfect square.

Statement A: There exists no positive integer # such that » mod(3) = 2 and  is a perfect square.

Student A:  Yes, you can prove Theorem 5 by proving Statement A ... because when
you say there exists no that implies ... well that’s a for all statement and
then you have to negate the umm ... the umm ... (writes PA ~Q).

Figure 3: Student A’s (Correct) Syntactic-LTA Response

In contrast to those who readily replied yes, nearly half of the LTA students
experienced a significant amount of hesitancy and doubt (Yes-no-yes; No-yes-no).
Many of these students articulated difficulties with the phrase “there exists no” while,
at the same time expressing certainty regarding the logical relationship between for
all and there exists (i.e., they asserted the negation of one quantifier produced the
other). Among these students, it was not uncommon for them to argue that there
exists no means nothing and that, “nothing is the opposite of everything,” a point
which left many confused having already noted for all and there exist were
“opposites” in logic. For nearly a third of the students (6 total) recognizing there
exists no as the opposite of for all and the open sentence “n mod(3) =2 and n is a
perfect square” as the negation of “if » mod(3) = 2 then #n is not a perfect square” led
to the conclusion Statement A is the negation of Theorem 5, as illustrated in Figure 4.

Two aspects of this approach are important to note. First, the student compares the
quantifiers (for all and none) and then compares the open sentences. Hence, the
quantifiers are not seen as variable-binding operators that act on open sentences but
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rather as appended symbols. Such reasoning enables the student to translate 7 into
its “opposite” V independently of translating PA ~Q into its “opposite” P=Q.
Second, such reasoning relies on the student incorrectly viewing 7 (PA ~Q) as being
of the form (~3) (PA~Q) rather than as of the form ~[(3) (PA~Q)].

- Theorem 5: For all positive integers n, if # mod(3)=2, then 7 is not a perfect square.

Statement A: There exists no positive integer » such that #» mod(3) = 2 and » is a perfect square.

Student B:  they’re opposites [...] this (Statement A) is the negation of Theorem 5
...1t’s saying for all of them, it’s saying none of them [...] Yeah, (writes
V(P=>Q)) and (writes ~ symbol before V(P=Q))) is (writes # (PA ~Q)).

Figure 4: Student B’s (Incorrect) Syntactic-LTA Response

In addition to the LTA responses, two MTA responses were observed. In the MTA-
semantic response, the student spent his time considering numbers that satisfy n(mod
3)=2 and trying to understand the structure of a number that would disprove Theorem
5 or Statement A. Eventually, this student decided Statement A was false and,
therefore, could not be used to prove Theorem 5. In the MTA-syntactic response, the
student immediately remarked, “it’s by contradiction.” The student then proceeded to
determine if Statement A provided the needed claims for such a proof:

Student C: by contradiction [...] he’s claiming that there is no positive integer n, ...
such that (points to Statement A’s open sentences) [...] so, he’s saying there
is no positive integer n here so you can use that argument (points to open
sentences again) and ... so, yeah, you can put those together and prove it.

As seen in Table 4, the mathematicians’ responses were quite different, with all but
one engaging in an MTA. Though not shown, it is important to note that in three of
the five MTA-semantic responses, the mathematician spent the majority of the time
proving (or considering how they would prove) Theorem 5.

Faculty Response Category
(n=06) Mathematical Theory Approach (MTA) | Logical Theory Approach (LTA)
Response Type Semantic Syntactic Semantic Syntactic
Yes 5 1

Table 5: Faculty Response by Type and Form

This work lead all three to realized they would use a proof by contradiction and in so
doing, prove Statement A to prove Theorem 5. In the other two MTA-semantic
responses, the mathematicians repeatedly rephrased the statements, while explicitly
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noting the everyday meanings of the words, until they had convinced themselves that
the statements were “essentially the same.” This work was often well-situated in the
mathematical theory, as seen in the transcript below where the mathematician speaks
of “turning around” Statement A and “running through” sets of numbers.

Mathematician o I tend to take statements like that [Statement A] and try to rephrase
them, so ... for me, I would say, what does that actually say? It says that,
umm, whenever, umm, a positive integer n is congruent to, umm, is
congruent to 2 mod 3 then n cannot be a perfect square ... like I ... I try to
turn it around ... I’m sitting here almost hesitant about whether or not I’ve
even done it correctly. But let me think ... so, umm, let’s see, so there exists
no positive integer n such that these two things are true ... so that’s ... what
is that the same thing as saying, it’s saying that, umm, if you ran over the
positive integers n which were congruent to 2 modulo 3 you are never going
to hit a perfect square but then that’s what this is saying (point to Theorem
5), umm, if I think of for all positive integers n and this part is true, that n is
congruent to two modulo three, then I am never going to hit a perfect
square. So, ... umm, actually, I think, umm, I would almost rephrase these
things as being equivalent but I am feeling a little bit hesitant about that.

Here, it is important to note that in addition to Mathematician ¢, three other
mathematicians expressed hesitancy with regard to their own reasoning; e.g., Dr.
remarked “just doubting myself for some reason.” In each case, the mathematician
was asked “Do you have some doubts about your answer?” and all responded “No.”
Thus, the participants appeared to be applying inferences with a high degree of
(perhaps intuitive) certainty, while also doubting their own judgements of those
inferences. Finally, two other observations are of note. First, like the students, one
mathematician translated the statements into symbols. However, they immediately
pushed the paper away saying, “I am not going to do that.” Second, in the case of the
LTA-semantic approach, the mathematician translated both statements into Venn
diagrams (Figure 5) and then, by comparing the diagrams, reasoned through the task.

X Theorem 5: For all positive integers n, if n mod(3)=2, then » is not a perfect square.

Statement A: There exists no positive integer # such that » mod(3) = 2 and » is a perfect square.

Dr. f3: I’'m going to draw some sets. ... Statement A says to me the sets of n
mod(3) ... congruent to 2 and perfect squares ... (long pause)... are
disjoint. Right. There exists no positive integer ... so this says for all

positive integers if n mod(3) is 2 expressed then ... this will be expressed as
a containment and ....it’s not a perfect square ... perfect square is on the
outside ........ and, umm, let’s see, if-then means that ....(long pause) that
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that set is inside that set or is it the other way ... that implies that ...(long
pause). Yeah, it looks like it (laughs quietly).

Figure 4: A Mathematician’s (Correct) Semantic-LTA Response
Study 2 Discussion

Study 2 aimed to explore students’ and mathematicians’ success with and approaches
to a metatheoretical task. The data demonstrate that post-instruction, novices
continued to struggle with the metatheoretical requirements of proof by contradiction
and gravitated towards syntactic-LTA approaches, while the mathematicians tended
towards semantic-MTA approaches. Furthermore, students’ remarks indicated their
use of syntactic-LTA approaches enabled them to avoid perceived content knowledge
weaknesses, whereas the mathematicians drew heavily on this knowledge to produce
proofs and explore concepts. The study also revealed a tendency among students who
struggled with the tasks; namely, a tendency to view quantifiers as appended symbols
rather than as variable-binding operators that act on open-sentences. Though far from
providing definitive evidence, the study contributes to the literature by highlighting
the logical complexities novices may encounter when producing or comprehending
proofs by contradiction, given the approaches they gravitate towards.

CONCLUDING REMARKS

One question raised by the studies is, why didn’t the students’ reasoning progress,
even after completing the Basic Set Theory and Logic course? Certainly, the lack of
progress may be due to poor instruction, an insufficient curricular treatment, or the
cognitive demand of the tasks. Turning to the curricular materials used, Chartrand,
Polimeni, and Zhang’s (2008) Mathematical Proofs: A Transition to Advanced
Mathematics, one finds little in the ways of support for the metatheoretical tasks
studied. This text includes an introductory chapter on logic with two subsections on
quantifiers. In these subsections, the quantifiers for all and there exists are defined
and discussed with regard to the variations of these phrases used in mathematics (e.g.,
for some; at least one, etc.). Neither are quantifiers discussed as variable-binding
operators nor is the phrase “there exists no” or the symbol 7 mentioned. The same is
true in a latter chapter focused on proof by contradiction, where emphasis is placed
on moving from “for all” to “there exists” when proving by contradiction without
mention of what one must do once one determines something “does not exist.” Thus,
the lack of progress may be tied to an insufficient curricular treatment of the topic.

Turning to the mathematicians’ responses an alternative rationale for students’
persistent difficulties becomes evident. As discussed, most of the mathematicians in
Study 2 expressed a lack of confidence in their own reasoning, while none wished to
change their answer due to an intuition (i.e., “gut feeling”). Hence, it seems
reasonable to conclude that the task was cognitively demanding. Consequently, even
with instruction, we might expect low success rates among undergraduates, who are
at the early stages of the education and lack the content knowledge experts employed.
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Lastly, in an interesting study of effective proof comprehension strategies, Weber
(2015) found mathematicians preferred students, “rephrase theorems in their own
words” and that students not use the strategy, “rewrite the theorem in first-order
logic.” These views reflect the practices of the mathematicians in Study 2, for none
used the latter strategy, while nearly all used the former. However, their rephrasing of
the statements relied on their extensive content knowledge; namely, as a tool for
inferring meanings. Hence, the findings raise questions regarding whether or not the
mathematicians would use these approaches if they were working with unfamiliar (or
difficult) content. Indeed, it seems that we must be careful inferring instructional
recommendations from the mathematicians’ practices. Many appeared to generate
inferences automatically — a practice that seemed to inhibit them from rationalizing
their judgements; as illustrated by the mathematicians’ repeated expressions of
hesitancy.
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The goal of the study presented in this paper is the investigation of students’
problems with exercises concerning central topics of linear algebra courses at
university level. We present the results of our analysis of students’ work on an
exercise about subspaces of R%. We evaluated the written solutions of the task
as well as transcripts based on videos taken of student groups working on the
problem. We identified and classified descriptions of vector spaces and sub-
spaces that varied widely and demonstrated highly different skills in working
with geometric or formal algebraic objects. We analyzed how far students could
progress in a complex reasoning process, and identified those steps in the rea-
soning process on which students needed support to continue.
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PURPOSE AND BACKGROUND

Problems in teaching and learning of linear algebra have a long history in many
countries (Dorier & Sierpinska, 2001). Frequently, the abstract character and the
formalism of mathematics that students have not been exposed to in school be-
fore is named as a central obstacle (a variety of studies are outlined and evalu-
ated in Dorier, Robert, Robinet & Rogalsiu, 2000). Since vector spaces are a
central part and moreover of special importance for almost all disciplines related
to mathematics at university, special attention has been paid to them (Dorier,
2000, Stewart, 2017). Generally, students do not develop a clear concept of vec-
tors at school level (Mai, Feudel & Biehler, 2017), and the more abstract ap-
proach to this subject taught at universities is described as being “out of reach”
by some students (Stewart, 2017). Wawro, Sweeney and Rabin (2011) investi-
gated concept images of subspaces in interviews with students and identified
recurring concept images, distinguishing between a subspace as a part of a
whole, a geometric object, and an algebraic object. The introduction of first
concepts in tutorial meetings in linear algebra, with a special focus on the behav-
ior and influence by the tutor, has been studied by Grenier-Boley (2014).

CONTEXT AND DESIGN OF THE STUDY

In this study, we investigated the problems of students shortly after their first
encounter with vector spaces and subspaces at university level. The participants
of our study were students with major mathematics or computer science, en-
rolled for bachelor of science or bachelor of education (for secondary school,
“Gymnasium’), most of them in their first semester. In our study, we collected
data from students working on tasks in groups during their tutorial group meet-
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ings (1.5 hours), where the tutors were advised to answer questions but to only
intervene when the students had substantial problems to continue. The students
worked on exercises about the content of a recent lecture under the supervision
of a tutor. In this context, we assigned special tasks that we developed ourselves
together with the lecturer and his assistant, but we did not influence the course
design otherwise. We will report only on one of them in this paper. The course
can be considered to be typical for a beginners’ lecture in linear algebra, which
normally is rather abstract, and was given by an experienced lecturer. During
their tutor meetings, the students worked on our exercises on separate sheets that
we collected, scanned for later analysis and gave back to the students in the next
meeting without any grading or corrections. We gathered between 78 and 130
written works on each exercise. Moreover, we also took video recordings of
groups of 2-4 volunteering students working on these exercises. They worked
on the exercise under the supervision of a student tutor who was part of the re-
search team and familiar with our a priori analysis of the task. The experienced
tutor was advised to help the students if they struggle with the exercise in the
same way as she would do in an ordinary tutor group meeting. We were inter-
ested in identifying important didactic variables. The results obtained by analyz-
ing the first implementation of the exercise about vector spaces are currently be-
ing used for designing a second implementation in the course Linear Algebra I.

The task for students in our study and preliminary research questions

In this paper, we concentrate on an exercise about subspaces and vector spaces
(see figure 1) that was part of the exercise sheet during week 7 of the course,
immediately after the notion of subspaces had been introduced. Students are
taught analytical geometry and linear algebra at school level, where vectors are
introduced as tuples (or classes of arrows), but they do not as a rule have a clear
concept of a vector (cf. Mai, Feudel & Biehler, 2017). Students know equations
of planes and lines in R? and R3, without considering them as subspaces, be-
cause this notion is not taught at school level.

The following exercise was designed in order to provide two different kinds of
learning potentials (as described in Gravesen, Grgnbak and Winslgw, 2016):

1. Linkage potential: In part a) to e), our intension was to motivate the students
to activate their school knowledge concerning the description of geometric
objects using equations; we hoped that they would recognize the sets as de-
scriptions of lines, points, parabolas etc., and connect this knowledge with
the new concepts of vector spaces and subspaces.

2. Research potential: Part f) of the exercise was created in order to engage the
students in a research-like activity. Even if achieving a complete solution
seemed unrealistic for most of them, we were interested in how the students
would approach this open question. They had to formulate a hypothesis and
use abstraction to identify and construct subspaces. The exercise can be seen
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as a “mini research project” that differs in type from standard exercises.
Exercise Which of the subsets of R? given in part a) to e) are vector spaces with respect
to the addition and scalar multiplication defined on R2?

a) My ={(x1,73) € R? : 2y + 225 = 0}

b) My = {(z1,22) € R? : 2y + 225 = 1}

c) My ={(z1,72) ER? : 2y = =2, 29 = —1}
d) My ={(z1,72) € R* : 2y — 23 =0}

e) M= {(x1,25) ER? :xy > 0,25 < 0}

f) Try to find all subspaces of R?. Make it clear to vourself that you indeed found all
subspaces. A formal proof is not necessary.

Figure 1: Exercise on subspaces (translated from German)

The parts a) to e) can be solved by a formal check whether the properties of sub-
spaces are satisfied by the provided sets. As this was learned in the previous lec-
ture, this is a standard task. Geometric ideas are not necessary, but we hoped
that students may do geometric interpretations of the sets to develop a geometric
meaning of subspaces and non-subspaces of R?. Task f) is different, because this
is the first time that this type of question is asked. Students may use the results
from a) to e), that have provided examples and counterexamples of subspaces, to
find the zero space, all lines through the origin, and the whole R? as subspaces
and give reasons why they are subspaces on some level. The challenging ques-
tion is whether or why these are all subspaces of R?. Research questions con-
cerning f) are: How many students identify the zero space and the entire R? as
subspaces? Are all lines through the origin identified as subspaces? Which ar-
guments do students provide for considering a line through the origin as a sub-
space of R?? How do they reason, when exploring, whether there are more sub-
spaces in R? or whether they have already found all?

We were also interested in the sources of knowledge students used, such as their
results on a) to e), parts of the lecture, or geometric interpretations related to
their school knowledge, and concerning the videographed tutorial sessions,
which kind of support by the tutor they can use in their reasoning process.

METHODOLOGY AND DATA COLLECTION

For the analysis of the written work of the students, we followed the method of
Biehler, Kortemeyer and Schaper (2015), by comparing each solution with the
so-called student expert solution (SES), which is a sample solution based on the
idealized actual knowledge of the students at this point of the lecture. Moreover,
the student expert solution contains additional meta-information about the solu-
tion, for example, several alternative opportunities for solutions and explicitly
written-out learning objectives. In relation to Brousseau’s theory of didactic sit-
uations, this method can be seen as a special approach to the development of an
a priori analysis. We evaluated the written work in a two-step procedure: In a
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first step, we categorized the solutions by correctness and collected peculiarities
and mistakes. Based on this and the SES, we developed a detailed coding system
for deeper analysis. The recorded videos have been transcribed in order to allow
a detailed qualitative analysis.

A PRIORI ANALYSIS OF THE TASK

In the lecture, the definition of vector spaces was given in a typical traditional,
abstract way. The zero space and the vector spaces K (trivial vector space over
K) and C (the latter together with component-wise addition and multiplication)
had been presented by the lecturer as first examples. Apart from this introduc-
tion, the students had only seen the following (relatively abstract) non-trivial
examples for vector spaces in the lecture: (VS1): K™, the “standard vector
space”, where K is any field, with n € N, including the definition of addition and
the scalar multiplication (component-wise), (VS2): KN, the vector space of se-
quences over the field K, with the component-wise operations. Subsequently,
subspaces of vector spaces had been defined to be subsets of vectors spaces that
are vector spaces themselves with respect to the same operations. Following
this, they had learned that a sufficient criterion for proving that a nonempty sub-
set W of a vector space V over the field K is a subspace is to prove that
lyVvoow e W =v+w eW,and secondlyVv eW,vaeK =aveW.
As examples of subspaces, the trivial subspaces {0} and V' were nominated
without proof. Moreover, for both vector spaces (VS1) and (VS2), there was an
abstract example for a subspace given, and we state the first one of them here
since it will be of use for our later analysis:

(S1) Theset L:= {(xq, ..., xn) E K™ V1 <i<m: ¥, a;x; =0} S K"}is
the solution space of a homogeneous linear equation system »%_; a;;x; = 0. It

was shown that this set is indeed closed with respect to addition and scalar mul-
tiplication and is a subspace. Note that this example can be applied to R?, if we
choose m = 1. The subspaces in L are the lines through the origin expressed by
linear equations. This interpretation could be done by students on the basis of
school knowledge. The lecturer did not provide this specialization himself.

For our later analysis, the following distinction is central. All provided examples
have in common that sets are characterized by equations (subspaces defined by
relations). In contrast, 1-dimensional subspaces could also be defined by explicit
construction: for instance forany x e V: L, = {v € V|v = Ax,1 € K}. The lat-
ter way of defining subspaces was not yet a topic of the lecture, which will turn
out to be an obstacle for some students. Moreover, the students had not seen any
geometric interpretation or visualizations of vector spaces or subspaces, in par-
ticular no (concrete) examples of subspaces in R™. In the following, we will give
an overview about possible approaches and steps to part f).

Step 1: Find some subspaces. With the knowledge from the lecture, the trivial
subspaces (the zero space and R?) can be named. To find nontrivial subspaces,
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one can identify again the set M; of the previous part a) of the exercise as a sub-
space. Starting with this set, one could generalize from numbers (like 2 and 1, as
chosen in part a)) to a general form with coefficients, and give the set M, =
{(x1,x,) € R?*:ax; + bx, = 0}, with a, b € R not both being zero. Instead, if
one abstracts from the mathematical language used in the exercise before, these
sets could also be expressed constructively as L, :={veV|v=Ax, 1€
K}. Supported by Dorier, Robert, Robinet and Rogalsiu (2000), we expected dif-
ficulties to translate the relational representation into the constructive represen-
tation and vice versa. Alternatively, with the knowledge from the lecture, one
could apply the example (S1) given in the lecture to the space R?, and describe
the subspaces in terms of the solutions of homogeneous linear equation systems.
This reasoning can be done just algebraically. It could also happen that students
use geometrical terminology concerning lines through the origin.

Step 2: Verification of the subspace properties. In order to reason why the sub-
sets given in step 1 are subspaces, one could either refer to the solution of part a)
of the exercise or (for the trivial subspaces and in case of the use of the solution
spaces of homogeneous linear equation systems) to the lecture. In case of a ge-
ometric description (“lines through the origin™), either geometric or algebraic
arguments have to be provided to verify the subspace properties.

Step 3: Why are these all subspaces? The final challenge is to reason if and why
all subspaces of R? have been found. This can be done algebraically, but we did
not expect our students to complete this reasoning process in the given time,
since it requires a development of several successive algebraic arguments. Based
on their school knowledge, the students could recognize the descriptions of ge-
ometric objects by equations in part a) to e) and abstract from the previous re-
sults, leading to the conclusion that lines through the origin are subspaces, but
no other lines, single points or other collections of points. At this point, a suc-
cessful reasoning based on school knowledge could be done constructively,
based on geometric arguments. Trying to construct “bigger” subspaces than just
the lines through the origin, a student could build the union of two different lines
and check whether this set is a subspace. Alternatively, he or she could try to
find the minimal subspace that includes one line g, through the origin and an
additional point x, not lying on this line. He or she could come to the conclusion
that this has to be the whole R?. A formal argumentation here is that every point
can be represented as a linear combination of a point x; # (0,0) from the line
o and x,, but even if the student does not come to this conclusion at this point,
he or she could have the idea to consider the line through the new point x, to-
gether with the original line, and therefore check this new set for the subspace
conditions. He or she could check the closure of addition or come to the idea
that further points have to be added to the union in order to get a subspace. Since
this type of reasoning seemed to us more likely to be achieved with the previous
(including school) knowledge of the students, the tutors in the normal tutor
group meetings as well as the tutor in the video study were advised to guide the
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students along this reasoning process if they struggled in approaching the prob-
lem. Based on this sample solution process description, we tried to answer the
following research questions in our analysis:

1. How far in this three-step process would the students come when they work
on this exercise? Would they even be aware of the need to do step 2 and 3?

2. Would they favor one of the described approaches to the problem (geomet-
ric, algebraic), and would they use the constructive or the relational way to
describe the 1-dimensional subspaces? Would they approach step 3 in a con-
structive way, building up subspaces starting with just one point, as de-
scribed above, or would they find other ways (purely algebraic?)?

3. Finally: Would they recognize that parts of exercise f) could be solved by an
application of the example (S1) given in the lecture?

Since we posed the question in part f) in a relatively weak phrasing, we could
not expect the majority of students to give a fully structured, formal reasoning in
this exercise, in particular for the steps 2 and 3. But we were interested if the
exercise itself would stimulate the students to give reasons for their answers and,
in particular, how they would argue in this case.

RESULTS

To find answers to our questions, we analyzed the written works as well as the
video recordings of the students working on part f).

Work on part f): Written exercises

From the written works of 116 students on this exercise, just 48 handed in solu-
tions for part f). This is most likely due to the fact that the time was very limited,
so many students just did not come to part f). We analyzed their work with re-
spect to the three steps of the solution as described in the a priori analysis.

Trivial R?2 33

subspaces Zero Space 32

1- Solution with any description of the 1-dimensional subspaces (some students | 33

dimensional | used more than one description)

subspaces - Relational description: M, , = {(x1,x,) € R*:ax; + bx, = 0} 24
- Constructive description: L, = {v € V|v = Ax,A € K} 4
- Geometric descriptions: “line containing zero”, “line through origin” 12

Table 1: Frequency of the nominations and descriptions of the subspaces

Step 1: Which subspaces do they find? How do they describe them? Do they use
previous parts of the exercise or name the set considered in part a)?

The results in table 1 were collected by counting how often the three types of
subspaces were mentioned in the solutions. Hereby, each notion of a subspace
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counted, as long as it was clear enough to denote the required set. How did the
students describe the 1-dimensional subspaces? We distinguished between “ge-
ometric” descriptions, using expressions like “line containing zero”, “line
through the origin”, relational descriptions using a set like M, , = {(x1,x,) €
R?: ax; + bx, = 0} or something mathematically equivalent (see a priori analy-
sis for a definition of this category) or constructive descriptions like L, =
{v e V|v = Ax,A € K}. Some students used more than one description in their
solution. Apart from this, it was interesting to see that only 8 students did men-
tion any part (mostly a)) of the previous exercise in part f). It is not clear if those
who could not give any (nontrivial) subspace actually never recognized that the
set M, from part a) is a subspace (since the word “subspace” was not used in part
a)), or if they just forgot about it before they started with part f). Moreover, it is
interesting that the trivial subspaces, which we expected the easiest to find, were
not nominated more often than the 1-dimensional subspaces. We were also sur-
prised to see that only 2 of the students did refer to example (S1) (see a priori
analysis) from the lecture, concerning the solution spaces of homogenous sys-
tems of linear equations.

No rea- Incorrect reasoning/ Partial rea- Complete reasoning
soning unclear approach soning

Step 2 34 5 7 2

Step 3 35 6 6 1

Table 2: Frequency of reasoning in part f)
Step 2: Do they show that the given sets are subspaces? How do they argue?

Most students did not give reasons (see table 2 for results), but within those who
did, we distinguished between approaches that did not go in the right direction
(for instance students just answered by listing all properties of a subspace with-
out proving them or claimed that it was “clear” that the spaces are subspaces),
students who did give a correct approach or a partial proof (they mentioned that
closure must be proved, but did not, or just checked the addition or the scalar
multiplication, or just checked an example etc.) and complete solutions with full
reasoning (using example (S1) from the lecture in both cases).

Step 3: How do they reason that they found all subspaces of R??

Within the 13 solutions that had some kind of reasoning (see table 2 for results),
we distinguished again between unclear or vague approaches to reason the com-
pleteness of the given list of subspaces (for instance the statement “there are no
other possible, because one cannot multiply vectors”), promising but incomplete
approaches (some students gave reasons why lines not going through the origin
cannot be subspaces, but did not consider other subsets, or just discussed the
closure of one of the operations) and complete reasoning (just one case, again
applying example (S1) from the lecture).
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Work on part f): Video recordings

We give a summary about three groups of students that we recorded during their
solution process on part f) under the perspective of our research questions. Due
to limitations of space, we cannot document the method used to analyze the
transcripts and the students’ interaction in more detail.

Group 1: The first group tried to find subspaces by systematically going through
the list of properties, and found the zero space to fulfill them. Then, they re-
membered the set proven to be a vector space in part a) and generalized it to a
set of the form Mg, = {(xy,x;) € R*:ax, + bx, = 0} after a discussion
whether the coefficients are arbitrarily exchangeable without harming the sub-
space conditions. They discussed the closure of the vector space operations in
this set, but referring to the proof they had given in part a), they convinced
themselves quickly that there was nothing else to prove. After this, they also
identified the full space R? since there is no claim for a subspace to be a proper
subset. At this point, they were asked by the tutor if and why they found all sub-
spaces now. They had the idea to consider the set Z? and, referring to their
knowledge about groups, discussed the closure of operations on this set before
they could finally rule it out to be a subspace by the fact that the scalar multipli-
cation with elements from R is not closed on Z. The tutor then asked them to
consider the set M, ;, geometrically. They start to consider the tuples of coeffi-
cients (a, b) in the plane instead of the equation ax; + bx, = 0. With another
hint from the tutor, they found out that the set M,, whose elements are de-
scribed by the equation ax; + bx, = 0 denotes lines in the plane, and discussed
the closure of the operations for these lines. The students did not develop an idea
themselves to give arguments why they had found all subspaces. However, the
students were able to follow the geometric constructive reasoning of the tutor
(see a priori analysis).

Group 2: The second group came up with the idea to apply example (S1) from
the lecture. After some discussion and a bit help from the tutor, they found that
the subspaces defined there are the solutions of one or more linear equations,
each having two coefficients. The central difficulty for them was to see that the
number of coefficients is fixed to 2, but there could be an arbitrary number m of
equations in a system of linear equations that is still defined in R2. It was a real
discovery later that m = 1 provided descriptions as are provided in M, ;. Up to
this point, they did not consider the trivial subspaces at all. They struggled a bit
to write down the concrete subspaces they could find this way in terms of alge-
braic expressions, but managed it with some help from the tutor. Asked whether
they found all subspaces, they did not develop the idea to consider the spaces as
lines in the plane on their own, but after the tutor came up with this idea, they
were able to work with this concept after a short phase of orientation in which
they convinced themselves that the geometric objects stand for the same sub-
spaces they worked with before. Just at this point, they identified the trivial sub-
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spaces too. Step 3 (to reason that all subspaces were found) was only solved
with tutorial support (similar to group 1).

Group 3: The third group used the previous parts a) to e) in their reasoning and
started with the subspace found in a), but immediately identified this set to de-
scribe a “line through the origin”, which gave birth to a generalization to all
lines through the origin. They continued to orally communicate in geometric
terms, but decided to write down the set using the relational algebraic expression
Mg, = {(x1,x;) € R*:ax; + bx, = 0}. They named the trivial subspaces
without further comments. The proof given in part a) sufficed for them for a rea-
soning of step 2, and they started to discuss step 3 quickly. They used references
to part b) to e) to rule out other types of possible subspaces. The group thought
they had finished at this point. It was the tutor who pointed out that step 3 was
not yet satisfactorily answered. Different from the other groups, they took up the
tutors input to construct other subspaces geometrically and in order to find out
that such subspaces have to be equal to R%. With some minor help from the tu-
tor, they finished this step quickly, needing much less time for the full task than
all other groups.

CONCLUSION AND DISCUSSION

As a result, we can state that students at this point in their studies were able to
find and describe (using varying descriptions) subspaces of R?, but the question
to find all subspaces was a serious obstacle for the students. Moreover, the step
to translate the algebraic description of the subspaces into a geometric view,
where reasoning could be done with less formality, was a further obstacle for
them, since they seemed not to connect or apply their geometric knowledge
from school to the new problem.

It seems like a geometric approach to this kind of problems is not a natural, au-
tomatic behavior of students at this point of their education. This result resonates
with the observations from Wawro et al. (2011), who stated that intuitive geo-
metric notions can be the preferred approach of first year students to the con-
cepts of subspaces, but also cause problems if they their geometric intuitions are
inconsistent with the formal definition. It is worth pointing out that our students
did not, in opposition to the results of Wawro et al., automatically identify (often
mistakenly, if there was no respect to a necessary embedding) the R?! as a sub-
space of the R2. A possible explanation for this result is the fact that our results
were obtained shortly after the introduction of subspaces in the lecture, where
Wawro et al. interviewed their students when they already have had more time
to develop a concept image of subspaces, including some misconceptions.

Most students did not connect the different parts of the exercise, appearing in
different “languages” (like the sets in the parts a) to e) and the open question in
part f)) to solve the problem in f). With some help, especially with the request to
consider the sets geometrically, they were able at least to understand reasoning
on this basis, and some students actually could even give proofs or approaches
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to proofs on their own. We came to the result that the students needed more
guidance and preparation to solve this problem, and in particular support that
helps them to deal with each step and even sub-step of the solution of the prob-
lem in part f). In our subsequent study in winter term 2017/2018, we are investi-
gating if explicit indications in a) to €) to consider the sets geometrically and a
rephrasing of part f), splitting it up into more explicitly described steps, have a
decisive influence on the students’ ability to solve task f).

REFERENCES

Biehler, R., Kortemeyer, J. & Schaper, N. (2015). Conceptualizing and studying
students’ processes of solving typical problems in introductory engineering
courses requiring mathematical competences. In K. Krainer & Nad’a
Vondrova (Eds.), Proceedings of the CERME 9 (pp. 2060-2066). Prag:
Charles University in Prague, Faculty of Education and ERME.

Dorier, J.-L. (2000). Epistemological Analysis of the Genesis of the Theory of
Vector Spaces. In: Dorier, J.-L. (Ed.). On the Teaching of Linear Algebra.
(pp. 1-81). Dordrecht: Kluwer.

Dorier J.-L., Robert A., Robinet J., Rogalsiu M. (2000). The Obstacle of For-
malism in Linear Algebra. In: Dorier, J.-L. (Ed.). On the Teaching of Linear
Algebra (pp. 85-124). Dordrecht: Kluwer.

Dorier, J.-L., & Sierpinska, A. (2001). Research into the teaching and learning
of linear algebra. In: D. Holton (Ed.), The teaching and learning at university
level - an ICMI study (pp. 255-273). Dordrecht: Kluwer.

Frovin Gravesen, K., Grgnbak, N. & Winslgw, C. (2016). Task Design for Stu-
dents” Work with Basic Theory in Analysis: the Cases of Multidimensional
Differentiability and Curve Integrals. International Journal of Research in
Undergraduate Mathematics Education, 3, pp. 9-33.

Grenier-Boley, N. (2014). Some issues about the introduction of first concepts in
linear algebra during tutorial sessions at the beginning of university. Educa-
tional Studies in Mathematics, 87, pp. 439-461.

Mai T., Feudel F. & Biehler R (2017). A vector is a line segment between two
points? - Students’ concept definitions of a vector during the transition from
school to university. Paper presented at the CERME 10, Dublin.

Stewart, S. (2017). School Algebra to Linear Algebra: Advancing Through the
Worlds of Mathematical Thinking. In: Stewart, S. (Ed.), And the Rest is Just
Algebra (pp. 219-233). Springer.

Wawro, M., Sweeney, G. & Rabin, J. (2011). Subspace in linear algebra: inves-
tigating students' concept images and interactions with the formal definition.
Educational Studies in Mathematics, 78, pp. 1-19.

233 sciencesconf.org:indrum2018:174624



A TDS analytical framework to study students’ mathematical activity
An example: linear transformations at University
Marc Lalaude-Labayle', Patrick Gibel?, Isabelle Bloch? and Laurent Lévi'

'Laboratory for Mathematics and its Applications (UMR 5142 CNRS), France,
marc.lalaude-labayle@univ-pau.fr;

?Lab-E3D Laboratory of Epistemology and Didactics of disciplines,
Patrick.Gibel@u-bordeaux.fr; Isabelle.Bloch@u-bordeaux.fr, University of
Bordeaux

Our research focuses on the teaching of linear transformations in “Classes
Préparatoires aux Grandes Ecoles”. The theory of didactical situations, jointly with
Peirce's semiotics, constitute the main theoretical framework of our works and allow
us to analyse student's reasoning in situations of oral evaluation. We illustrate the
use and utility of this framework with the study of student’s mathematical activity
when they are faced to situations involving complex concepts such as linear
transformations in polynomial spaces.
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INTRODUCTION

Our work deals with a double object: linear transformations as a structuring concept
of the teaching of linear algebra and a particular institution at the undergraduate
level, the Classes Préparatoires aux Grandes Ecoles. Grounded on didactical
motivations, our epistemological analysis allows us to exemplify the crucial role of
linear transformations for the emergence of linear algebra concepts. This
epistemological part of our research, mainly based on the works of Dorier and
Moore, leads us to the use of Peirce’s semiotic and to enrich the analytical model of
Bloch and Gibel (2011) which is rooted in the Theory of Didactical Situations
(TDS). The purpose of this paper is twofold:

* give some responses to the following question: which reasoning forms are
actually produced by a student during the different stages of a situation of oral
evaluation?

® show the utility of our framework to analyse the signs and arguments
produced and thus take part to the development and enrichment of this model.

Within the French didactic tradition, we remind briefly the theoretical tools used in
the elaboration of the framework. Then, we expose our model, using the terminology
of Bloch and Gibel. Equipped with these tools, we use the model to analyse the
arguments produced by students. But, at first, we succinctly introduce the institution
of Classes Préparatoires aux Grandes Ecoles by highlighting the differences with the
University, especially regarding the transition phenomenon with secondary level.
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I. THE CLASSES PREPARATOIRES AUX GRANDES ECOLES: A FRENCH
POST-SECONDARY LEVEL INSTITUTION

The Classes Préparatoires aux Grandes Ecoles, which we can translate as Higher
School Preparatory Classes, are part of the French tertiary education system for over
two centuries. They consist in two really intensive years which act as a preparatory
course to train undergraduate students for their further enrolment in one of the
French graduate schools called Grandes Ecoles, such as Ecole Polytechnique, Ecole
Normale Supérieure, Ecole des Hautes Etudes Commerciales, also known as HEC
School of Management ... The enrolment in one of these Grandes Ecoles depends on
the rating obtained in national competitive and demanding examinations.

We summarize the main differences between the Classes Préparatoires and the
University in the following table. Thus, we highlight some facts that Winslow (2007)
showed to think about the study of the transition phenomena from the secondary to
the post-secondary level.

Classes Préparatoires

University

Full-time teacher

Part-time teacher, part-time researcher

One teacher by class

One class per teacher

Several teachers for one class

Several classes for one teacher

Non adoption of semesters

Adoption of semesters

Common national curriculum

Local curriculum

Non degree course

Degree course

In High School

At University

Class councils

Report cards

No class council

No report card

Selection of students

No selection of students

Table 1: Comparison of CPGE and University

As Winslow (2007), Castela (2011) and more recently Farah (2015) wrote, these
differences have deep didactic implications, relative to the theoretical knowledge and
praxeologies, to the problem solving approaches, to the evaluations and to the
personal homework just to name a few. In our experimental work, we studied some
arguments produced by second year students from one of these Classes Préparatoires
during an oral evaluation on linear algebra.

As noted by Bloch and Gibel (2016) for calculus, in order to recognize and analyse
the reasoning forms actually produced by a student,

it is necessary to classify the objects, signs and reasoning processes they have to cope
with during resolution of calculus problems. (Bloch & Gibel, 2016, p. 44)
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II. AMODEL TO ANALYSE STUDENTS’ REASONING

We then need a tool to modelize the students’ productions, more precisely to
identify, while in a mathematical situation, which is the knowledge they rely on
during their activity; we want to identify the structure and functions of students’
reasoning processes in this situation. Briefly, this model should allow us to seize the
complexity of the reasoning processes a student has to cope with during the
resolution of mathematical problems. By reasoning process, we mean valid or
erroneous ones according to the work of Gibel (2015) about reasoning.

This model takes its origins in the Theory of Didactical Situations (Gonzalez-Martin,
Bloch, Durand-Guerrier, and Maschietto 2014) and in the semiotics of Peirce. We
briefly recall the main theoretical elements of TDS and semiotic used in the
elaboration of the model.

The TDS theory

TDS relies on a two basic premises concerning the mathematical activity and the
learning of mathematical knowledge. For TDS, the mathematical activity consists of
distinct stages: a situation of action, followed by a situation of formulation and then
a situation of validation phase. To take the learning activity into account, TDS adds
two more stages: the phase of devolution and the phase of institutionalization. TDS
defines three fields to construct and analyse such situations. The theoretical field
which the domain of elaboration of fundamental situations relative to a knowledge.
The a priori experimental field which envisages a situation at a specific level of
teaching, taking into account the didactic repertory as defined by Gibel (Gibel,
2004). The a priori analysis of the situation, which checks if the conditions of
devolvement are fullfilled, takes place at this second level. The third field is the field
of eventuality where the situation is actually implemented. In short, TDS is a
didactical framework which tries to implement situations with adidactical parts and
offers tools to analyse the teaching and learning activities. These adidactical stages
allow students to face a heuristic phase of research and then, through a confrontation
to the elements of an adequate milieu, to test, validate or invalidate their conjectures.
The notion of milieu appears to have a central role. TDS organizes situations with up
to seven logically successive phases, but in our work we will mainly work with three
of them: a heuristic one, grounded in a problem, and a formulation and validation
one, composing the adidactical moments of the situation, and then the
institutionalization by the teacher or with his/her help, which is the didactical
moment. The dynamic of the nesting of the situations with the paired levels of milieu
illustrates the dynamic of the learning processes involved. The following chart
(Bloch 2006, Bloch and Gibel 2016) sums up the levels of milieu paired to the
different phases of situations corresponding to the experimental situation

M1 Didactical milieu E1l: reflexive subject | P1: P. planner | S1: situation of
project

MO Learning milieu : EO: generic student |[PO: professor | SO: Didactical

institutionalization teaching situation
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M-1 Reference milieu: E-1: The subject as|P-1: Professor | S-1:Learning
Formulation and validation | learner Regulator situation

M-2  Heuristic = milieu: | E-2: The subject as | P-2: P devolves | S-2:  Situation of
action, research an actor and observes reference

M-3 E-3: epistemological S-3: Objective
Material milieu subject situation

Table 2: Structuration of the didactical milieu

The levels M-2 and M-1 are the ones that will allow us to identify, describe and
analyze the elements (signs, processes ...) associated to the emergence of an
argumentation within the proof process. More precisely, as Bloch and Gibel (2016)
write

The place where we hope to see the expected reasoning processes appear and develop is
located at the articulation between the heuristic milieu and the reference milieu. (ibidem,
p.46)

Thus, the TDS theoretical framework allows us to consider not only the reasoning
processes produced, but their functions within the situation and the levels of
argumentation they rely on: it already gives us a glimpse of the multidimensionality
of our model.

The semiotic tools

To take into account the semantic dimension, i.e. the meaning of the signs and
arguments produced, with certain accuracy, we need semiotic tools. The signs a
student produce during an adidactical situation, whether formal or informal, are the
only observable phenomena that can sustain our semiotic analysis: roughly speaking,
the signs produced (syntactic aspect) are in relation to an object (semantic aspect)
creating a instantiated sign (pragmatic aspect) relative to the milieu, the didactical
repertoire and the repertoire of representations as defined by Gibel (2015). This
triadic relation, linking the sign, the object and the student’s instantiated sign, led us
to use Peirce’s semiotics. In this paper, we only analyse the relation between a sign
and its object, its content. But in his thesis, one the authors (Lalaude-Labayle 2016)
conducted a semiotic study, relying on the full Peirce’s triadic classification of signs
as ‘put in algebra’ by Marty (1990). Applying the universal categories to the relation
between a sign and its object refers to the notions of icon, index and symbol,
describing the abstraction level of this relation. An icon is a sign which stands for an
object because of its physical resemblance: a drawing, a triangular matrix
represented with triangles ... An index is a sign physically connected to its object:
the columns of the pivots in a reduced echelon form of a matrix M is an index that
points to the basis of /m(f), where M is canonically associated to /... A symbol is a
sign that refers to its object by virtue of a law: ker is a symbol whose object is the
concept of kernel of a linear transformation.
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The logical inferences

In our work we understand the term ‘reasoning’ in it broadest sense. More precisely,
by reasoning we mean a sequence of representations, following some intern and
potentially explainable rules that lead to reach some explicit goal. Postulating, as it is
the case within the TDS theory, some rationality of the students, we need to define
these rules or inferences. Peirce saw mathematics as the science of drawing
necessary conclusions, studying what is and what is not logically possible. But, since
one does not think about logical propositions but about and with signs, Peirce
broadened the notion of inference. He then distinguishes three kinds of rational
inferences: abduction, induction and deduction. Deduction, or necessary reasoning,
deduces a proposition B from a proposition 4, where B is a formal logical
consequence of A. Induction goes from the particular to the general; it allows
inferring B from A. Abduction allows inferring 4 as a probable explanation of B. So,
deduction proves that something must be, induction shows how something
effectively operates and abduction suggests that something could be.

The framework to analyse students’ productions

To analyse students’ processes of reasoning, Bloch and Gibel (2011) develop a
multidimensional model. They focus their didactical analysis on three main axes.
The first axis is related to the level of milieu and so to the phase of the situation in
which the student produces his/her reasoning (c¢f- Table 2). The second axis of the
model is linked to the notions of didactical repertoire, of organizational system and
of a repertoire of representations. It studies the functions of the reasoning produced
and is in close relation to the first axis. As Bloch and Gibel (2016) state it, they aim
at

linking these two axes, showing how the reasoning functions are linked specifically to the
levels of milieu and how these functions also manifest these levels of milieu. (ibidem,
p.47)

Semiotic analysis of observable signs constitutes the third axis of the model. Marc
Lalaude-Labayle enriched the model by adding a fourth axis about the forms of
inference applied. This logical axis links the second and third axis by setting out and
clarifying the organization of the reasoning signs and their functions. This fourth
axis helps to ‘make visible’ the organization within the system of representations and
its actualization. We sum up this model in the following table

Milieu M-2 Milieu M-1 Milieu M0
Heuristic level Formulation, validation Institutionalization
R1.1 SEM R1.2 SYNT/SEM R1.3 SYNT
Nature and | - Decision of a working | - Generic calculations - organization of the
functions of | frame (DOO) - Formulation of signs
reasoning - Decision of underpinned - formalization and
transformation (semiotic | conjectures (right or certification of
register) wrong) validations

238 sciencesconf.org:indrum2018:174109



- Decision of calculation | - Decision on a - Formalization of
- Heuristic tools; errors | mathematical object proofs within the
- Exhibition of an mathematics involved
example /a counter ex. theory
- pattern
research/identification
Level of use R2.1 SEM R2.2 SYNT/SEM R2.3 SYNT
of symbols Icons or indices Local or more generic | Formal and specific
depending on the context | arguments: indices, arguments related to
(schemas, intuitions...) | calculations the chosen frame
Actualisation R3.1 SYNT/SEM R3.2 SYNT/SEM R3.3 SYNT
of the - Ancient knowledge Enrichment at the - Formalized proofs
repertoire - Enrichment at the argumental level: - Signs within the
heuristic level(patterns, | - statements relevant theory
praxeologies ...) - organizational system | - theoretical elements
Forms of R4.1 R4.2 R4.3
reasoning - deductive - deductive - deductive
- inductive - inductive
- abductive

Table 3 — A model to analyse situations

SEM signifies that the formulations are made on a semantic mode whereas SYNT is
for syntactic mode. This model emphasizes the fact that the mathematical activity,
with its reasoning processes, appears in the heuristic and reference milieu (cf. Table
2). These two milieus, and the articulation between them, will thus be of particular
interest for our work, even if the situation is an ordinary one.

Let us insist on the fact that the use of this model relies on a precise a priori
mathematical analysis of the situation and of its components, e.g. the problem to be
solved. Within the TDS this step appears to be necessary to clarify the didactical a
priori analysis.

III. A PRACTICAL USE OF THE MODEL IN A LINEAR ALGEBRA ORAL
EXAMINATION

We analyse the productions of a second year student of Classes Préparatoires in the
context of an oral examination. The students of the Classes Préparatoires, by group
of three, pass such an oral exam once every two weeks. It lasts one hour during
which the teacher asks to the three students to solve different mathematical
problems. They work simultaneously and individually on a large blackboard on the
problem they just discovered, in front of the teacher. The teacher helps the students
by giving advices or clues. Taking into account the writings noted on the chalkboard,
she/he can ask for some explanation or clarification. This can give rise to an oral or
written answer and possibly to some discussion to deepen and enrich the repertoire
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of the representations of the student. The oral exam we analyse deals with linear
algebra, and more specifically linear transformations and matrices.

The student is confronted to the following problem:

Let n be a integer, greater than or equal to 2 and let ¢ defined on R,[X] by: for all
polynomial P from R,[X], p(P)=P(X+1)-P(X).

1. Show that ¢ is an endomorphism of R,[X].
2. Is @ injective? Surjective? Bijective?

In France, R,[X] symbolises the vector space of real polynomials of degree at most
n.

As briefly explained earlier, our model provides a framework for investigating
mathematical and didactic activities in terms of milieu, focusing on the reasoning
processes, signs and their dynamics and on the conditions that enable their
development during the situation, be it ordinary or not. As is done within TDS, our
didactic analysis is divided in several stages: a detailed and strucured a priori
mathematical and didactic analysis, enriched with a specific a priori analysis of the
reasoning involved; follow then an a posteriori analysis organized in our model.

A priori analysis

From the mathematical point of view, showing that ¢ is an endomorphism of R,[X]
can be approached in different ways, engaging several frames: indeed the stability of
R,[X] under ¢ can be done in a purely algebraic frame using the degree and the

composition rule, in a functional frame using the decomposition P =2 a,X' or in an
algebraic frame using the linearity and showing that forall integer i between 0 and n,
@(X)eR,[X]. To study the injectivity and surjectivity of ¢, the student can again
choose between several frames and several registers of semiotic representation
(Duval, 2017): she/he can use an algebraic frame with an example ?/1/=0 and then
applying the theorem linking rank and kernel dimension; but she/he can also try to
find precisely Ker ¢, that is find a basis. To do this, she/he can use the functional
decomposition of polynomials, she/he can solve a linear system or she/he can
determine the matrix of @ in the canonical basis of R,[X].

From a didactic point of view, the situation studied here is said to contain an
adidactic dimension. Most of the actions, of the frames and of registers of semiotic
representation are devolved to the student. So, a first difficulty that occurs for the
student can be the control she/he has on the objects involved: a circular application
of the definition of linearity of ¢ to prove its linearity, the complexity of formulas to
write down @(P) for a general P, the non operability of ¢ with wrong calculations of
(1), o(X), o(X?) for example. For the injectivity of ¢, the student can “forget” the
structure of the space R,[X] he is working on and try to check whether ¢(P)=¢(Q)
implies that P=Q. All the reasoning processes and objects involved are part of the
didactic repertoire of the class the student belongs to.
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A posteriori analysis: analysis of a student’s production

In the following, we extract some translated excerpts of the student’s answer, the
whole solution can be found in Lalaude-Labayle (2016).

To solve the first part of the problem, which is an ordinary situation in undergraduate
level, the student is mainly confronted to the milieu of reference, articulating objects
and processes involved in his repertoire of representations. Here the heuristic milieu
is not really requested. He starts by showing the stability R,[X] under ¢ and that
writes changing X with X+1 doesn’t change the degree of P. He then proves the
linearity in an algebraic frame. Doing so, he makes a formalization of proofs within
the required theory and thus reaches the level R1.3. The semiotic analysis shows
that he uses generic arguments (R2.2) and more formal one (R2.3). These arguments
and signs don’t give any hint to how ¢ operates on R,[X]. Its argumentation
validates its use of the didactic repertoire, and reveals some implicit assumptions:
¢(P) is a polynomial is here implicit, as is its use linking degree and composition of
polynomials. He uses mainly hypothetical-deductive inferences. But, as an
introduction to his argumentation, the student asks himself whether deg(¢(P)<n: he
formalizes here the start of an abductive reasoning.

To study the injectivity of ¢, the student applies a transformation of register of
semiotic representations to formalize the link with ker o, starts within an algebraic
frame then uses the decomposition of P to study ker ¢, but without success: he
cannot make ¢ operate on P and says not to have any clue to study the kernel. During
this phase, the student tried to use some deductive reasoning involving objects from
the reference milieu: the lack of articulation between the heuristic milieu and the
reference milieu confirm the difficulties encountered in R1.3 with an aimless
organisation of the signs. The semiotic analysis underlines the lack of quantifiers
which leads to a incomplete apprehension of the objects (R2.2) and reinforces the
feeling of lack of goal in the reasoning. The teacher asks then the student to consider
the tools he has got in his repertoire to “calculate” objects in linear algebra. With no
answer, he asks the student to consider the matrix of ¢ in the canonical basis. Doing
so, he tries to force the student to face the heuristic milieu and tries to maintain an
adidactic dimension in the situation. The calculations produced confirm the fact that
the student doesn’t know how to compute ¢: he obtains the identity matrix. This
matrix doesn’t appear to be an index to control the reasoning (articulation R1.2 and
R1.3). With a new oral intervention of the teacher, the student writes the right matrix.
Some misinterpretations are following: R, instead of R,[X], surjectivity is meant
instead of injectivity (R3.1), ¢(1)=0 is used as an symbol for ker ¢=vect(1) instead
of a simple index of it (R2.1). The student uses the theorem of the rank (R3.2),
relying then on a deductive form of reasoning. But some of his deductions rely on
the preceding explicit calculations (articulation R4.2 R4.3).
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CONCLUSION

As stated in the introduction, the purpose of this paper is twofold: try to determine
the reasoning produced by a student in a specific mathematical situation and show
the utility of our framework to analyse the signs and arguments produced in this
situation.

Regarding the first question, our analysis allows us to say that this particular student
has difficulties to reach fully the institutionalization milieu (level R3): the reasoning
and the articulation of the objects involved do not ease his control over his
arguments and eventually lead him to aimless computations. Moreover he seems to
get stuck in the reference milieu (level R2) and to hypothetical-deductive inferences.
The student does not rely on reasoning made in a heuristic milieu (level R1) that
would be appropriate to linear transformations and polynomials. The problem we
analyze in this work contains an adidactic dimension but fails in asking the student
to make effectively operate ¢ on R,[X]. In semiotic terminology, we can postulate
that the at least incomplete pragmatic dimension in the reasoning leads to some
confusion and lack of pertinent association between the syntactic and semantic
dimensions (Bloch and Gibel, 2016).

Regarding the second question, our work seems to confirm that the model used
within TDS constitutes an efficient framework, as stated in Bloch and Gibel (2011,
2016). It helps specifying the reasoning and signs on which it relies both for the a
priori and a posteriori analysis and highlights the obstacles contained within the
mathematical notions. Our future work should be working more specifically on the
abductive reasoning and on situations encouraging students to adopt a heuristic
approach.
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Leveraging Specific Contexts and Outcomes to Generalize in
Combinatorial Settings

Elise Lockwood and Zackery Reed
Oregon State University, Elise.Lockwood@oregonstate.edu

Generalization is a fundamental aspect of mathematics, and it is a practice with
which undergraduate students should engage and gain fluency. It is important for
students in combinatorial settings to be able to generalize, but combinatorics lends
itself to engagement with specific examples, concrete outcomes, and particular
contexts. In this paper, we seek to inform the nature of generalization in
combinatorial settings by demonstrating ways in which students leverage specific,
concrete settings to engage in generalizing activity in combinatorics. We provide
two data examples that highlight ways in which concrete and specific ideas can be
leveraged to help students develop generalizations in combinatorial settings.

Keywords: Combinatorics, Generalization, Examples, Discrete Mathematics.

INTRODUCTION AND MOTIVATION

Generalization is a foundational mathematical activity, a mathematical practice that
both researchers and policy-makers value (Amit & Neria, 2008; Ellis, 2007). At the
undergraduate level, given the nature of abstract, advanced mathematics, it is
important to learn how to facilitate generalizing activity for students. We have
recently conducted a study designed to investigate undergraduate students’
generalizing activity, and we explored the students’ generalizing activity in the
context of combinatorial problems. In this study, we aimed to examine ways in
which to foster students’ engagement in generalizing activity. In combinatorics,
however, it is often important and even necessary to focus on specific contexts or to
consider particular, concrete outcomes. Indeed, in our prior work (e.g., Lockwood
2013, 2014) and in this current study, we have found that concrete, specific
instantiations of problems, outcomes, and examples are particularly important for
students’ combinatorial thinking and activity. We believe that in the domain of
combinatorics in particular, such specific instantiations are especially important for
developing combinatorial thinking. Given that we want our mathematics students to
be able to reason generally in combinatorial settings, we examine the interplay
between the natural need for specific contexts and outcomes in combinatorics and
the desire to have students engage in meaningful generalization. In this paper, we
seek to answer the following research question: In what ways can specific examples,
concrete outcomes, and particular contexts be leveraged to foster generalizing
activity in a combinatorial setting?
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LITERATURE REVIEW AND THEORETICAL PERSPECTIVE

A Piagetian perspective on generalization and generalizing activity. As a broad
theoretical perspective, we adhere to a constructivist view of learning, asserting that
students construct their knowledge of a given situation based on their mathematical
experiences. We fundamentally view generalization as being related to Piaget’s
notions of reflective abstraction, and we emphasize the importance of having
students engage with and reflect upon their prior activity as they engage in
generalization. Many researchers have studied generalization in a variety of contexts
involving both school-aged children (Amit & Neria, 2008; Ellis, 2007; Rivera, 2010)
and undergraduate students in a variety of areas (e.g., Dubinsky, 1991; Harel & Tall,
1991). This report contributes to the growing body of literature by examining the
nature of generalization in an undergraduate combinatorial setting.

We follow Ellis (2011) and take generalization to mean engaging in ““at least one of
three actions: (a) identifying commonality across cases, (b) extending one’s
reasoning beyond the range in which it originated, or (c) deriving broader results
from particular cases” (p. 311). To describe students’ activity as they generalize, we
adopt Ellis” (2007) taxonomy of generalizing activity, Ellis describes three main
categories of generalizing actions: relating, searching and extending. In this paper,
we focus especially on relating, which occurs when “a student creates a relation or
makes a connection between two (or more) situations, problems, ideas, or objects”
(p.235). In this paper, the term “generalization” need not involve a formal, final
statement of a general rule or property, but rather it may refer to the results of a
students’ generalizing activity, even if that activity is incomplete or not normatively
correct.

Combinatorial thinking and activity.

Combinatorial enumeration problems, or “counting problems,” are easy to state, but
they can be surprisingly challenging for students to solve. This is due in large part to
the fact that counting problems are not reliably solved using prescribed, fool proof
algorithms (e.g., Kapur, 1970). Solving counting problems thus provides
opportunities for students at all levels to engage in rich mathematical thinking. There
is ample evidence that students struggle with solving counting problems (e.g.,
Batanero, Navarro-Pelayo, & Godino, 1997). Although researchers have taken
strides in identifying productive strategies and ways of thinking that might help
address such difficulties, there remains much to learn about how we might
effectively help students to count successfully.

In this paper, we examine the role of generalizing in students’ counting, and we
explore how to frame generalizing activity in terms of Lockwood’s (2013) model of
students’ combinatorial thinking. Lockwood (2013) suggested that there are three
key components to students’ combinatorial thinking (Figure 1) and that solidifying
the relationships between these components is an important aspect of successful
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counting. Formulas/expressions refer to numbers and/or variables that represent the
answer to a counting problem. Counting processes refer to the enumeration process
in which a counter engages as they solve a problem. Sets of outcomes are the
collection of (encoded) objects that are being counted.

Figure 1: Lockwood’s (2013) model of students’ combinatorial thinking

To exemplify the model, we discuss the Horse Race Problem, which is a problem
that we discuss in the Results Section. The problem states: There are 10 horses in a
race. In how many different ways can the horses finish in first, second, and third
place? Note that one counting process to solve this problem is to consider options
for which horse could be first, second, or third place. We can argue that there are 10
options for which horse is first, and for any choice of which horse is first there are 9
options for which horse is second, and then for any of those there are 8 choices for
which horse is third. This counting process yields an expression of 10*9*8, which is
720. This process would organize the set of outcomes lexicographically, grouped
according to which horse finished first, then second, then third.

Lockwood has emphasized the importance of sets of outcomes in a number of
studies. In particular, she has advocated for a set-oriented perspective toward
counting (Lockwood, 2014), in which the act of counting is viewed as inherently
involving structuring and enumerating the set of outcomes. In addition, she has made
a case for the value of listing outcomes, demonstrating that listing outcomes was
positively correlated with solving problems correctly for novice undergraduate
students (Lockwood & Gibson, 2016). In this way, Lockwood has emphasized the
importance of considering concrete outcomes as students solve counting problems.
The point of the set-oriented perspective is that students should think carefully about
what they should be solving in a given problem.

On one hand, then, this prior research suggests that it is useful for students to
consider the concrete, specific outcomes that they should count. Further, when a
student solves a counting problem such outcomes are necessarily tied to that problem
and context. We want students to be able to think about what constitutes an outcome
in a particular combinatorial situation. On the other hand, though, we want to foster
generalization for students and to encourage them to engaging in generalizing
activity, even in combinatorial situations. We want students to be able to develop and
apply general formulas, or to be able to make general arguments about their counting
processes. In this paper, we describe specific ways in which students use concrete
settings to leverage general thinking and activity in the domain of combinatorics.
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METHODS

We report on data from a study designed to study students’ generalizing activity in
the context of combinatorics. We report on two data sources. First, we report on a
design experiment (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) with four
undergraduate calculus students, and we focus on one particular student Carson
(student names in this paper are pseudonyms). The students were chosen based on a
selection interview; they had not taken a discrete mathematics course in the
university and were novice counters who could explain their thinking. The students
were interviewed together as a group of four during nine 90-minute sessions. The
interviews were audio and video recorded. During this time, the students worked
both individually and together on combinatorial activities, and the interviewer often
asked probing questions or asked the students to explain their work. These tasks
included solving basic counting problems, coming up with general formulas for
counting problems, and solving problems related to combinatorial proof.

Second, we report on an individual interview with a calculus student, Tyler, who had
similarly not taken a discrete mathematics course in the university. The interview
was individual and 60 minutes long. We gave Tyler tasks involving determining the
number of 3, 4, 5, and eventually n-length passwords using As and Bs, and then
passwords consisting of the characters As, Bs, and the number 1. We had him write
tables in which he recorded the number of passwords with a certain number of As,
and ultimately the tasks could yield the binomial theorem (which we do not discuss
in this paper). These tasks were broadly designed to target students’ generalizing
activity in combinatorial tasks specifically, and we sought both to learn about
students’ combinatorial reasoning and about their combinatorial generalization.

The design experiment sessions and the interviews were transcribed, and we created
enhanced transcripts in which we inserted relevant images and descriptions of
activity into the transcripts. For the purposes of this paper, we identified two cases of
Carson and Tyler as students who leveraged particular problems and situations in
order to engage in generalizing activity. We focused on these students’ data and
identified relevant episodes that shed light on this phenomenon. We reviewed the
transcripts and the videos and discussed these cases with the research team.

RESULTS AND DATA EXAMPLES

In our results, we seek to demonstrate instances in which students leveraged and use
specific, concrete examples in combinatorics in order to engage in generalizing
activity. These are meant to shed light on the interplay between particular situations
and contexts that are important in combinatorial settings and the broader practice of
generalization. We argue that specific examples, concrete outcomes, and particular
contexts remain a fundamental aspect of combinatorial reasoning that can help to
facilitate generalization. We offer two specific examples of how this phenomenon
occurs, shedding light on the nature of generalization in combinatorial settings.
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Students leverage activity on particular problems to generalize counting
formulas and principles.

In this case, a student in the design experiment, Carson, repeatedly referred back to
his prior work on a particular problem that stood out to him as being important. We
view this as an example in which work on a particular problem can be leveraged to
help students engage in generalizing activity. During initial problem solving in the
first session, Carson had solved the Horse Race Problem, described previously. We
will demonstrate that as he proceeded to solve other tasks and solve other problems,
he repeatedly referred back to his prior activity on this problem, related it to other
situations, and used it to generalize a counting formula. Carson solved the problem
in a different way than we had described above, arriving at a correct expression of
10!/7!1. Note, this is equivalent to the expression 10*9*8, but, as he explained below,
Carson used a different counting process. He had a particular way of reasoning about
this solution, leveraging the notion of division and equivalence to explain why the
division by 7! makes sense combinatorially.

Carson: ...So, there’s 10 factorial total outcomes, and then we know for any given
first 3 there’s gonna be 7 factorial, because that’s saying we know the first 3
horses have finished — how can the last 7 horses finish, so that’s gonna be 7
factorial. But all we care about is how many given first 3s there are. So, if
we divide the total number of outcomes by the number of potential of
outcomes for the last 7 horses that will give us the potential number of
outcomes for the first 3. If that makes sense?

Carson argued that for any particular arrangement of all ten horses, since all that
matters is how the first three horses finish, we can divide by the number of identical
arrangements of the last seven horses. This is a valuable way to think about these
problems, and understanding and articulating this counting process seemed to be an
important moment for Carson. As we proceeded to consider more problems, Carson
repeatedly returned to this Horse Race Problem. We will demonstrate ways in which
Carson has engaged in the generalizing activity of relating (Ellis, 2007) by using this
problem as he approached additional tasks. In this way, this problem served as a
generic example (Mason & Pimm, 1984), a way in which he could make general
arguments and connect his reasoning to other problems. We now describe several of
the ways that Carson leveraged this particular problem.

First, we see that Carson engaged in relating by connecting back to the Horse Race
Problem as he solved other problems. For example, in solving a problem of arranging
4 of 7 books in a row on a shelf, Carson arrived at the correct answer of 7!/3!. The
interviewer asked him how he was thinking about the problem, and his response
below shows the connection he made to the Horse Race Problem.

Carson: Yes, kind of similar to the horse problem. You can say they’re all in a race,
you wanna see how many ways the first 4 books could finish in the race.

248 sciencesconf.org:indrum2018:174870



We later had the four students categorize problems they had solved, and from that
exercise we asked them to generalize formulas. One of these formulas was the
number of ways of arranging some number of objects from a larger set of objects.
Carson had indicated that he saw several problems as being the same, and in the
excerpt below, he explained why he viewed the problems as being the same. Again,
he referred to the podium and the division that he had articulated on the Horse Race
Problem as being a distinguishing feature of all of these problems.

Carson: So, essentially all of them are asking for a ranking of a given set of objects
and asking how many arrangements there are for a given number of places,
right? So, the cats are racing to get the collars you could say or the
restaurants are racing to get the top five rankings in the town or the horses
are racing in a race. Then each of the rankings or the collars are a ranking in
the race. Yeah, then you can just divide by the duplicates for leftover ones,
the ones that didn’t make the podium finish or whatever amount of finishes
there are or whatever podium they’re asking for.

His reference to the horses and to the podium suggest to us that this continued to be a
salient aspect of his reasoning. We interpret that Carson was engaging in the
generalizing activity of relating (Ellis, 2007), and, in terms of Lockwood’s (2013)
model, he related the counting process of arranging all of the objects and then
dividing by the ways to arrange the leftover objects. He also seemed to emphasize
the nature of the set of outcomes (arrangements). He recognized that counting
process as similar among the problems he grouped together, and he related each of
those other problems to the ranking and podium language he used in the Horse Race
Problem.

Further, we also asked the students to come up with a general formula for the
problems they had grouped together. They did this for several problems, but we
highlight the formula for the permutation problems. In trying to articulate the kind of
problem they were dealing with, again Carson referred to his activity on the Horse
Race Problem.

Carson: Right. I mean thinking about the method for solving this, it’s the factorial
from above, right? So, we have ten horses in a race. How many ways can
the horses finish, but then how many of those have a unique podium, right?
So, how many times are the first, second, and third place different?

The students then had a conversation about what the formula would be. They came
up with the formula a!/(a-b)! for arranging b objects from a set of a distinct objects,
which another student, Josh, articulated:

Josh: No, I think that it would be something like if you have a objects, you would
have a factorial — that’s the total number of things that you can select — over
a minus b factorial, where b is the number of slots that you have.
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After they agreed upon this formula, Carson explained how he was thinking about
this general formula they had come up with. The excerpt below shows that he
referred back to the imagery of the podium, using that context to make a general
argument.

Carson: ... A'is your total number of arrangements for the entire thing and then you
want to divide by the number of ways that the places you’re not selecting
can be arranged, right? So, if you’re selecting first, second, and third, then
you have fourth through tenth and those can be arranged in ten minus three
factorial ways, right? So, we can just divide by that number of arrangements
[begins motioning slots with hands] for the back end to get just one for the
front end because that’s what we’re asking for is how many ways can that
podium be arranged?

We contend that in relating back to the Horse Race Problem, Carson was relating
back to different components of Lockwood’s (2013) model, including formulas, sets
of outcomes, and counting process. This exchange suggests that Carson had a well-
developed understanding of the specific problem in terms of the components of the
model, and he related different aspects of the problem in different situations. From
our Piagetian perspective we view Carson and the students as constructing a formula
that makes sense to them, and Carson reflected upon his prior activity in order to
develop a statement of a more general formula.

The Horse Race Problem came up in additional settings for Carson, including during
reasoning about combinatorial proof in a later session. Ultimately, Carson
acknowledged how important this problem was for him. In the final interview, when
we were reflecting on the entire design experiment, Carson shared that he continued
to think about subsequent problems in terms of the Horse Race Problem. We
interpret that his language below means that he felt that he conceptually understood
the ideas in the Horse Race Problem, perhaps in a deep way that he felt confident
about.

Carson: For whatever reason, the horse race problem is the one that’s in my head
forever. And it must have just been where it clicked in the interview
because that’s kind of what I refer to. If somebody says how many ways can
a horse finish in the podium, how many ways can the podium be organized,
things like that. And that’s kind of where I keep going back to. And I don’t
know why that is.

This case serves as an example of a student leveraging activity on a particular
problem for a number of other activities, particularly generalizing activities of
relating (Ellis, 2007). There have other examples of students drawing on prototypical
problem types in combinatorics. Maher and colleagues have talked about students
referring to Pizza Problems or Block Towers problem, demonstrating how students
think about and use powerful particular problems in other (e.g., Maher, Powell, &
Uptegrove, 2011). We build on such work by explicitly drawing attention to the
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generalizing activity that a specific problem fostered for students, highlighting the
affordances that can stem from a student deeply understanding and justifying his or
her activity on a particular counting problem.

Students compare and contrast specific examples to identify general structure.

We briefly describe an additional example in which a calculus student Tyler was
relating two different situations while working on the Passwords Activity. In the
interview Tyler was counting two kinds of passwords — those involving either upper
case As and/or Bs, and those involving As, Bs, and the number 1 (with repetition
allowed). Tyler had initially engaged in systematic listing activity to count the
number of possible 4-character AB passwords. In particular, he created the list of 4-
character AB passwords with exactly two As (Figure 2a), and the table of passwords
according to number of As (Figure 2b).

Figure 2a, b: Tyler’s arrangements of 4-character AB passwords with exactly 2
As and his complete 4-character AB table

Later in the interview, Tyler was in a situation of counting 4-character passwords
consisting of uppercase As, Bs, and 1s. We had asked him to create a table based on
the number of 1s in the password. To complete this table, one can first consider
placing the 1(s) and then filling the remaining positions with either A or B. Notably,
placing As and Bs then reduced to the prior problem Tyler had solved, namely
counting 4-character AB passwords. Tyler realized that there were the same number
of arrangements of two types of characters, and he made a general statement about
this case, recognizing that he will always have six ways of arranging two kinds of
characters. Tyler was able to speak generally about counting arrangements of two
kinds of characters. That is, he recognized that the tables gave him totals for the
number of ways of arranging two characters, not just that they had to be As and Bs or
1s and xs. In the excerpt below he had been working on an extension problem, and
he speaks about two different “things” that are changing, suggesting he had
extrapolated a notion of arranging two characters independently of what the
characters are specifically.

Tyler: Um well these are all the number of combinations | can do, um, with 2
different, 2 things that are changing, and this number of letters.
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Here, we conjecture that reasoning about the particular situations and engaging with
the actual outcomes allowed Tyler to make an important connection between
arranging As and Bs and 1s and xs. The similar nature of the activity when listing in
both cases allowed him to draw attention to the similar counting process in which he
was engaging and the fact that the outcomes he was generating were fundamentally
similar — arrangements of two kinds of characters. Ultimately this allowed him to
make and use a useful generalization, and he understood the values in the rows in the
AB tables as representing the number of arrangements of two kinds of characters.

We infer that Tyler engaged in relating (Ellis, 2007), and that comparing both
situations allowed him to draw out some general commonalities between the two
specific settings. Here, we argue that reasoning carefully about the concrete
examples and actually engaging in concrete listing activity may have helped to
solidify a broader combinatorial process.

CONCLUSION AND DISCUSSION

Prior research (e.g., Lockwood, 2013; 2014; Lockwood & Gibson, 2016) has
emphasized the importance of having students focus on sets of outcomes as they
solve counting problems. Often this focus on outcomes necessarily means that
students reason about very specific contexts and concrete objects, and we view this
as a fundamental aspect of counting and combinatorial activity. However, we also
acknowledge that part of mathematical engagement involves looking beyond
particular situations and contexts, and we have tried to demonstrate certain ways in
which the particular contexts and concrete outcomes can be leveraged to facilitate
meaningful generalizing activity for students.

Specifically, we offer two qualitatively different examples in which students
leveraged the structure of specific combinatorial contexts to establish more general
relationships. In our first example, Carson used his activity on and solution of the
Horse Race Problem as a template for a specific combinatorial process, which he
then used in similar contexts. Carson’s generalizing activity was manifest through
using this template as a means to relate combinatorial processes that he viewed as
similar in some way and to connect the structure of the Horse Race problem to other
cases. This specific generalizing activity demonstrates a powerful manifestation of
relating, wherein Carson leveraged the structure of a known specific example as a
solution for novel and abstract counting processes.

In our second example, Tyler used a connection between two situations to generalize
a concrete arrangement structure. Tyler had initially recognized that his tables
partitioning the 3-length passwords according to the number of As represented
instead a partition of ways to arrange pairs of objects. Tyler then leveraged the
specific process with which he was familiar by arranging 1s and xs, thus
implementing the same specific counting process in a particular generalized setting.
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Both of these examples involve the activity of using concrete situations to form a
general relationship. These cases help to inform the nature of generalization in
combinatorial contexts, offering examples of specific ways in which concrete
outcomes and situations can be leveraged for use in more general settings.
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Discrete mathematics is a recent field linked with Computer Science. We discuss its
place in university mathematics curricula and in the particular case of France, where
it has difficulties to find its place. We make explicit the didactical challenges posed
by discrete mathematics at university level, and present DEMIPS network and its
plans to tackle them. Through two detailed examples we discuss the reasons for
teaching Discrete Mathematics at university level, and illustrate our conclusions.

Keywords: teaching and learning of number theory and discrete mathematics,
teaching and learning of mathematics in other fields, proof, algorithms.

INTRODUCTION

This paper points out the current need for the construction of resources and debates
regarding discrete mathematics at university level. We wish to emphasize the features
of the French context, both from an educator’s and researcher’s point of view, at the
intersection of didactics, mathematics and computer science. Indeed, teaching and
learning discrete mathematics involves mathematical skills and heuristics (e.g.
different kinds of proofs and reasoning, several ways of modelling etc.)! and also
develops objects, concepts, methods and tools that are necessary for computer
science. This link with computer science brings new types of questions to
mathematics (for instance, regarding algorithmic complexity). Then, our aims are to
design original situations for schools and at university level, and to construct
appropriate introductory situations for computer science and maths majors.

We propose an overview of discrete mathematics in mathematics education and make
a focus on the interface between discrete mathematics and computer science. Then,
after presenting our research group in France, we analyse two kinds of situations.

DISCRETE MATHEMATICS IN AND FOR MATHEMATICS EDUCATION
How to define discrete mathematics?

Several mathematical topics are often gathered under the blanket term discrete
mathematics. A first step in contributing to a thorough didactical study of discrete
mathematics is to provide a satisfactory definition, or at least delimitation, of what it
refers to. Several definitions exist, which either attempt to provide a general common
trait to the covered topics, such as “the mathematics of discrete sets”, or resort to an
enumeration of objects, concepts or techniques most often associated with discrete
mathematics. Most of these definitions include or are followed by a discussion on
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some typical difficulties, such as the distinction between finite, discrete and
continuous mathematics (e.g. Maurer, 1997). To clarify the distinction between finite
and discrete mathematics, the MAA (1992) places finite mathematics in the pre-
calculus category and discrete mathematics in the same category as calculus.

We advocate that an interesting way to define discrete mathematics both for research
and didactical perspectives (for the design of courses and of didactical engineering at
university level) is to emphasize the features of the modes of reasoning that are
common (or specific) to the various topics usually recognized as discrete
mathematics, and the discrete nature of the structures they involve. Moreover, a
classification of problems is required in order to structure a didactical analysis of the
field of discrete mathematics. Furthermore, as the development of discrete
mathematics has been strongly directed by the needs for computer science, the links
with computer science must be explicitly explored.

In 1974, Knuth, a pioneer in computer science and its teaching made a similar
analysis (Knuth, 1974, p. 329) :

“The most surprising thing to me, in my own experiences with applications of
mathematics to computer science, has been the fact so much of the mathematics has been
of a particular discrete type [...]. Such mathematics was almost entirely absent from my
own training, although I had a reasonably good undergraduate and graduate education in
mathematics. [...] I have naturally been wondering whether or not the traditional
curriculum — the calculus courses, etc. — should be revised to include more of these
discrete mathematical manipulations, or whether computer science is exceptional in its
frequent application of them.”

We consider that these questions are still topical, even at university level, and
deserve a careful didactical analysis.

Where is discrete mathematics? What questions are relevant at university level?

It is often stated that discrete mathematics can be a tool for improving reasoning and
problem-solving skills (see for instance Rosenstein, Franzblau & Roberts (1997)
who advocated an introduction of discrete mathematics in curricula, asked didactical
questions, and made propositions that were taken into account for Principles and
Standards for School Mathematics NCTM, 2000 for instance). Moreover, discrete
mathematics is an active modern branch of contemporary mathematics with a wide
range of applications in society, which is a very legitimate reason to teach it at
school, high school and college. In fact, discrete mathematics courses are relevant to
a wide variety of majors at university level, including mathematics, number theory,
computer science, and engineering: from an epistemological point of view, discrete
mathematics has an interdisciplinary nature and can provide a mathematical
foundation (with specific ways of reasoning and proving, and mathematical
concepts) for computer science and engineering courses. By 1989, an MAA report
(Ralston, 1989) from an ad-hoc committee consisting of mathematicians and
computer scientists recommended that “discrete mathematics should be part of the
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first two years of the standard mathematics curriculum at all colleges and
universities”. This report also emphasizes the notions of proof, recursion, induction,
modelling, and algorithmic thinking, as well as the benefits of using discrete
mathematics in the secondary level to improve problem-solving skills with the
transition to university level in mind (Ralston, 1989). Moreover, Epp (2016) points
out the strong necessity of abstract thinking for the course and its applications in
computer science. She underscores that it is done in the frame of the current
curricular recommendations, prepared by The Joint Task Force on Computing
Curricula (2013) of the ACM and the IEEE Computer Society, which gives discrete
mathematics as one of the two largest components in the “core body of knowledge”
recommended for all computer science students. Besides, discrete mathematics is in
close relationship with other mathematical areas: other fields of mathematics use its
methods and results, and, are useful for solving some discrete mathematics problems.

What is currently the place of discrete mathematics and its links with other scientific
fields at university level? In several countries (Hungary, USA, Germany for
instance), its significance in wuniversity programs is well-established and
acknowledged. That is not always the case in France where the status of discrete
mathematics in the first three university years is unclear, at least in mathematical
curricula. However, discrete mathematics appears sporadically in few parts of
mathematics curricula as probability theory (in particular combinatorics for discrete
probability theory) or arithmetic. It sometimes appears in courses dedicated to the
learning of proving, mathematical reasoning and problem solving, but we question
whether its specificity is emphasized. One is more likely to find courses where
discrete mathematics is taught for itself in computer science or mathematics and
computer science curricula, where there exists a kind of common basis shared
between teachers and including classical contents of discrete mathematics as can be
seen abroad. These reports and recommendations coming from academic societies
and the above remarks underscore two key questions for mathematics education at
university level, and more specifically in France:

e What are the place and role of discrete mathematics at university level? How
to design curricula and didactical engineering for the first university years ?

e What links are there between discrete mathematics and other areas (mainly of
mathematics and computer science) and how are they (or should they be)
practised / worked in the first university years?

These questions are particularly crucial for countries where discrete mathematics
does not have a well-established status is the first university years.

What do we know from a didactical point of view?

In mathematics education, various research regarding the teaching and learning of
discrete mathematics exist, focusing mainly on the primary and the secondary levels
(ZDM (2004), Hart & Sandefur (in press) propose overviews). This research meets
general approval, and points out epistemological features of discrete mathematics
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such as: discrete problems bring out different ways of proving (Grenier & Payan,
1998); discrete structures enable work on the construction of mathematical models,
optimization, operational research and experimental mathematics (e.g. Grenier &
Payan, 1998; Maurer, 1997); discrete concepts are accessible and problems are easy
to understand (Grenier & Payan, 1998; De Bellis & Rosenstein, 2004); discrete
concepts have different kinds of definitions and representations (Ouvrier-Buffet,
2006, 2011); some discrete problems are real world problems developing and using
techniques from mathematics and computer science (Schuster, 2004), etc. Discrete
mathematics problems are also a frame for developing and teaching algorithms;
conversely, the study of algorithms requires a lot of discrete mathematics, and
studying algorithms and programming can be a good way to justify the introduction
of discrete mathematics contents (e.g. Modeste, 2012 & 2016). In all this research,
discrete mathematics seems to be a powerful source of problems for teaching and
learning mathematical proofs and processes and engaging students in developing
new ways of thinking (such as recursive thinking), heuristics and problem-solving
skills from primary school to university. Besides, some researchers point out that its
teaching provides opportunities to bypass some of the sources of commonly-
occurring negative affect in students (e.g. Goldin, 2016).

It appears that the features of discrete mathematics clearly represent challenges for
university mathematics, in particular in France.

THE “DEMIPS” NETWORK - A WAY TO FEDERATE DISCRETE
MATHEMATICS EDUCATION

Presentation of the DEMIPS network

In the French framework of mathematics education, there is a need to federate
(isolated) research in university mathematics. Following the INDRUM momentum,
the national network DEMIPS? supports the development of new research programs.
DEMIPS’s research involves around 40 researchers in mathematics, mathematics
education, physics education, computer science, and epistemology and history of
mathematics and sciences, and is concerned with five main topics: three topics
dealing with mathematical contents (analysis; linear algebra and abstract algebra;
arithmetic, discrete mathematics and algorithmics) at the secondary — post secondary
transition and at university level (the links with physics and computer science are
questioned); a transversal topic (logic, language, reasoning, proofs - from both a
mathematics and computer science point of view); and a specific topic dealing with
the practices of teachers and teachers-researchers at university level (in mathematics,
computer science and physics).

We (the authors of this paper) organize federative research in the fields of arithmetic,
discrete mathematics and algorithms. The members of our group are mathematics
educators (didacticians) with specific skills in teaching and learning at university
level, mathematicians, and researchers in computer science. We choose to study the
parts of mathematics which lie at the intersection of “classical” mathematics and
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theoretical computer science (for instance discrete mathematics, arithmetic, and
algorithms), which interact and complement each other. As theoretical background
we will follow Brousseau’s theory of didactical situations (Brousseau, 1998) for its
notion of didactical engineering, and the notion of scheme (Vergnaud, 1990) in order
to structure our analysis of mathematical concepts. We organize our questions around
key axes regarding the French university level:

e What are the epistemological features of concepts and reasoning in arithmetic,
discrete mathematics and algorithms? How do they interact? (And then, how
can these interactions be used to enrich the way these concepts are taught?)

e What kind of situations can one design in these mathematical areas for the
university level and for pre-service and in-service teacher training? What for?

e What kind of curricula are there for this kind of mathematics at university
level? What can be said about the design of these curricula?

Our research questions try to break down the barriers between scientific disciplines
involving discrete mathematics. They also underline typical situations and questions
common to mathematics and computer science, and try to put to use didactical
analysis techniques to cast a new light on the way these questions are, or could be,
tackled at university level. We develop below two examples to illustrate our work,
and elaborateon the place and role of discrete mathematics at university level.

SITUATIONS AND IMPLEMENTATIONS AT UNIVERSITY LEVEL -
EXAMPLES FROM DEMIPS’ WORKSHOPS

We develop here two examples to illustrate the potentialities of discrete mathematics
to engage students in learning modelling, proving, and mathematical reasoning and
also to underscore the validity and the interest of keeping in mind the algorithmic
point of view and the connections with computer science. These examples emphasize
new perspectives for the teaching and learning of mathematics. The first example
explore the links between mathematics and computer science in a problem-solving
context and the second deals with a classical “divide and conquer”-type algorithm.

Example 1 — Discrete lines

The mathematical object concerned here is the discrete straight line (colouring
squares, or “pixels”, on a regular rectangular grid, in order to give the best possible
visual impression of a straight line). The (real) straight line can act as a referent.
Discrete straight lines are accessible through their representations (e.g. perceptive
and analytical aspects of geometry) and their definitions and properties are non-
institutionalized (a concept is institutionalized if it has a place in a classically taught
content). Computer programmers are familiar with this concept. Professional
researchers in discrete geometry (both mathematicians and computer scientists) use
several definitions, but the proof of the equivalence of these definitions remains
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worth considering. The complexity of the underlying axiomatization of discrete
geometrical concepts is actually an open and interesting problem.

Ouvrier-Buffet (2006) has analysed the evolution potential of zero-definitions (in
Lakatos’ sense, zero-definitions act as working definitions) of the concept “discrete
straight line” in a defining situation implemented with freshmen. She underscores
several approaches dealing with this concept, namely “real straight line” (What is the
“nearest” pixel to a real line? What kind of modelling should be used?), “regularity”
(What are the properties of the sequence of stages (called chaincode string)?), and
“axiomatization” (What about the existence of the intersection of two discrete
straight lines? Is a discrete straight line unique?). Each point of view brings about
several zero-definitions. To engage into an axiomatic perspective carries great
difficulty. This approach deals with both the perceptive aspect of a straight line and
the axiomatic perspective. We are here confronted with two markedly different
defining styles: a local one and a global-theoretical one, the latter mobilizing some
implicit skills and knowledge in students (e.g. building a theory and choosing among
competing definitions). The main results of this experiment underscore the ability of
students to engage in a defining activity with a “neutral” but complex concept.
Students do not assume an axiomatic perspective but mobilize reasoning involving
approximate methods close to those used for real straight lines (and then arithmetic
tools) and also the characterization of the sequence of stages of pixels (how can we
modify a sequence to obtain a better regularity?) that involves recursive arguments.

From a didactical point of view, this research requires the development of a new
theoretical background in order to model the defining process. From a mathematical
point of view, the discrete geometrical objects, and more specifically the discrete
straight lines can be approached in several ways: differential discrete analysis, the
Bresenham algorithm, algorithms involving combinatorial analysis, several
discretizations using algorithms which generate and study errors (Greene & Yao,
Freeman & Pham, Rosenfeld), and the introduction by Reveillés of the arithmetical
definition of a discrete straight line (1991). For instance, the approach to the
discretization of a real straight line by checking linearity conditions is directly
related to number theoretical issues in the approximation of real numbers by rational
numbers. These linearity conditions can be checked incrementally, leading to a
decomposition of arbitrary strings into straight substrings (Wu, 1982). The ongoing
mathematical problems in discrete geometry are intimately related to questions in
other fields of mathematics and computer science. The construction and the
manipulation of algorithms are important for this purpose.

Example 2 — Exponentiation by squaring

A classic algorithmic problem is that of computing for some natural n the n-th power
an of real number a. A naive solution is, starting with value 1, to multiply n times this
value by a. The final value one obtains is indeed the expected result, which is not
very difficult to establish. The fact that this algorithm terminates is also trivially true
since it contains a single bounded repetition. Finally, the complexity of this
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computation is clearly in ®(n) (i.e. asymptotically bounded above and below by n),
counting for instance the number of multiplications performed, and assuming that
multiplication by a is an elementary operation.

This algorithm is not very efficient, considering that its running time is actually
exponential in the representation size of n (which is of the order of log(n)). A more
efficient technique relies on the observation that a"=(a?)" if n is even, otherwise
a"=a.(a?)™""2, Written as a recursive Python function, this algorithm reads as follows?:

def power(a, n):
if n==0:
return 1
elif n % 2 == 0:
return power(a * a, n // 2)
else:
return a * power(a * a, n// 2)

We will now study a few common questions asked about algorithms, which will
allow us to illustrate examples of mathematical techniques relevant to the analysis of,
and discussion about, algorithms. In the following, typewriter face (as in n) will be
used for formal parameters, and italic (as in n) to denote actual values.

Termination. A first question when it comes to analysing an algorithm is to
determine whether or not it terminates, i.e. whether its execution on any instance of
the problem (i.e. any pair (a, n)) yields a result after a finite number of execution
steps or elementary operations. A standard technique used to prove this kind of result
in non-trivial cases is the following. Assume here that there exist a, and n, such that
power(ao, Nnp) performs infinitely many recursive calls. Call n; the value of parameter
n on the i-th recursive call. The sequence of naturals (n;)io is strictly decreasing,
because whenever n;>0, n;; is the quotient of n; by 2, rounded down. This contradicts
the fact that infinitely many calls are made, which means that the value of n
eventually has to reach 0 and the function must terminate for all values of a and n.

Correctness. It remains to prove that the result is indeed correct for any instance of
the problem. This is often done using some form of induction due to the intrinsically
discrete and recursive or iterative nature of algorithms. In our case, we will establish
that the value returned by a call to power(a, n) is indeed a", via a simple recurrence
on the call depth, which is the maximal number, say k, of generated nested calls. The
base case (k=0) is obvious: since there is no recursive call it must mean that n=0 and
the returned is indeed 1 = a". In the inductive case, assume the property holds for call
depth k and consider a call of maximal depth k+1. Necessarily n must be greater than
0. If n is even, n//2 evaluates to n/2, a single nested call power(a*a, n//2) is
performed and the obtained value is returned directly. This call itself has call depth
exactly k, therefore by induction hypothesis its return value is (a?)"?=a". Similarly if
n is odd, n//2 evaluates to (n-1)/2, the value returned by power(a*a, n//2) is, by
induction hypothesis, (a?)®"?=a™, and the value returned by the main call is
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a*power(a*a, n//2), which evaluates to a". Therefore by the recurrence principle, the
function returns the correct value whatever the initial value of its parameters.

Complexity. In the study of termination, we observed that in a call power(a, n), the
value of n for the next call (if there is one) is divided by two (rounded down). One
may observe the successive values of n more easily when it is written down in
binary. Indeed, the operation of dividing a number by two and rounding down
corresponds, in binary representation, to erasing its rightmost digit. The algorithm
stops when n is 0, and performs one recursive call otherwise, modifying its value as
we just saw. The number of nested calls for some initial value of n is therefore equal
to the length, say k, of its binary representation, in other words its number of digits.
Moreover, when n is even, exactly one multiplication is performed in the current call,
two when it is odd. Therefore, denoting by m the number of digits equal to 1 in the
binary representation of n, the total number of multiplications performed by the
power(a, n) is exactly k+m, which is asymptotically bounded above by log(n).

Summary. We chose this example to illustrate, on a simple problem, the type of
questions which can be asked about algorithms and the methods which are likely to
be used to answer them. Note that in this simple case, all three properties could have
been proven simultaneously using a complete recurrence on n. For our purpose, we
chose a more basic and detailed approach. It would have been interesting to show
how these proofs could be rephrased in the context of an iterative function. This
example also tries to advocate the necessity for students in mathematics, computer
science and related topics to have at least a basic understanding of various flavours
of recursion and induction (including basic properties of orderings), to be able to
present rigorous proof arguments (at least informally), and to possess minimal
fluency in arithmetic, in order to be able to envision algorithms as objects worth
studying in their own right. It is moreover often the case that the study of algorithms
provides insight on related mathematical objects (here, the relationship between the
value of a number and the length of its binary representation). Finally, this example
illustrates a typical preoccupation of algorithmics, which is to provide more efficient,
sometimes even optimal, algorithmic solutions to problems.

DISCUSSION AND CONCLUSIONS

Discrete mathematics is now considered as an entire field of mathematics, with many
links to computer science. While it has entered university curricula in many
countries, its status and contour are not always clear, and there are countries (such as
France) where it has difficulties finding a legitimate place. Through the two
examples we have developed (the discrete line and exponentiation by squaring), we
have illustrated that it is legitimate to question the place that discrete mathematics
occupies in university mathematics, for different reasons:

e it allows to develop situations for mathematical reasoning, mathematical
heuristics, and problem solving (by its nature, but also by contrast with
traditional continuous mathematics),
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¢ many objects and techniques of discrete mathematics are required knowledge
for computer science curricula; these contents must be identified and analysed
from a didactical point of view, to design appropriate activities and situations,

e discrete mathematics involves specific questions and types of problems (such
as complexity questions, combinatorial problems, etc.) that must be studied in
order to understand their place in university curricula.

The DEMIPS network, through the topic group arithmetic, discrete mathematics and
algorithmics, aims at addressing these questions. We pointed out the necessity to
develop a didactical research on the topic of discrete mathematics at university level
and its articulation with other fields of mathematics and other disciplines. This
didactical research must rely on an institutional analysis of the situation in
universities, and most importantly on a thorough epistemological study of discrete
mathematics and its specific branches. It also requires to select and develop
appropriate theoretical frameworks. Such work, started in the DEMIPS topic group,
requires a plurality of viewpoints and interactions between (discrete)
mathematicians, computer scientists, and didacticians of mathematics.

NOTES

1. Problems that can be identified as belonging to discrete mathematics can be found in many books
aiming at developing “mathematical thinking”, such as (Mason, Burton & Kaye, 1985).

2. Didactique et Epistémologie des Mathématiques, et liens Informatique et Physique dans le
Supérieur: Didactics and Epistemology of Mathematics, and links with Computer Science and
Physics in University Mathematics - with the support of CNRS.

3. Here a is assumed to range over floats, and n over positive integers. Note that in Python 3, n//2
computes the quotient of n by 2, whose value is n/2 if n is even and (n-1)/2 otherwise.
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Tasks for enriching the understanding of the concept of linear span
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The concept of linear span is one of the first abstract notions that students encounter
in a course on Linear Algebra. Using the theoretical construct of concept image and
concept definition (Tall & Vinner, 1981) along with observations about teaching and
learning Linear Algebra, we present two tasks designed to enrich students’ concept
image regarding linear span. These tasks could be included in a problem workshop
of an introductory university course on Linear Algebra. Each task is carefully
created and/or selected so as to foster the ground for potential conflict factors to
arise and be confronted. A preliminary evaluation shows that the tasks are well
received by students and succeed in addressing certain conflicting factors.

Keywords: Teaching and learning of linear and abstract algebra; Teachers’ and
students’ practices at university level; Linear span; Task-design.

INTRODUCTION

Linear Algebra is a subject with many applications in Mathematics and other
sciences, but its teaching and learning proves to be demanding both for lecturers and
students. The difficulties encountered are partly attributed to the way the subject is
usually taught, as well as to students’ lack of familiarity with proofs and limited
knowledge of Logic and Set Theory. (Dorier et al., 2000; Hillel, 2000). Sierpinska
(2000) attributes students’ difficulties in Linear Algebra to their practical rather than
theoretical way of thinking.

The concept of linear span seems to be quite difficult for students. Carlson (1993)
states that difficulties in the notions of subspace, linear span and linear dependence /
independence, if they are not addressed in time, create barriers for students. The
analysis of Stewart and Thomas (2009) showed that students who were taught these
concepts through formal definitions faced significant difficulties in understanding
the concept of span compared to a group who were taught with emphasis on
embodiment (Tall, 2004) and geometry. Moreover, they report that students have
experienced several difficulties in linking the concept of span to the concept of a
base. Finally, Wawro et al. (2012) propose teaching the concept through the solution
of systems of linear equations and present a teaching approach through a series of
realistic mathematical activities.

The main purpose of this paper is to investigate students’ understanding of the
concept of linear span and to use tasks to help resolve conflict factors in the students’
concept image (Tall & Vinner, 1981). Based on a study of first year Mathematics
undergraduates in a Greek university, we identify the misconception many students
have that in a linearly dependent set each vector is in the span of the others. We use a
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set of design principles based on Sierpinska’s (2000) remarks about theoretical
thinking and Harel’s (2000) principles of teaching and learning Linear Algebra, to
create a set of tasks, and we present results of a preliminary evaluation of the tasks
which indicate their potential to address the above misconception.

The work presented in this paper is part of the first writer’s Master’s thesis.

THE SETTING

The course “Geometry and Linear Algebra” is a first year mandatory course for
students following the degrees in Mathematics or in Applied Mathematics at a Greek
University. The course is typically taught through 4 hours of lectures and a two-hour
problem workshop per week. Problem workshops are an important part in the
teaching of the mandatory courses in the department. In the workshops the students
are encouraged to work in groups of 5 or 6 students, on selected problems on the
topics taught that week with guidance from the lecturer and a number of
postgraduate or senior undergraduate students. The role of the latter is to discuss
with students about the problems and the key mathematical ideas that may come up
in the process. Promoting mathematical discussion among the students is a
promindent element of the workshops of this course. During the semester of the
study, the second writer was the lecturer of the course and the first one of the
postgraduate students involved in the workshops.

During the first part of the course, students experiment with the idea of linear span in
Euclidean 2- and 3-space, as an intuitive introduction to the concept. Later on,
students are given a slightly modified version of the formal definition, limited to the
spaces R". The notion of linear span is usually described as the “subspace generated
by the set S of vectors in R™. In relation to the general goals of the course, students
are expected to familiarize with the concept of linear span in subspaces of R", to be
able to identify its geometrical representation in the case of R* and R® and to
determine if a vector is in the span of a fixed set of vectors. We note the most
important aspects of the concept. Firstly, linear span is a subspace, hence it is closed
under the operations of a vector space. Secondly, every element in this subspace is a
linear combination of some of the vectors in S. The final aspect is also very
important but sometimes overlooked. In contrast to the concept of basis, there is no
limitation in the choice of the set of generators S.

A starting point for this work was a study of the written answers given by students in
response to a question in the final examination for the “Geometry and Linear
Algebra” course, asking them to determine whether a vector belongs to the subspace
spanned by two other vectors. The findings suggested that some students may have
the misconception that in a linearly dependent set of vectors, every vector can be
expressed as a linear combination of the others (see Papadaki, 2017). This
misconception was found to affect students’ understanding of linear span and to be a
potential conflict factor (Tall & Vinner, 1981). We believe that examining the notion
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of linear span through tasks may offer the opportunity to confront such difficulties in
a meaningful way.

THEORETICAL FRAMEWORK & DESIGN PRINCIPLES

Tall & Vinner’s (1981) cognitive model of concept image and concept definition is
used in the development of the task and to account for students’ responses.
According to them concept image is “the total cognitive structure that is associated
with the concept” (p. 152). For each individual a concept image includes all the
mental pictures (graphs, symbols, formulas etc) generated about the concept,
associated properties and processes. The concept image is unique for each student
and is changing over time when the student meets new stimuli. The term evoked
concept image (Tall & Vinner, 1981) is used to describe the part of a concept image
which is evoked at a specific time. Different parts of the concept image which
contain conflicting aspects are called potential conflict factors (Tall & Vinner, 1981)
and they are not evident to the individual until a stimulus causes the conflicting
images to be evoked simultaneously and create confusion, in which case they are
referred to as conflict factors.

The term concept definition is referring to “the form of words used to specify that
concept” (Tall & Vinner, 1981: 152). The concept definition might be a reflection of
an evoked concept image associated with the definition or a rote memorization of a
given definition with little or no meaning to the student. We adopt Tall & Vinner’s
(1981) differentiation between the personal concept definition, constructed by the
individual, and the formal definition of a concept, the definition accepted by the
mathematical community as a whole. The personal concept definition might contain
aspects not included in the formal definition and/or ignore others. Finally, the
(personal) concept definition creates its own concept image, which is part of the
concept image as a whole, called concept definition image. Tall & Vinner (1981)
argue that potential conflict factors can be an obstacle in understanding the formal
theory, especially the ones that are in contrast with the formal concept definition.
Warwo et al. (2011) investigated students’ concept images of subspace and the links
students create with the formal definition of a linear subspace.

Bingolbali & Monaghan (2008) demonstrated how the construct of concept image —
concept definition can be used in socio-cultural research. They argued that although
concept image is unique to the individual there are aspects that are shared among
students. They link these aspects to teaching and shared experiences in the
department they are studying.

In this paper we adopt the original concept image — concept definition framework
(Tall & Vinner, 1981) along with its more recent developments (Bingolbali &
Monaghan, 2008) to design tasks that can enrich the understanding of linear span of
undergraduate Mathematics students when used in situations which encourage
interaction among students and tutors. We believe that this framework can be easily
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understood and used by mathematicians. Nardi (2006) presents evidence from
discussions with mathematicians which support this idea. Therefore, we find this
framework useful as a means to communicate our design and findings both to
Mathematics lecturers and researchers in Mathematics Education.

In designing the tasks, we take into account Sierpinska’s (2000) remarks about
theoretical thinking. To be more specific, the task should have characteristics that
correspond to theoretical thinking, such as opportunities for conscious reflection,
connections between related concepts or different representations and attention to
contradictory thoughts. Harel (2000) emphasizes the need for curricula tailored to
students’ needs which aid the understanding of abstract concepts in Linear Algebra.
He proposes three principles that we take into account in designing the tasks. That is,
the tasks should include familiar concepts that allow connection with prior
knowledge and language (concreteness principle), they should justify the need of
linear span (necessity principle) and allow generalization of the key ideas
(generalizability principle).

We identify the following principles based on the theoretical framework, the concept
of linear span as thought in the course “Geometry and Linear Algebra” as well as the
needs of our students.

1. Include key aspects of linear span: Closure under the operations of a vector
space; Every vector is a linear combination of the set of generators; No
limitation in the choice of the set of generators

2. Tackle potential conflict factors: The difference between linear combination
and linear dependence; Modes of representation (Hillel, 2000)

3. Promote theoretical thinking (Sierpinska, 2000): Reflection; Connections
between different representations; Attention to contradictory thoughts

4. The three principles of teaching and learning Linear Algebra (Harel, 2000):
Concreteness principle; Necessity principle; Generalizability principle

5. Promote discussion: among the students; between the students and the tutor

METHODOLOGY

The aim of this work is to investigate the conflict factor identified earlier through
tasks that are designed to foster the ground for this conflict to emerge and to be
discussed with the students. We present data collected during a preliminary
evaluation of the tasks through semi-structured interviews with seven students who
had attended the course “Geometry and Linear Algebra” the previous semester. The
analysis of this preliminary evaluation is expected to answer the following questions:
Can the tasks tackle this potential conflict factor? What are the roots of this conflict
factor? Does the discussion around the task help students resolve their
misconceptions? Do students find the tasks interesting and/or useful?
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The following table summarizes the information about the seven participants.

Male
Female

Mathematics

Applied Mathematics

1% Year 2" Year 3 Year 1% Year 2" Year
0 1 0 1 0
3 0 1 0 1

Prior to the interviews each student was given a folder including the task and other
necessary information. The students had one week to attempt and review the tasks
before the interviews. All interviews were videotaped. To ensure confidentiality each
student was assigned and referred to with an alias.

ANALYSIS

The first task is based on an exercise from the book “Linear Algebra: Concepts and
Methods” by Antony and Harvey (2012). Its structure was slightly altered to fit that
of the course notes (Kourouniotis, 2014). It aims to create connections with prior
knowledge, known processes and language under the new context and introduce to
students basic ideas linked with the concept through algebraic and geometric
representations of the notion. The task is divided into three interconnected sub-tasks
as a scaffolding strategy to support students.

Task 1: Consider the vectors:
vi=(-1,0,1),v,=(1,2,3),w;=(-1,2,5), w,=(1, 2, 5)

i)  Show that w; can be expressed as a linear combination of v, and v,, but w, cannot be
expressed as a linear combination of v, and v;.

ii) Explain what subspace of R® is spanned by vi, v, and w;. Explain what subspace of
R? is spanned by vy, v, and w,. What do you observe?

iii) Show that the vectors vy, v,, w; and w, span R®, that is for every u = (x, y, z) there are
a, b, ¢, d such that:

u=av; + bv, + cw; + dw,

Show also that every vector u € R® can be expressed as a linear combination of v, v,
w, and w; in infinitely many ways.

The first, introductory, sub-task aims to support students’ theoretical thinking in the
following sub-task by limiting its focus on calculations. This task was completed by
all the participants without difficulty prior to the interview. The second sub-task is
expected to enrich students’ image of linear span by making connections between the
algebraic and geometrical representations of the concept in R®. It may also motivate
students to seek a deeper connection between Analytic Geometry and Linear
Algebra. This sub-task was completed by 5 students. Finally, the third sub-task aims
to create a link between the relation of the given vectors and the number of ways
arbitrary vectors can be expressed as a linear combination of the elements in the set.
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Sub-task (iii) proved to be the most difficult for the participants, being completed by
only 2 students before the interviews.

In more detail, the students who did not complete (ii) appeared to have trouble with
methodology. The students are expected to know from the first part of the course
what the geometric representation of a 1-, 2- or 3-dimensional subspace of R® is,
therefore one has to connect this idea with the notion of linear span and check if the
given vectors are linearly dependent. In both cases the students did not make this
connection beforehand but the problem was quickly resolved through discussion.
Apart from that, six out of the seven students found the question “what do you
observe?” useful. This question was added to the task as an encouragement for
reflection on the effect that different choices of vectors have on the outcome and to
promote discussion. In particular, three of the students indicated that they might not
have given a second thought to their result if it wasn’t for this question. One of the
students found the question stressful, although she had successfully answered it. Her
reaction is significant to us at this point. Clute (1984) found that students with higher
anxiety levels can benefit more from instrumental approaches. Open questions, such
as the above, are not frequent in Greek secondary education. It is therefore
reasonable to assume that some students would have difficulty (and in some cases
anxiety) answering this question in a problem workshop.

While discussing sub-task (ii) an unexpected observation was made by two of the
students. These students interestingly replied that the span of the vectors v,, v, and
w; is the vector space R2. This conflict factor is called by Wawro et al. (2011: p. 13)
the “nested subspaces”. Based on their evidence they hypothesized that this
confusion has roots in students identifying any 2-dimensional subspace of R" with
R? and suggested that lecturers must be aware of this as a potential conflict factor.
Their hypothesis was confirmed in these cases too.

In trying to answer sub-task (iii) the biggest pitfall was following the same reasoning
used in subtask (ii). This approach will not help answering the second part which
requires from students to solve a system of linear equations. Despite the instructions
included in the Task, four out of the five students who didn’t complete (iii), tried to
use the same approach as in (ii). Additionally, three of them faced a difficulty
making use of the proposition “for every u = (x, y, z) there are a, b, ¢, d such that u =
av; + bv, + cw; + dw, ” and did not manage to recognize the random vector u = (X, Y,
z) as a parameter of the problem. Instead they identified it as another variable. In
each case the task was completed with the help of the interviewer but we find that
subtask (iii) required more guidance from the part of the interviewer compared to
subtask (ii). The fifth student managed to solve the required linear system but she
could not make a connection between the infinite number of solutions and the fact
that the four vectors are more than enough to describe any vector in R®.

The second task was created to address potential conflict factors in relation to the
notions of linear combination and linear dependence in the context of linear span.

270 sciencesconf.org:indrum2018:174405



The idea for this task was based on our goal to promote theoretical thinking and
discussion. The conflict is given to the student as a statement - challenge and the
goal is to find an example to support the given proposition. It is expected that
students will first use a trial and error approach by reaching for appropriate vectors
in their example space (Mason & Watson, 2008). This approach will probably fail if
students are not able to identify what are the key relations between vy, v, and w in
the proposition. If one’s concept image includes conflicting ideas about the status of
vectors in a set of generators, it might be difficult to find an example without careful
prompting and discussion. Because of the nature of the problem, we believe that
students would want to cross-examine their findings or get some guidance.

Task 2: Let vy, v, and w be linearly dependent vectors in R>. It is possible for w not to be
in the space spanned by v, and v, although vy, v, and w are linearly dependent. Give an
example. Why do you think this can happen?

Moving on to the interviews, only one student had found an example of three vectors
fulfilling the requirements of the task before the interview. In four of the seven cases
clear signs of conflicting images emerged. This reinforces our preliminary hypothesis
that students struggle with identifying the difference between the notions of linear
combination and linear dependence. Furthermore, it might be an indication that Task
2 can help potential conflict factors to emerge and be resolved in a controlled
environment. The following quotations capture these observations.

Minos: So, what | thought was that | can have two vectors... which will be linearly
independent that will span a plane in R® | can of course... | am sure that | can find
another third vector that will not belong in the plane but the relationship to be true... these
three vectors to be linearly dependent.

Minos’ evoked concept image of the linear span is geometric. He thinks of the span
of the two vectors as a plane and he tries to find an example by checking vectors that
are not on that plane. Of course, if the two vectors are linearly independent, adding a
third vector that does not belong in their span will result in a linearly independent
set. It seems that either this fact is not part of his concept image or his evoked
concept image does not include this information because of the phrasing of the task.

In the following two quotations, the conflict can be directly connected to our
preliminary findings in Papadaki (2017). The students seem to struggle with the idea
of three vectors being linearly dependent and at the same time one of them not being
able to be expressed as a linear combination of the others.

Interviewer: Well, so for w not to belong in the span of the two other vectors it could not
be written as a linear combination of them...

Pasiphae: Yes... yes... well... But then how can they be linearly dependent? They are all
together linearly dependent...
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The student thinks of the two notions as equivalent. She later justifies her thinking
by stating that if they are linearly dependent she can solve the algebraic equation
av; + bv, + cw = 0 for any of the three vectors. Similarly, Ariadne describes her own
experience with the task. It is worth mentioning that later in the interview Ariadne
successfully refers to the (personal) definitions for both concepts.

Ariadne: To begin with, to me it seemed absurd at first... because... what does it tell me?
It tells me that they are linearly dependent, so if | solve for w, | will find a linear
combination, so based on the theory it belongs to the subspace spanned by v; and v,.

In Ariadne’s case, it can be assumed that although her concept definition for linear
dependence includes the information that the coefficients a, b and c are not all zero,
in her evoked concept image this statement is replaced by none of them being zero.

The quotations depict two possible roots of students’ difficulties with the task. That
is, thinking of the linear span of two vectors as necessarily a 2-dimensional subspace
or thinking of the algebraic representations of linear dependence and linear
combination as equivalent.

Task 2 was thoroughly discussed with the students using different approaches based
on the line of thinking of the students, but also influenced by the interviewer. The
ideas portrayed in this task were discussed using an algebraic approach with four of
the students and geometrically with two of them. In each interview the final example
was found by the students using an informed trial and error approach. All six
students reported that the discussion was very useful and Task 2 is important for
understanding the concept. Three of them also said that this was the task that made
them the biggest impression and four of the students suggested that it would be better
if this task was presented to them in a problem workshop after a sequence of related
more instrumental tasks.

Concluding, four of the students reported that they understand a notion better
through examples and tasks. The way that students’ concept image is formed through
model examples and experience, is of course well known. What is important is the
fact that the students are aware of this happening. This last observation is an
indication why it is crucial to pay attention to the examples and tasks used in any
course. There are students who are consciously depending on them and expect to
understand the “mysterious” concepts that the lecturer is talking about through them.

RESULTS & DISCUSSION

The analysis of the interviews gave us very important information about how tasks
can be improved and used in a problem workshop for an introductory course on
Linear Algebra. Although all students indicated that they found the tasks useful they
gave us opportunities to reflect upon their design and experiment with different
tactics which can be used by tutors in an attempt to make the most out of these tasks.
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Beginning with the first task, students appeared to have particular difficulty in
subtask (iii). One reason might be that (iii) requires a shift in thinking and cannot be
fully answered by using the same approach as in subtask (ii). In an attempt to resolve
this issue we are also considering a slightly different version of this part of the task
that forces students to begin with the shifted approach as follows:

Show that for every u = (X, y, z) there exist a, b, ¢, d such that:
u=av; + bv, + cw; + dw,

Conclude that vy, v,, wy and w, span R®. Moreover, show that every vector ueR® can be
expressed as a linear combination of vy, v,, wy and w;, in infinitely many ways.

Another observation we made while discussing Task 1 with the students was that of
“nested subspaces”. This is another conflict factor we didn’t take into account at first
and realized it only during the interviews with the students. Our observation is in line
with the hypothesis of Warwo et al. (2011).

Task 2 was fruitful both in terms of meaningful discussion and reflection. Students
found Task 2 important for understanding the concept of span. We also observed
manifestations of cognitive conflict which indicates that the task can be used as a
means to resolve potential conflict factors. Different approaches can be used to
discuss these conflicts with students (algebraically, geometrically or by trial and
error). A useful tactic might be to discuss the conflicting factors using more than one
representation of vectors with the same group of students.

In addition, the indications about the need of examples and tasks made by the
students were of great importance. This fact depicts the necessity of well thought
examples and tasks in order to help students create a coherent concept image.

This paper presents an approach on how lecturers can design tasks inspired by their
observations on students’ misconceptions and taking advantage of the research in
Mathematics Education. The framework could be used as guidelines for tutors that
are interested in developing tasks for a Linear Algebra course based on their students
needs and related research. Finally, the tasks need to be tested in a problem
workshop and be compared to other tasks aiming to familiarize first year
Mathematics undergraduates with the concept of linear span.
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In this report, we share insights we have gained from developing an assessment for
documenting students’ understanding of eigentheory. We explain the literature and
theory that influenced the assessment’s development and share question examples.
We frame our results in terms of three eigentheory settings (Ax = Ax, (A —ADx =0
and eigenspaces) and four interpretations (numeric, algebraic, geometric, and
verbal). Results from our analysis include students’ reasoning being influenced by
setting, insights into students’ struggle with understanding eigenspaces, and the
importance of making connections between and across various interpretations.

Keywords: Teaching and learning of linear and abstract algebra, teaching and
learning of specific topics in university mathematics.

INTRODUCTION

Linear algebra is particularly useful to science, technology, engineering and
mathematics (STEM) fields and has received increased attention by undergraduate
mathematics education researchers in the past few decades (Dorier, 2000; Artigue,
Batanero, & Kent, 2007; Rasmussen & Wawro, 2017). A specifically useful group of
concepts in linear algebra is eigentheory, or the study of eigenvectors, eigenvalues,
eigenspaces, and other related concepts. Eigentheory is important for many
applications in STEM, such as studying Markov chains and modeling quantum
mechanical systems; however, research specifically focused on the teaching and
learning of eigentheory is a fairly recent endeavor and is far from exhausted.

As part of our ongoing research program analyzing students’ understanding of
eigentheory (e.g., Watson, Wawro, Zandieh, & Kerrigan, 2017; Wawro, Watson, &
Christensen, 2017), we created an assessment instrument focused on the multifaceted
and interconnected nature of eigentheory. The purpose of this paper is to describe
insights have we gained about students’ conceptual understanding of eigentheory as a
result of developing, using, and refining this assessment instrument.

THEORY AND LITERATURE REVIEW

We ground our work in the Emergent Perspective (Cobb & Yackel, 1996), which
assumes that mathematical development is a process of active individual construction
and mathematical enculturation. In this paper we focus on the former by analyzing
mathematical conceptions that individual students bring to bear in their mathematical
work (Rasmussen, Wawro, & Zandieh, 2015). The literature on the teaching and
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learning of eigentheory points to several aspects important to students’ conceptual
understanding. Here we summarize that literature by highlighting what we found to
be important aspects for building a working model for understanding eigentheory.

Literature on student understanding of eigentheory

Thomas and Stewart (2011) found that students struggle to coordinate the two
different mathematical processes (matrix multiplication versus scalar multiplication)
captured in the equation Ax = Ax to make sense of equality as “yielding the same
result,” an interpretation that is nontrivial or even novel to students (Henderson,
Rasmussen, Sweeney, Wawro, & Zandieh, 2010). Furthermore, students have to keep
track of multiple mathematical entities (matrices, vectors, and scalars) when working
on eigentheory problems, all of which can be symbolized similarly. For instance, the
zero in (A — AIx = 0 refers to the zero vector, whereas the zero in det(A — AI) =0
is the number zero. This complexity of coordinating mathematical entities and their
symbolization is something students have to grapple with when studying eigentheory.

Thomas and Stewart (2011) also posit that this struggle to coordinate may prevent
them from making the needed symbolic progression from Ax = Ax to (A — Al)x =
0, which is central to determining the eigenvalues and eigenvectors of A. In their
genetic decomposition of eigentheory concepts, Salgado and Trigueros (2015) posit
that students need to interpret the procedure of finding eigenvectors and eigenvalues
of A as determining the solution set of the homogeneous system of equations created
by the matrix equation (A — Al)x = 0. Harel (2000) posits that the interpretation of
“solution” in this setting, the set of all vectors x that make the equation true, entails a
new level of complexity beyond solving equations such as cx = d, where ¢, x, and d
are real numbers. When considering the notion of eigenspace in particular, Salgado
and Trigueros (2015) found that students struggle to coordinate the number of
eigenvectors corresponding to a given eigenvalue with the dimension of the space
spanned by the eigenvectors. Thus, understanding eigentheory not only involves
coordinating mathematical processes and entities but also equations and solution sets.

In addition, students have to make sense of instructors’ frequent movement between
geometric, algebraic, and abstract modes of description, but this may be challenging
(Hillel, 2000). In fact, Thomas and Stewart (2011) found that students in their study
primarily thought of eigenvectors and eigenvalues symbolically and were confident
in matrix-oriented algebraic procedures, but the majority had no geometric or
embodied views. In contrast, other researchers have shown how exploration through
dynamic geometry software (Caglayan, 2015; Gol Tabaghi & Sinclair, 2013; Nyman,
Lapp, St John, & Berry, 2010), geometric interpretations of a linear transformation
(Zandieh, Wawro, & Rasmussen, 2017), or real-world contexts (Salgado &
Trigueros, 2015) can help students develop conceptual understanding of eigentheory.
We similarly agree on the importance of understanding eigentheory concepts in
multiple ways and navigating between various interpretations, and we incorporate
this complexity in our model of student understanding of eigentheory.
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Working Model of Understanding Eigentheory

Regarding what it may mean to have a conceptual understanding of eigentheory, our
current working model is a network of connections within and across three main
settings of how eigentheory is framed. The three sets of relationships that are
pertinent are: (1) relationships indicated by the eigen-equation Ax = Ax; (2)
relationships indicated by the homogeneous form of the eigen-equation (A — Al)x =
0; and (3) relationships indicated by a linear combination of eigenvectors. Within the
first two settings, what is most frequently the focus of inquiry is one particular
eigenvector x for either form of the eigen-equation. However, when considering the
collection of all x that satisfy either eigen-equation, one arrives at the eigenspace of
A associated with A. The relationships between vectors in the same eigenspace are the
focus of the third setting. For instance, if x; and x, are eigenvectors of A with
eigenvalue A, then all vectors that are a linear combination of x; and x, (i.e.,
span{xy, x,} = kyx; + k,x, for scalars k, and k,) are also eigenvectors of A
associated with A. Furthermore, reasoning about relationships in this third setting
almost certainly involves reasoning about either the first or second setting as well.
Each of these settings includes entities and relationships between those entities that
may be realized in various ways. We organize this variability in our model according
to four main interpretations: graphical, numeric, symbolic, and verbal.

THE EIGENTHEORY MCE ASSESSMENT

The development of the Multiple Choice Extended (MCE) assessment instrument for
eigentheory grows from our prior work in student understanding of span and linear
independence in which we developed the MCE-style question format (Zandieh et al.
2015); questions begin with a multiple-choice element and then prompt students to
justify their answer by selecting all statements that could support their choice (see
Figure 1). This format was inspired by existing conceptually-oriented assessment
instruments in undergraduate mathematics and physics (e.g., Carlson, Oehrtman, &
Engelke, 2010; Hestenes, Wells, & Swackhamer, 1992; Wilcox & Pollock, 2013).

Development of the Eigentheory MCE involved multiple steps. First, we compiled a
database of questions about eigenvectors, eigenvalues, and related concepts from
research on student understanding of eigenvectors and eigenvalues (e.g., Gol Tabaghi
& Sinclair, 2013; Salgado & Trigueros, 2015; Thomas & Stewart, 2011), online
resources for clicker and classroom voting on linear algebra (Cline & Zullo, 2016),
and previous linear algebra homework assignments, exams, and interview protocols
used by research team members (e.g., Henderson et al., 2010). Second, we used
research results regarding students’ understanding of eigentheory from the literature,
as well as our own teaching experience and theoretical thinking, to determine which
questions seemed to address important aspects of what it may mean to have a
conceptual understanding of eigentheory. Third, the most promising questions were
edited into the MCE format, which involved moulding the problem into a multiple-
choice question and developing six corresponding justification choices that required
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students to reason within and between various -eigentheory settings and
interpretations. Fourth, through multiple rounds of administering the assessment to
students, analysing the data, and subsequent refinement, we arrived at the current
Eigentheory MCE. It contains six questions, each with six justification choices; five
questions are in Figure 1 (the sixth is omitted because of space limitations).

) 2 4 L 2. Suppose the vector x € R?, in the two-dimensional sketch 3. Suppose A is a nXn matrix, and y and z are linearly
1. The matrix 4 = [ 2 5] has A = 6 as one of its eigenvalues. below, is an eigenvector of a 2x2 matrix M with real-valued independent eigenvectors of A with corresponding eigenvalue 2.
Which of the following vectors is an eigenvector of A with eigenvalues. Which of the Let w = 5y + 5z. Is v an eigenvector of A?
corresponding eigenvalue A = 6? vectors w, v or w illustrated in
the figure could be the result of (a) Yes, v is an eigenvector of A
@ ==|*| €CORRECT the product Mx? with eigenvalue 2 €CORRECT
-t (b) Yes, v is an eigenvector of A with eigenvalue 5.
1 (a) u (c) No, v is not an eigenvector of A.
® == ® v
. X (©) w €CORRECT Because ... (select ALL that could justify your choice)
Because ... (select ALL that could justify your choice) (d) Not enough information is given to know a possible result
of the product Mx [6)) v ig a linear combination of eigenvectors that have the

(i) This vector x makes Ax = 6x a true statement. :
Because ... (select ALL that could justify your choice) same eigenvalue.
(ii) This vector x is the only vector in R?* for which Ax = 6x. o st

(i) This vector is on the same line as x. (ii) The set {»,y,z} is linearly dependent.

(iif) This vector x makes (4 — 6/)x = 0 a true statement (iii) A linear combination of eigenvectors does not result in

(i) This vector and x form a linearly independent set. another eigenvector

(iv) Subtracting 6 from the diagonal of 4 yields this vector x

as a column vector of the resulting matrix. (iif) This vector is in span{x}. (iv) Av=A(5y+52) =5Ay +54z=5.2y+5-2z=
. X 3 . 2(5y +5z) = 2v.
(v) The vector Ax is 6 times the magnitude and in the same (iv) This vector is a scalar multiple of x. ©r )
direction as this vector x. (v) The matrix M needs to be known to determine what Mx (v) wis an element of the eigenspace created by the vectors y

d z.
(vi) The matrix A also has A = —3 as an eigenvalue. could be. an

(vi) Av=A(5y+5z) =5Ay+54z=52y+5-2z=
52y + 2z) = 5v.
4. Aneigenvalue of the matrix A = [4 2 is: 5. Suppose a 3x3 matrix B has two real eigenvalues:
: 1 3™ for eigenvalue 2 its eigenspace E, is one- -
dimensional, and for eigenvalue 4 its eigenspace E,

(vi) There exists a scalar c such that Mx = cx.

(@ 4=2 <CORRECT is two-dimensional. Also suppose that vector x € R* |\l o

® A=3 lies on the plane created by the eigenspace E, and g N— -
Because ... (select ALL that could justify your choice) iseillng:;;i:: dD;ﬂt}:"eli;z:S ated by the cigenspace £y, ’ "
(i) The equation (A — Al)x = 0 has only the trivial solution x = 0 when using this eigenvalue. Iz = y + 0.5x, which of the following is fruc? )
(§) This eigenvalue makes (4 — &) noninvertible. (a) The vector z is an eigenvector of B with an eigenvalue of _____ [fill in the blank]

b) Th tor z is not an ei tor of B. € CORRECT
(iif) When acted on by matrix A, there is a line of vectors in R? that are stretched by the amount (6) The vector Z is not an cigenvector o

of this eigenvalue. Because ... (select ALL that could justify your choice)
(iv) There exists a vector x such that the product of the matrix A and x is the same as the product

P i) Bz=B(y+05x) = By + 0.5Bx = 2y + 0.5(4x) = 2(y + x) = 2z
of this eigenvalue and x. ) 4 Y y y

(v) Thisei 1 akes Ax = Ax a true stat tforx =0 ii) A linear combination of eigenvectors is always an eigenvector.
\J s eigenvalue makes Ax = Ax a true statement for x = 0.

iii) Bz is not a scalar multiple of z
(vi) This eigenvalue is a solution to det (A — 1) = 0. ) P

(
(
(
(iv) z does not lie in the plane E, or on the line E,.
(V) z is in Span{x, y}

(

vi) The eigenvalue of z is a weighted average of the eigenvalues of x and y

Figure 1: Questions 1-5 from the Eigentheory MCE

The MCE questions were created to elicit student thinking about eigentheory within
and across the settings and interpretations within our working model of understanding
eigentheory. For example, the stem of Question 1 is a numeric interpretation; its
given justifications for students to choose as true and relevant, we see that
justification (i) is a symbolic interpretation in the Ax = Ax setting, (iii) is a symbolic
interpretation in the (A — AI)x = 0 setting, and (v) is a geometric interpretation in
the Ax = Ax setting (Figure 1). As students choose justifications that support their
answer to the main question, they are prompted to reason about eigenvectors and
eigenvalues within and across multiple settings and interpretations.

METHODS
The Eigentheory MCE was given to two introductory linear algebra classes taught by
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the same instructor at a large, research-intensive public university in the United States
at the end of Spring Semester 2016. The course utilized the Inquiry-Oriented Linear
Algebra (http://iola.math.vt.edu) curricular materials and Lay (2012) as its textbook.
One class (of 29 students) received the MCE with given closed-ended justifications
(see Figure 1), and the other class (of 28 students) received an open-ended version
where students had to write their own justifications for their multiple-choice answer;
we refer to these as Class C and Class O, respectively. Students had 20-25 minutes to
work on the assessment. All student work referred to in this paper is labelled “B#.”

Analysis of the closed-ended MCE consisted of entering the data into spreadsheets
and looking for trends such as: (a) common sets of justifications that students selected
or did not select; (b) how selecting certain justifications may have influenced
students’ multiple choice selection; and (c) instances in which we would have
expected students to select what we viewed as related justifications, but they did not.
We used Grounded Theory (Glaser & Strauss, 1967) to characterize the concepts
students brought to bear in their justifications in the open-ended MCE, coding
independently and discussing our results as a team to find emerging themes. Finally,
we compared students’ responses across questions and across classes to discover
further insight into student understanding of eigentheory.

RESULTS

We include four insights into student understanding of eigentheory discovered from
our MCE data analysis. These selected results are organized by settings (sections 1-2)
and interpretations (section 3) from our working model of understanding eigentheory.

Because ... (Please write a thorough justification for your choice) Because ... (Please write a thorough justification for your choice)
c
\ X &3 [ WAl A vedvid My ’_/‘/\DU\A Q‘VL a
be  egpnveltor Ll—\ P R st ¢
(v A h\| - L 1 : geplov v se) by o Meddor
by wetin A [ I La o
oot ) ovl,  veuiy @l 2 -
| | ¢ v LLB W ey N
) Palald o
2 & e 4 il
4 lnc So w et < b Y
F w5 vedor y N 1A 5
pos

Figure 2: B65’s reasoning within the Ax = Ax setting.

Reasoning about relationships within Ax = Axor (A —ADx =0

We found that as students respond to an MCE question, they seem to situate it within
a particular setting, perhaps the setting they are most familiar or comfortable with,
regardless of the setting in which the question was initially written. Furthermore, a
student’s chosen setting can lead to different ways of reasoning about a problem. We
present two illustrations of this from Class O: B65’s justifications for Q1 and Q2, and
B66’s justifications for Q1 and Q3. First, in Figure 2, B65 seemed to situate both
problems within the Ax = Ax setting. On Q1, B65 explained that multiplying the

vector B] by the matrix A resulted in six times that vector. On Q2, B65 explained that
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Mx needed to be a scalar multiple, and thus the only possible vector would be one
along the same line as the vector x, namely the vector w. In both cases B65
emphasized that for an eigenvector, multiplying by the matrix yields a multiple of the
original vector, thus working within the Ax = Ax setting.

Second, in Figure 3, B66 seemed to situate both problems in the (A—ADx =0
setting. On Q1, we infer this student first found the matrix (A — AI), multiplied each
vector from the MCE question by it, and chose the vector that was mapped to the zero
vector. Then, on Q3, although what s/he actually writes is idiosyncratic, we can infer
s/he was still reasoning with the homogeneous equation, imagining the vectors y and
z being mapped to zero by the matrix (A — AI), and thus the vector v would also map
to zero. In both Q1 and Q3, B66 emphasized an action on the eigenvectors to produce
the zero vector, seemingly invoking the (4 — AI)x = 0 setting.

1. The matix 4 = [ 72 ] bas 2 = 6.as ane ofis cigeaval i i
2 5 geavalues. Which of the following vectors i : : inde
s an eig of A with corresponding eigenvalue A = 67 3. Suppose A is a nXn matrix, and y and z are linearly independent eigenvectors of A with
; corresponding eigenvalue 2. Let v = 5y + 5z.
4 2ok 'ﬂ N ﬂ
@ x= LJ Y_l s} Lx Is v an eigenvector of A?
[t
@ x= (2] @ Yes, v is an eigenvector of A with eigenvalue 2.
Because ... (Please write a thorough justification for your choice) Because ... (Please write a thorough justification for your choice)
E W [ h
b \x, i € :"] VoS A Caheuian of  y weR
§-b > " )
- [ S DU v L Aty sy v &2 ror a0 Gk &
\ 2 AR W e A v “
B .48'\7 » '\':,1 \/ N be bl et ey, o
RS S A I B Vv is a linear combination of y & z
Since the value 2 already causes y & z to equal 0, adding a multiple to it
will not change that

Figure 3: B66’s reasoning with the (4 — AI)x = 0 setting.

We note that the stems of Q1, Q2, and Q3 are not written so as to elicit student
reasoning within a particular setting. This allows for use of the open-ended
assessment to measure a student’s preferred setting or for the closed-ended
assessment to measure whether students can interpret the problem in either setting

Reasoning about Eigenspaces

The previous section provides examples of the relationships involved in the first two
settings: Ax = Ax to (A— Al)x = 0. In this section we attend to the eigenspace
setting, which focuses on the relationships involved with scalar multiples or linear
combinations of eigenvectors. An eigenspace, like any vector space, is closed under
addition and scalar multiplication; thus, a linear combination of vectors in an
eigenspace is also an eigenvector with the same eigenvalue as the other vectors in
that eigenspace. When asked about eigenspaces, students may draw on these facts
and/or may work within one of the previous two settings to derive these principles.

For Q3, only six (of 28) students in Class O circled the correct answer (a) that v is an
eigenvector with eigenvalue 2, five chose (b) an eigenvalue of 5, and 16 chose (c)
that v was not an eigenvector. Approximately half the students in each group used the
phrase “ is a linear combination of” as part of their justification (3 for (a), 3 for (b), 7
for (c)). Sample justifications using “is a linear combination of” are given in Figure 4.
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Justification given
with choosing (a)

Justification given
with choosing (c)

Justification given
with choosing (b)

Justification given
with choosing (b)

v is a linear combination
of y and z which have
the same eigenvalue.

No, because v is a
linear combination
of the two vectors.

v is a linear combination of y and z. Both
5y and 5z are scalar multiples of their
previous form so the resultant vector will

be an eigenvector as well

Since it is a linear
combination of the other
eigenvectors, it would also
be an eigenvector.

NOTE: Typed versions are used here to improve readability of students’ handwritten justifications

Figure 4. Example of four students’ open-ended justifications for Question 3

Very few students in Class O gave justifications that brought in the relationship
between eigenvectors and eigenvalues described in the first two settings. One such
student was B66, described in the above section. In Class C, however, 13 (of 29)
students chose justification (iv) (symbolic Ax = Ax), 11 of which correctly selected
answer (a). Because a much higher percentage of Class C circled (a) than in Class O,
it is possible that this justification served as a hint that helped some students choose
the correct answer. On the other hand, this MCE option allowed us to test whether
students recognized the relevance of this set of relationships for the given question.

Although some students who answered (c) used the phrasing “linear combination,”
their arguments focused more on the linear independence of the vectors. The answers
students gave for (c) include: “Eigenvectors must be linearly independent from each
other so if v is a linear combination of y and z then it cannot be an eigenvector,”
[B58], and “Because they all correspond to the same eigenvalue they all must have
unique eigenvectors and v is a linear combination of y and z and therefore not unique
and not an eigenvector of A” [B79]. These answers focus on eigenvectors as
necessarily being linearly independent or unique. This focus may come from students
remembering that eigenvectors of distinct eigenvalues are linearly independent or that
textbook solutions often give an eigenspace basis as the final answer, which may
explain students thinking there are only finitely many eigenvectors for an eigenspace.

In Q5, eigenspaces were represented geometrically, and students who completed it
were rather successful in selecting the correct multiple-choice answer (14/21 in Class
C and 21/26 in Class O). However, many students still focused on finite numbers of
vectors. On Q5, reasons given by some students to support the correct choice (b)
similarly focused on finite numbers of eigenvectors: “Matrix B already has 3
eigenvectors so there’s no room for a 4™ [B59], and “z is a linear combination of y
and x, and there are already 3 eigenvectors for 3 dimensions, so z cannot be an
eigenvector of B” [B66]. We conjecture these students may have been conflating the
total number of possible eigenvectors (infinite) for a 3x3 matrix with the number of
linearly independent vectors needed to create the bases for the 1- and 2-dimensional
eigenspaces. Alternatively, B58’s justification for Q5 focuses on dimension: “In a
3x3 matrix there can only be 3 dimensions to the eigenspace. E, and E, together span
the entire space of R3 so there cannot be another eigenvector of B besides E, and
E,.” We conjecture grasping the difference between finiteness of dimensions and
infiniteness of eigenvectors may be particularly vital for understanding eigenspaces.
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Reasoning Across Interpretations

We conclude our results by discussing various aspects of students reasoning across
interpretations and the ways in which the MCE afforded that. In particular, we focus
on symbolic versus geometric interpretations of eigentheory. On Q1, as noted in the
previous section, a majority of students in Class O wrote at least one equation
(symbolic interpretation), but none wrote anything geometric in their justifications.
This could be an indication that students might favour algebraic reasoning over
geometric reasoning when justifying their answers to eigentheory questions, even
though the classes used the IOLA curriculum which specifically introduces
eigenvectors and eigenvalues geometrically. On the other hand, it could be that the
numeric interpretation that Q1 was written in did not elicit geometric interpretations
from students in their open-ended justifications, or that students see symbolic
justifications as more acceptable to the teacher or the broader math community than
geometric ones. In a more direct way of assessing students’ ability to see connections
to the geometric interpretation, the closed-ended MCE gives students the geometric
justification choice (v) on Q1, and roughly half (14/29) of the students in Class C
selected it. Furthermore, over 80% of the total students from both classes answered
the multiple choice stem of Q1 and Q2 correctly (48/57 and 51/57 respectively),
demonstrating some ability to reason both numerically and geometrically about
eigenvectors and eigenvalues. Because the wording of the MCE questions and
justifications makes use of the four different interpretations from our working model,
we are better able to assess students’ understanding of the symbolic, numeric,
geometric, and verbal interpretations in eigentheory, both within and cross settings.

DISCUSSION

Research on student thinking often relies on students’ written work on mathematics
problems as evidence of how students make sense of or reason about particular
content. Our research here is no exception, with student work on the MCE revealing a
variety of ways that students understand aspects of eigentheory. However, the MCE’s
closed-ended justifications extend a written question’s ability to examine connections
between settings and interpretations that students might not have initially considered
or felt the need to include in their justifications. For instance on Q1 in Class O, four
students wrote some form of (A — Al)x = 0 as part of their justification, ten wrote
some form of Ax = Ax, four wrote some form of both equations, and ten students did
not write either equation. In contrast, on Q1 in Class C, 23 students selected both
justifications (i) (symbolic Ax = Ax) and (iii) (symbolic (A — Al)x = 0), and only
one student selected neither. Hence, when students were forced to consider the two
eigentheory settings (i) and (iii), the large majority was able to see both as true and
relevant. As other researchers have pointed out the importance of understanding both
equations in eigentheory, it is significant that the MCE may give new insight in
students’ understanding of connections between these two settings.

We do see some potential limitations of the MCE. First, it is more time consuming to
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take than a simple multiple-choice test, and this affects the number of questions that
can be asked. The MCE can also be cognitively taxing because students must
consider each justification to determine its truth and relevance. Third, scoring MCE
results can be complicated. We hope that further refinement and use of the MCE, as
well as developing possible scoring systems, will continue to broaden and deepen the
mathematical community’s understanding of how students reason about eigentheory.
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TWG 4: Students’ practices



The complexity of knowledge construction in a classroom setting
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We study a class of mathematics education MA students in an introductory course on
Chaos and Fractals, as they grapple with the Sierpinksi triangle, and in particular
with the apparent paradox that its area equals 0, while its perimeter is infinitely long.
For this purpose, we network an approach for investigating the construction of
knowledge in small groups with one for examining how ideas and ways of reasoning
function-as-if-shared in a classroom. Our results show complexities: (i) small group
work and whole class discussions mutually influence each other; (ii) ideas may
function-as-if-shared in the whole class even if the majority of students have not
previously constructed them in their groups; (iii) knowledge constructed in the small
groups may or may not later function-as-if-shared in the whole class.

Keywords: Teachers’ and students’ practices at university level, teaching and
learning of analysis and calculus, knowledge construction in classrooms, paradoxes

INTRODUCTION

The research presented here deals with the construction of knowledge in a student
centred, inquiry-based classroom, where small group work (SGW) alternates with
whole class discussions (WCDs). Construction of knowledge is usually investigated
by observing small groups (1 to 4 students) of students. The reason for this is that in
larger groups, the density of information for each student is low and does not allow
the researcher to interpret their utterances or actions. However, intentional learning
more often than not takes place in classrooms with many more than 4 students. We
therefore use different approaches for analysing the SGW and the WCDs. The aim of
our research is to link the two analyses by following ideas from their emergence in
SGW or WCD, via their flow between SGW and WCD settings, until they possibly
function-as-if-shared in the class, even though they may not have been constructed by
all students. We thus aim at tracing and describing the complexity of knowledge
construction across several classroom settings.

THEORETICAL BACKGROUND

The perspective we adopt for analysing the construction of knowledge during SGW is
Abstraction in Context (AiC), a theoretical framework for analysing processes of
constructing abstract mathematical knowledge (Dreyfus, Hershkowitz, & Schwarz,
2015). AiC methodology begins with an a priori task analysis identifying the new (to
the learner) knowledge elements required or useful when solving the task. It then uses
a model of three types of epistemic actions — actions pertaining to the knowing of the
learners — to analyze their learning processes. The model suggests constructing as the
central epistemic action of mathematical abstraction. Constructing consists of
assembling, interweaving and integrating previous constructs to make a new
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construct emerge. It refers to the first time the new construct is expressed or used by
the learner. Hence, while the term constructing refers to the process, the term
construct refers to the outcome of the action.

The perspective we adopt for analysing WCD episodes is documenting collective
activity (DCA). Collective activity of a class refers to the ways of reasoning that
function-as-if-shared (FAIS) as students work together to solve problems, explain
their thinking, represent their ideas, and so on (Rasmussen & Stephan, 2008). These
FAIS ways of reasoning can be used to describe the mathematical activity of a group
and may or may not be appropriate descriptions of the characteristics of each
individual student in the group. The empirical evidence that a way of reasoning is
FAIS is obtained by using Toulmin’s (1958) model of argumentation, the core of
which consists of Data, Claim, and Warrant. Typically, the data consist of facts or
procedures that lead to the claim that is made. To further improve the strength of the
argument, speakers often provide more clarification, which serves as a warrant for
connecting the data to the claim. Backings provide further support for the core of the
argument. For examples, see the data analysis below, e.g., in WCD 9. The following
three criteria are used to determine when a way of reasoning becomes normative: 1)
When the backing and/or warrants for particular claim are initially present but then
drop off; 2) when certain parts of an argument shift position within subsequent
arguments (e.g., a claim shifts to data); or 3) when a particular idea is repeatedly used
as either data or warrant for different claims across multiple arguments.

In earlier studies (Tabach et al., 2014; Hershkowitz et al., 2014), we have shown how
DCA and AiIC combine to provide an in-depth analysis of knowledge shifts in the
classroom and of the knowledge agents that initiate these shifts. In Tabach et al.
(2017), we articulate why and how the two approaches are theoretically compatible.
In this paper, we analyse a lesson where students dealt with an apparent paradox
because of its potential to bring to the fore the complex nature of knowledge
constructing processes across social settings in a classroom. Specifically, the paradox
is an infinite perimeter that delimits a shape with no area, a phenomenon occurring in
fractals. While paradoxes are abundant in the study of infinity, we found only two
studies relating to similar ones: Sacristan (2001) examined how the coordination of
visual and numerical representations supported a single student’s resolution of this
apparent paradox. Wijeratne & Zazkis (2015) found that their students were hindered
by contextual considerations when attempting to resolve a similar paradox of a solid
of revolution with finite volume but infinite surface area. Neither of these studies
focused on the construction of knowledge in a classroom community.

METHODOLOGY

The setting for the research was a course on Chaos and Fractals at a US university,
which formed part of the mathematics requirement toward a master’s degree in
mathematics education. Participants were 11 students with an undergraduate degree
in mathematics, the teacher, and an instructor/observer who occasionally intervened.
The teacher and instructor were both part of the research team. Classes took place
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during one semester twice a week for 75-minutes each; typical class periods
alternated between SGW and WCD. During SGW, students worked in four stable
groups; they were invited to use huddle boards - one table sized white board per
group - in order to promote group communication and to facilitate subsequent whole
class presentation of their work. The teacher and instructor went from group to group,
trying to understand student thinking and attempting to focus students’ activity on
what they saw as the main issues; they did this mainly by asking questions but did not
otherwise intervene in the SGW. The four stable groups will be numbered 1 (Carmen,
Jan and Joy); 2 (Kevin, Elise and Mia); 3 (Soo, Kay and Shani); and 4 (Curtis and
Sam). All names are pseudonyms. Groups 1 and 2 were video-recorded during SGW;
the class was video-recorded during WCDs. In WCDs, groups had the opportunity to
use the huddle boards to share their thinking; there were also teacher led discussions
and short lectures whose aim it was to facilitate reflection on issues having been
discussed by some groups.

On Day 9 (out of 24), class work was based on an activity about the Sierpinski
Triangle (ST). As shown in Figure 1, the ST may be produced by a recursive
procedure: Draw an equilateral triangle; connect the midpoints of its sides; remove
the middle triangle to get three equilateral triangles (of side % of the original one);
repeat these steps (including the repetition) for each of the three smaller triangles.
The ST is obtained by means of the (infinite) recursion.

Figure 1. The Sierpinski Triangle (shown after 6 iterations)

The activity was based on a three-part worksheet. In Part A, students were asked to
carry out the recursive procedure six times, blackening the removed triangles on the
huddle boards. In Part B, they were asked to imagine continuing the recursion forever
and to discuss the figure they would obtain, in particular its area and its perimeter. In
Part C, they were asked about properties of the resulting figure, especially comparing
it to its parts.

The teacher had planned for the students to come up with enough properties in Part C
to enable a definition of self-similarity, and as a by-product of learning about self-
similarity, to realize that self-similar objects may have finite (or even zero) area and
infinite perimeter. However, as will be seen below, the class had its own emergent
goals, which led us to investigate student reasoning about area (A) and perimeter (P).

Our task analysis yielded 4 knowledge elements for each of A and P: nature, process,
limit, and infinity, denoted A,, A,, A, A, and P,, Py, P, P.. Nature refers to the
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nature and properties of the region at step k whose area/perimeter is being considered.
Process refers to the process of removing the triangles and computing the relevant
area/perimeter. Limit refers to the realization that the process is never-ending and the
areas form a sequence converging to zero whereas the perimeters form a diverging
sequence. Infinity refers to the awareness that the actual figure has zero area and an
infinitely long perimeter. The difference between limit and infinity may be construed
as the difference between potential and actual infinity. These knowledge elements
have been formulated in precise language and operational criteria have been fixed to
decide whether a student or group of students has constructed each knowledge
element. As an example, P, is defined as follows: Eventually, there actually is a
figure whose perimeter is longer than any finite curve. Operationally, we will say that
a student has constructed P, if the student explicitly claims that the eventual shape or
figure or region has an infinitely long perimeter.

The data used in this paper consisted of transcripts from Day 9, images of the groups’
huddle boards, and researcher notes taken in the classroom. SGW was analysed using
AIC. We present only constructing actions here. In most cases, these will be
attributed to the groups rather than individual students; exceptions will be noted. The
WCDs were analysed using DCA,; for each argument (numbered as Al, A2, etc.),
Claim, Data and Warrant were identified, so that the criteria for ideas that FAIS could
be applied.

SMALL GROUP WORK AND WHOLE CLASS DISCUSSIONS

The class on Day 9 started by watching and discussing an excerpt from a video about
fractals with real world examples including a cauliflower, mountains, a magnetic
pendulum and the coast of Britain; this took about 25 minutes and included WCD 1,
SGW 2, and WCD 3. Then students were then asked to start working in groups on the
worksheet; they spent about 26 minutes on drawing according to Part A and
discussing the meaning of repeating the repetition (SGW 4, WCD 5). They used
terms such as “infinite loop” and “zooming in”. The focus of this paper is their work
on Part B of the activity during the remaining 24 minutes, split into three episodes of
SGW (6, 8, 10) and three WCDs (7, 9, 11). The class did not reach Part C on Day 9.

SGW 6 (area as process) - The teacher invited the students to develop a conjecture
about area and perimeter. After a brief discussion about the perimeter showing
confusion (Joy: “in one sense it's infinity, because you keep adding a little bit more.
But it should approach a number, right?””), Group 1 focused on area, and attempted to
compute the area after one repetition. A reminder by the teacher to produce a
conjecture led to a seed of the idea of recursion (Carmen: “That’s one-fourth of it, so
each term maybe three-fourths of it”) thus starting the construction of A,,.

Group 2 quickly came up with a formula (Elise: “So it's three fourths to the n of our
A;?”) and spent the reminder of the time discussing what n means and how to denote
things (e.g., Ao for the initial area). We interpret this as having constructed A,.
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WCD 7 (computations) - The teacher asked whether the groups had come up with a
conjecture, and the students reacted by presenting computational results. Kevin
presented their result as the sequence (3/4)" and Joy added that they had just started in
this direction after computing the area of the first triangle. Student arguments
included only claims and hence were not analysed per the DCA approach.

SGW 8 (perimeter as process) - Group 2 focused on computing the perimeter (Kevin:
“we have an additional a, we have three halves more a”, and later Mia: “So, it's like,
it's going by a scale of three over two, to the n”). The group also made attempts at
seeing what happens in the long run (Mia: “the perimeter is just keeps getting bigger,
and bigger and bigger”; Elise: “Or is there, like, a limit? That it stops?”’). While this
points in the direction of P,, our interpretation is that they have not constructed P, yet:
In spite of them having identified what an expert might see as a diverging geometric
sequence, they question whether it converges or not. We also note that some students
may be thinking additively rather than multiplicatively.

Group 1 quickly constructed A, (Carmen: “And then three-fourths of our three-
fourths”; Jan: “It's alright, we got enough... to do the whole”) and somewhat
hesitatingly, A, (Carmen: “Maybe zero?”; Joy: “No no no, because this is like three-
fourths time three-fourths is nine-sixteenths, and after that would be... what?
Twenty-seven over sixty-four?”; Carmen: “Is it approach... zero? I think it does”;
Joy: “Okay, so you are right, it approaches zero”). There is evidence that they also
constructed A, (e.g., Joy: “If you keep filling it in, there's not going to be any white
area”). We note that there was no discussion about A,. However, they then held a
long discussion about P, (e.g., Joy: “So what counts as the perimeter?”’; Carmen: “Is
it cumulative perimeter?””). Our analysis resulted in the decision that while
constructing P, was under way, it had not yet been achieved. Next, they mentioned
aspects of P, (Joy: “So let's say the perimeter of this is three, we would add in... half
of each. So, like, three... times the half’) without completing a constructing process.
They were reminded by the instructor of the area tending to zero, which brought
tension with respect to the perimeter (e.g., Carmen: “if we keep zooming in, there's
no area, so there can be no fence [perimeter]”).

WCD 9 (the controversy) — This discussion in Group 1 prompted the instructor to ask
for the teacher‘s permission to ask Carmen and Joy to present their controversy to the
class. Carmen’s argument (A2) used as data “there’s no area” and claimed “there’d
be no perimeter” with warrant “there’s nothing to... nothing to put a fence around it”.
Joy, on the other hand, argued (A3) for the opposite, using as data “as you zoom in
there’s more and more to fence”, supported by the warrant that one keeps putting in
more fencing material. This brought about a suggestion that when one removed a
triangle (i.e. colours it black), the perimeter of this black triangle is added to the
existing perimeter. In argument (A4) the claim is that “the perimeter of the, the white
is also the same as the perimeter of the, perimeter of the black part” (Curtis), and this
1s based on the data “When you shade it in, you’re adding the perimeter of the black”
(Kevin) with the warrant that “the fence is guarding both properties” (Carmen). When
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encouraged by the instructor to explain Carmen and Kevin’s thinking, Soo built
argument AS: Claim: “So you keep adding the numbers, right?”’; Data: “So you have
more areas”; Warrant: “You keep zooming in, you’re going to get more triangles
forming”. Next, Mia argued (A6): Claim: “I see the perimeter increasing and then
this, the unshaded area is what’s left over, and that’s constantly decreasing and going
to zero”; Data: “You’re going to have all these shaded triangles, with perimeters”;
Warrant, upon Carmen’s question “Is this a cumulative perimeter or a perimeter at a
point in time?”: “I see it the first way” (Mia). Several more arguments (A7, A8, A9)
in this WCD focused on the area decreasing and tending to zero in an unending
process of creation. The analysis of arguments in this WCD resulted in two ideas that
FAIS:

FAIS A: Perimeter of white is also perimeter of black; this was a claim in argument
A4 but a justification in argument A6; the justification was that the perimeters of the
shaded (black) triangles cumulatively constitute the perimeter of the remaining,
unshaded, white area. Hence this idea satisfies Criterion 2.

FAIS B: The perimeter is cumulative; this was a claim in A5 and a warrant in A6 (we
will see it serving as justification again in A13), and hence also satisfies Criterion 2.

SGW 10 (connections) - Group 1 had a discussion of all four aspects of perimeter,
completing the construction of, at least, P, and P,. They built their thinking on the
fact that they used more and more ink at each stage to draw the additionally generated
bits of perimeter, and concluded (Joy): “I thought it went infinitely, because if you
zoom in, there's more fencing to put in. And if you zoom in there's more fence to put
in”. We have no evidence that they constructed P, and P.. In fact, this is unlikely
since they only completed constructing P, and P, toward the very end of the SGW.
Moreover, Carmen, while admitting that the perimeter tends to infinity, insisted that
intuitively, no area implies no perimeter.

Group 2 attempted to combine what they knew about the unending processes of area
and perimeter. For example, Mia: “There's nothing for the area, but you're still...
you're counting the perimeter of what you're taking out” and Kevin: “...as soon as
you say - as n approached infinity, that means you're going to computation. So, |
think what we want is something general, like - the area is getting smaller, but the
perimeter is getting larger, and just leave it at that general statement”. Our
interpretation is that they may have started constructing A, and P, but are still far
from completing these constructions.

The constructing processes resulting from the AiC analysis are summarised in Table
1. The table lists only constructs that we have evidence for; in other words, the fact
that, for example, A, does not appear does not mean they have not constructed A, — it
only means that A, has not been discussed during SGW in a manner that lets us as
researchers conclude that A, has been constructed.

Group | SGW6 SGW8 SGW10
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1 (Ap) | ApAIA, (Pr) (Pp) (Px) | PnPy
2 Ap (Pp) (P1) (Az) (P=)

Table 1. The constructs; parentheses mean (under construction)

WCD 11 (linking area and perimeter processes) - The instructor called on group after
group to present their thinking, however tentative. Group 1 used an ink metaphore,
the ink being used to draw the additional perimeter bits. In this way, they explained
how cutting out further triangles reduces the area while using more ink — thus
increasing the perimeter. Carmen, however, added, that for her “that’s not
resonating”. The researchers identified two arguments while this group was reporting
(A10, A1l) and one (Al12) while another group was reporting. During their report,
Group 2 connected the perimeter process to the area process like Group 1. Elise built
the following argument (A13): Claim: “The area is getting smaller and the perimeter
is getting bigger”. Data: “You’re adding smaller and smaller pieces”. Warrant: “...but
you’re adding those pieces to what you already have”. Backing: “The perimeter is,
like, all of this, combined with all of this, combined with all of this, combined...”.
We note that the argument focuses almost completely on perimeter, although the
claim equally relates to area. Finally, the report of Group 4 included arguments Al4
and A15. We only describe A15, produced by Sam: “So the area would be... go to
zero... There would be limited amount of areas, so we're going to have a limited
number of... perimeters. So, we don't have infinite number of perimeters”. Sam’s
claim of a “not infinite perimeter” is based on the data that the area goes to zero and
hence there is a limited amount of area, with the “limited number of perimeters”
serving as warrant. Based on these arguments, we identified two more ideas that
FAIS:

FAIS C: Unending process of creation; this meets Criterion 3: Continued use of an
idea (e.g., keep adding) across multiple arguments to describe the process that is
being analysed. This idea is related to potential infinity.

FAIS D: Area going to zero; this was repeatedly a claim, including in arguments A®6,
A7, A8, A9, A13 and became data in argument A15, hence satisfying Criterion 2.

The relationship between SGWs and WCDs

As a preliminary, we note the richness and diversity of students’ ways of reasoning
about area and perimeter, which in a less student-centred classroom might have been
quickly undermined with an infinite geometric sequence that is decreasing (r<1) and
hence tending to zero for area and an infinite geometric sequence that is increasing
(r>1) and hence tending to infinity for perimeter. We note that the term geometric
was once mentioned briefly with respect to area by Sam during WCD 11 (“it's
geometric, so it's going to converge. So, the area would be... go to zero”) but this
was rather toward the end of class and was not picked up by any of the other students.
Generally, students seem to have been satisfied by arguments of the type “the
sequence is infinite and decreases, hence it tends to 0” (as in the discussion of Group
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1 in SGW 8) or “the sequence is infinite and increases” (e.g., Mia and Elise of Group
2 in SGW 8).

The diversity manifests itself, among others, in the metaphors the students used
(fence, ink), in a tendency to use, at least initially, numerical considerations for area
and perimeter, in the attempt to link the area process with the perimeter process, and
the related discussion about the nature of the perimeter as separating the region that
belongs to the ST from the one that doesn’t. Little of this was initiated or suggested
by the teacher or the worksheet.

This last issue appears as P, in the AiC analysis of the SGWs and as FAIS A in the
DCA analysis of the WCDs. Similarly, there are relationships between the other
FAIS ideas and knowledge elements. Table 2 shows these relationships.

FAIS A|B |C D
Constructs | P, | Py | A, P | A, Ay

Table 2. Relationship between FAIS and constructs

While FAIS idea A (the perimeter of white is also perimeter of black) is related to
construct P,, the relationship between the constructing process of P, and the
arguments establishing A as FAIS is complex. We don’t have evidence of P, having
been constructed in either of the two observed groups before the relevant WCD 9;
and the first argument establishing idea A as a claim (A4) was initiated by Curtis but
immediately supported by Kevin and Carmen. Moreover, the second argument, in
which idea A became a justification, A6, was presented by Mia. This may indicate
that the beginning P, construction we identified in Group 1 was substantial, and
maybe even that the discussion in Group 2, which on the face of it focused on P,
caused Kevin and Mia to think about P,. Finally, we ask ourselves to what extent the
constructing process of P,, continued during WCD 9 for Kevin, Carmen and Mia.

FAIS B (the perimeter is cumulative) — is similar to FAIS C (and intimately related to
it from the point of view of the mathematical content). While we hesitated to claim
that P, has been constructed by Group 2, it is Mia from that group who produced A6
and Elise from that same group who produced A13, the two arguments where the
element switched position to becoming a justification and thus allowed us, according
to DCA to categorize this idea as FAIS.

FAIS C (unending process of creation) exhibits a case in which the two analyses
connect rather smoothly. Group 1 constructed A, and P, and Group 2 may be
assumed to have implicitly constructed A, and to be progressing in the constructing
process of P,. The frequent use of this knowledge element in many WCD arguments
may indicate a similar situation in the other two groups. Soo from the Group 3
produced Argument A5; and Sam from the Group 4 produced Argument A9.

Finally, the relationship between FAIS D (area going to zero) and A, seems obvious
and needs little comment. When this idea functions as if shared in the classroom, it is
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possible that some of the students relate to construct A, (as shown above for Carmen
and Joy) and others think in terms of A, or even in terms of A, only. While to the
expert, thinking in terms of A;may be satisfactory at best, and thinking in terms of A,
may be insufficient, such differences are tended to be glossed over in this classroom
with respect to the rather basic construct of area, and we may speculate that similar
situations pertain to more complex